Combinatorics of ϕ-deformed stuffle Hopf algebras

Gérard Henry Edmond Duchamp, Vincel Hoang Ngoc Minh, Christophe Tollu, Bùi Chiên, Nguyen Hoang Nghia

To cite this version:

Gérard Henry Edmond Duchamp, Vincel Hoang Ngoc Minh, Christophe Tollu, Bùi Chiên, Nguyen
Hoang Nghia. Combinatorics of ϕ-deformed stuffle Hopf algebras. 2013. hal-00793118v1

HAL Id: hal-00793118
 https://hal.science/hal-00793118v1

Preprint submitted on 21 Feb 2013 (v1), last revised 1 Mar 2014 (v7)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Combinatorics of ϕ-deformed stuffle Hopf algebras ${ }^{1}$

Gérard H. E. Duchamp ${ }^{12}$
Hoang Ngoc Minh ${ }^{23}$
Christophe Tollu ${ }^{12}$
Chiên Bùi ${ }^{42}$
Hoang Nghia Nguyen ${ }^{12}$
${ }^{1}$ Université Paris 13, 99, avenue Jean-Baptiste Clément, 93430 Villetaneuse, France.
${ }^{2}$ LIPN - UMR 7030, CNRS, 93430 Villetaneuse, France.
${ }^{3}$ Université Lille II, 1, Place Déliot, 59024 Lille, France.

Abstract

In order to extend the Schützenberger's factorization to general perturbations, the combinatorial aspects of the Hopf algebra of the ϕ-deformed stuffle product is developed systematically in a parallel way with those of the shuffle product and in emphasizing the Lie elements as studied by Ree. In particular, we will give an effective construction of pair of bases in duality.

Contents

1 Introduction 2
2 General results on summability and duality 4
2.1 Total algebras and duality 4
2.1.1 Series and infinite sums 4
2.1.2 Summable families 5
2.1.3 Substitutions 6
2.2 Theorem of Cartier-Quillen-Milnor-Moore (analytic form) 8
2.2.1 General properties of bialgebras 8
2.2.2 The theorem from the point of view of summability 12
3 Case study : ϕ-deformed stuffle 14
3.1 Results for the ϕ-deformed stuffle 14
3.2 Pair of bases in duality on ϕ-deformed stuffle algebra 24
3.3 Particular case : q-deformation of the shuffle product 31

[^0]
1 Introduction

Let X be an totally ordered alphabet ${ }^{2}$. The free monoid and the set of Lyndon words, over X, are denoted respectively by X^{*} and $\mathcal{L} y n X$. The neutral element of X^{*}, i.e. the empty word is denoted by $1_{X^{*}}$. Let $\mathbb{Q}\langle X\rangle$ be equipped by the concatenation and the shuffle which is defined by

$$
\begin{align*}
\forall w \in X^{*}, & w ш 1_{X^{*}}=1_{X^{*}} \sqcup w=w, \\
\forall x, y \in X, \forall u, v \in X^{*}, & x u ш y v=x(u ш y v)+y(x u \sqcup v), \tag{1}
\end{align*}
$$

or by their dual co-products, $\Delta=\Delta_{\text {conc }}$ and $\Delta=\Delta_{\text {}}$, defined by, for any $w \in X^{*}$ by,

$$
\begin{align*}
\Delta_{\text {conc }}(w) & =\sum_{w=u v} u \otimes v \\
\Delta_{\amalg}(w) & =\sum_{I+J=[1 . .|w|]} w[I] \otimes w[J] \tag{2}
\end{align*}
$$

One gets two Hopf algebras

$$
\begin{array}{r}
\mathcal{H}_{\amalg}=\left(\mathbb{Q}\langle X\rangle, \text { conc, } 1_{X^{*}}, \Delta_{\amalg}, \epsilon, a_{\bullet}\right) \text { and } \\
\mathcal{H}_{\amalg}^{\vee}=\left(\mathbb{Q}\langle X\rangle, ш, 1_{X^{*}}, \Delta_{\text {conc }}, \epsilon, a_{\amalg}\right) \tag{3}
\end{array}
$$

mutually dual with respect to the pairing given by

$$
\begin{equation*}
\left(\forall u, v \in X^{*}\right)\left(\langle u \mid v\rangle=\delta_{u, v}\right) . \tag{4}
\end{equation*}
$$

and with, for any $x_{i_{1}}, \ldots, x_{i_{r}} \in X$ and $P \in \mathbb{Q}\langle X\rangle$,

$$
\begin{align*}
& \epsilon(P)=\left\langle P \mid 1_{X^{*}}\right\rangle, \\
& a_{\amalg}(w)=a_{\bullet}(w)=(-1)^{r} x_{i_{r}} \ldots x_{i_{1}}, . \tag{5}
\end{align*}
$$

By the theorem of Cartier-Quillen-Milnor and Moore (CQMM in the sequel), the connected, graded positively, co-commutative Hopf algebra \mathcal{H}_{w} is isomorphic to the enveloping algebra of the Lie algebra of its primitive elements which here is $\mathcal{L} i e_{\mathbb{Q}}\langle X\rangle$. Hence, from any basis of the free algebra $\mathcal{L} i e_{\mathbb{Q}}\langle X\rangle$ one can ${ }^{3}$ complete, by the Poincaré-Birkhoff-Witt theorem, a linear basis $\left\{b_{w}\right\}_{w \in X^{*}}$ for $\mathcal{U}\left(\mathcal{L} i e_{\mathbb{Q}}\langle X\rangle\right)=\mathbb{Q}\langle X\rangle$ (see below (8) for an example of such a construction), and, when the basis is finely homogeneous, one can construct, by duality, a basis $\left\{\check{b}_{w}\right\}_{w \in X^{*}}$ of \mathcal{H}_{\amalg} (viewed as a \mathbb{Q}-module) such that:

$$
\begin{equation*}
\forall u, v \in X^{*}, \quad\left\langle\check{b}_{u} \mid b_{v}\right\rangle=\delta_{u, v} \tag{6}
\end{equation*}
$$

For $w=l_{1}^{i_{1}} \ldots l_{k}^{i_{k}}$ with $l_{1}, \ldots l_{k} \in \mathcal{L} y n X, l_{1}>\ldots>l_{k}$

$$
\begin{equation*}
\check{b}_{w}=\frac{\check{b}_{l_{1}}^{\omega i_{1}} ш \ldots ш \check{b}_{l_{k}}^{\omega i_{k}}}{i_{1}!\ldots i_{k}!} \tag{7}
\end{equation*}
$$

[^1]For example, Chen, Fox and Lyndon [5] constructed the PBW-Lyndon basis $\left\{P_{w}\right\}_{w \in X^{*}}$ for $\mathcal{U}\left(\mathcal{L} i e_{\mathbb{Q}}\langle X\rangle\right)$ as follows

$$
\begin{array}{rcl}
P_{x} & = & x \\
\text { for } x \in X, \\
P_{l} & =\left[P_{s}, P_{r}\right] & \text { for } l \in \mathcal{L} y n X, \text { standard factorization of } l=(s, r), \tag{8}\\
P_{w} & =P_{l_{1}}^{i_{1}} \ldots P_{l_{k}}^{i_{k}} & \text { for } w=l_{1}^{i_{1}} \ldots l_{k}^{i_{k}}, l_{1}>\ldots>l_{k}, l_{1} \ldots, l_{k} \in \mathcal{L} y n X .
\end{array}
$$

Schützenberger and his school constructed, the linear basis $\left\{S_{w}\right\}_{w \in X^{*}}$ for $\mathcal{A}=\left(\mathbb{Q}\langle X\rangle, ш, 1_{X^{*}}\right)$ by duality (w.r.t. eq.4) and obtained the transcendence basis of $\mathcal{A}\left\{S_{l}\right\}_{l \in \in \mathcal{L} y n X}$ as follows ${ }^{4}$

$$
\begin{array}{ccl}
S_{l} & =x S_{u}, & \text { for } l=x u \in \mathcal{L} y n X, \\
S_{w} & =\frac{S_{l_{1}}^{\amalg i_{1}} w \ldots w S_{l_{k}}^{\amalg i_{k}}}{i_{1}!\ldots i_{k}!} & \text { for } w=l_{1}^{i_{1}} \ldots l_{k}^{i_{k}}, l_{1}>\ldots>l_{k} . \tag{10}
\end{array}
$$

After that, Mélançon and Reutenauer [8] proved that ${ }^{5}$, for any $w \in X^{*}$,

$$
\begin{equation*}
P_{w}=w+\sum_{v>w,|v|=|w|} c_{v} v \quad \text { and } \quad S_{w}=w+\sum_{v<w,|v|=|w|} c_{v} v . \tag{11}
\end{equation*}
$$

On other words, the elements of the bases $\left\{S_{w}\right\}_{w \in X^{*}}$ and $\left\{P_{w}\right\}_{w \in X^{*}}$ are upper and lower triangular respectively and are multihomogeneous.
Moreover, thanks to the duality of the bases $\left\{\mathrm{P}_{w}\right\}_{w \in X^{k}}$ and $\left\{S_{w}\right\}_{w \in X^{k}}$, if \mathcal{D}_{X} denotes the diagonal series over X one has

$$
\begin{equation*}
\mathcal{D}_{X}=\sum_{w \in X^{*}} w \otimes w=\sum_{w \in X^{*}} S_{w} \otimes P_{w}=\prod_{l \in \mathcal{L} y n X}^{\searrow} \exp \left(S_{l} \otimes P_{l}\right) \tag{12}
\end{equation*}
$$

Acknowledgements. -

Nguyen, Tanasa, Deneufchâtel + ANR : The authors are pleased to acknowledge the hospitality of institutions in Paris, Cracow and New York. Special thanks are due to Catherine Borgen for having created a fertile atmosphere in Exeter (UK) where early parts of this manuscript were prepared. We also hereby acknowledge support from the Polish Ministry of Science and Higher Education under Grant N ${ }^{\text {o }} 20210732 / 2832$ for hospitality and the ANR PhysComb "Projet ANR-BLAN08 N ${ }^{\mathrm{o}} 2332204$ ". Finally, we are grateful to ?? and ?? for their reading of and comments on the manuscript.
Dedication. -
Pierre Cartier has not only blazed a successful trail in his own areas of Mathematics but, through his support given generously to others, has stimulated

[^2]The triangular matrices M and N are unipotent and satisfy the identity $N=\left({ }^{t} M\right)^{-1}$.
new branches to develop. On the occasion of 80th birthday we are happy to acknowledge with gratitude his encouragement to the development of our own field of Combinatorial Physics and its interactions with number theory, and look forward to many future years of professional engagement.

2 General results on summability and duality

Let $Y=\left\{y_{i}\right\}_{i \in I}$ be a totally ordered alphabet. The free monoid and the set of Lyndon words, over Y, are denoted respectively by Y^{*} and $\mathcal{L} y n Y$. The neutral of Y^{*} (and then of $A\langle Y\rangle$) is denoted by $1_{Y^{*}}$.

2.1 Total algebras and duality

2.1.1 Series and infinite sums

In the sequel, we will need to construct spaces of functions on different monoids (mainly direct products of free monoids). We set, once for all the general construction of the corresponding convolution algebra.
Let A be a unitary commutative ring and M a monoid. Let us denote A^{M} the set ${ }^{6}$ of all (graphs of) mappings $M \rightarrow A$. This set is endowed with its classical structure of module. In order to extend the product defined in $A[M]$ (the algebra of the monoid M), it is essential that, in the sums

$$
\begin{equation*}
f * g(m)=\sum_{m \in M} \sum_{u v=m} f(u) g(v) \tag{13}
\end{equation*}
$$

the inner sum $\sum_{u v=m} f(u) g(v)$ make sense. For that, we suppose that the monoid M fulfills condition "D" (be of finite decomposition type [3] Ch III.10). Formally, we say that M satisfies condition "D" iff, for all $m \in M$, the set

$$
\begin{equation*}
\{(u, v) \in M \times M \mid u v=m\} \tag{14}
\end{equation*}
$$

is finite. In this case eq. 13 endows A^{M} with the structure of a AAU. This algebra is traditionnaly called the total algebra of M (see [3] Ch III.10) and has very much to do with the series ${ }^{7}$. It will be, here (with a slight abuse of denotation which does not cause ambiguity) denoted $A\langle\langle M\rangle\rangle$.
The pairing

$$
\begin{equation*}
A\langle\langle M\rangle \otimes A[M] \quad \longrightarrow \quad A \tag{15}
\end{equation*}
$$

defined by ${ }^{8}$

$$
\begin{equation*}
\langle f \mid g\rangle:=\sum_{m \in M} f(m) g(m) \tag{16}
\end{equation*}
$$

[^3]allows to see every element of the total algebra as a linear form on the module $A[M]$. On can check easily that, with this pairing, one has $A\left\langle\langle M\rangle \simeq(A[M])^{*}\right.$. One says that a family $\left(f_{i}\right)_{i \in I}$ of $A\langle\langle M\rangle\rangle$ is summable [1] iff, for every $m \in M$, the mapping $i \mapsto\left\langle f_{i} \mid m\right\rangle$ is finitely supported. In this case, the sum $\sum_{i \in I} f_{i}$ is exactly the mapping $m \longmapsto \sum_{i \in I}\left\langle f_{i} \mid m\right\rangle$ so that, one has by definition
\[

$$
\begin{equation*}
\left\langle\sum_{i \in I} f_{i} \mid m\right\rangle=\sum_{i \in I}\left\langle f_{i} \mid m\right\rangle . \tag{17}
\end{equation*}
$$

\]

To end with, let us remark that the set $M_{1} \otimes M_{2}=\{u \otimes v\}_{(u, v) \in M_{1} \times M_{2}}$ is a (monoidal) basis of $A\left[M_{1}\right] \otimes A\left[M_{2}\right]$ and $M_{1} \otimes M_{2}$ is a monoid (in the product algebra $\left.A\left[M_{1}\right] \otimes A\left[M_{2}\right]\right)$ isomorphic to the direct product $M_{1} \times M_{2}$.

2.1.2 Summable families

In fact, $A\langle\langle M\rangle\rangle \simeq(A[M])^{*}=\operatorname{Hom}(A[M], A)$ and the notion of summability developed here can be seen as a particular case of that of a family of endomorphisms $f_{i} \in \operatorname{Hom}(V, W)$ for which $\operatorname{Hom}(V, W)$ appears as a complete space. It is indeed the pointwise convergence for the discrete topology. We will not detail these considerations here.
The definition is similar of that of a summable family of series [1], viewed as a family of linear forms.

Definition 1. i) A family $\left(f_{i}\right)_{i \in I}$ of elements in $\operatorname{Hom}(V, W)$ is said to be summable iff for all $x \in V$, the map $i \mapsto f_{i}(x)$ has finite support. As a quantized criterium it reads

$$
\begin{equation*}
(\forall x \in V)\left(\exists F \subset_{\text {finite }} I\right)(\forall i \notin F)\left(f_{i}(x)=0\right) \tag{18}
\end{equation*}
$$

ii) If the family $\left(f_{i}\right)_{i \in I} \in \operatorname{Hom}(V, W)^{I}$ fulfils the condition 18 above its sum is given by

$$
\begin{equation*}
\left(\sum_{i \in I} f_{i}\right)(x)=\sum_{i \in I} f_{i}(x) \tag{19}
\end{equation*}
$$

It is an easy exercise to show that the mapping $V \rightarrow W$ defined by the equation 19 is in fact in $\operatorname{Hom}(V, W)$. Remark that, as the limiting process is defined by linear conditions, if a family $\left(f_{i}\right)_{i \in I}$ is summable, so is

$$
\begin{equation*}
\left(a_{i} f_{i}\right)_{i \in I} \tag{20}
\end{equation*}
$$

for a set of coefficients $\left(a_{i}\right)_{i \in I} \in A^{I}$.
if a family When $V=W=\mathcal{B}$ is a bialgebra, this tool will be used in section (2.2) to give an analytic presentation of the theorem of Cartier-Milnor-Moore. The most interesting feature of this operation is the interversion of sums. Let us state it formally as a proposition the proof of which is left to the reader.

Proposition 1. Let $\left(f_{i}\right)_{i \in I}$ be a family of elements in $\operatorname{Hom}(V, W)$ and $\left(I_{j}\right)_{j \in J}$ be a partition of I ([2] ch II §4 no 7 Def. 6), then TFAE
i) $\left(f_{i}\right)_{i \in I}$ is summable ii) for all $j \in J,\left(f_{i}\right)_{i \in I_{j}}$ is summable and the family $\left(\sum_{i \in I_{j}} f_{i}\right)_{j \in J}$ is summable.
In these conditions, one has

$$
\begin{equation*}
\sum_{i \in I} f_{i}=\sum_{j \in J}\left(\sum_{i \in I_{j}} f_{i}\right) \tag{21}
\end{equation*}
$$

We derive at once from this the following practical criterium for double sums.
Proposition 2. Let $\left(f_{\alpha, \beta}\right)_{(\alpha, \beta) \in A \times B}$ be a doubly indexed summable family in $\operatorname{Hom}(V, W)$, then, for fixed α (resp. β) the "row-families" $\left(f_{\alpha, \beta}\right)_{\beta \in B}$ (resp. the "column-families" $\left.\left(f_{\alpha, \beta}\right)_{\alpha \in A}\right)$ are summable and their sums are summable. Moreover

$$
\begin{equation*}
\sum_{(\alpha, \beta) \in A \times B} f_{\alpha, \beta}=\sum_{\alpha \in A} \sum_{\beta \in B} f_{\alpha, \beta}=\sum_{\beta \in B} \sum_{\alpha \in A} f_{\alpha, \beta} . \tag{22}
\end{equation*}
$$

2.1.3 Substitutions

Let \mathcal{A} be a AAU and $f \in \mathcal{A}$. For every polynomial $P \in A\langle X\rangle=A[X]$, one can compute $P(f)$ by

$$
\begin{equation*}
P(f)=\sum_{n \geq 0}\left\langle P \mid X^{n}\right\rangle f^{n} \tag{23}
\end{equation*}
$$

one checks at once that $P \mapsto P(f)$ is a morphism ${ }^{9}$ of AAU between $A[X]$ and \mathcal{A}. Moreover, this morphism is compatible with the substitutions as one checks easily that, for $Q \in A[X]$

$$
\begin{equation*}
P(Q)(f)=P(Q(f)) \tag{24}
\end{equation*}
$$

(it suffices to check that $P \mapsto P(Q)(f)$ and $P \mapsto P(Q(f))$ are two morphisms which coincide at $P=X$).
In order to substitute within series, one needs some limiting process. The framework of $\mathcal{A}=\operatorname{Hom}(V, W)$ and summable families will be here sufficient (see paragraph 2.1.2). We suppose that $\left(V, \delta_{V}, \epsilon_{V}\right)$ is a co-AAU and that $\left(W, \mu_{W}, 1_{W}\right)$ is a AAU. Then $(\operatorname{Hom}(V, W), *, e)$ is a AAU (with $\left.e=1_{W} \circ \epsilon_{V}\right)$. A series $S \in A[[X]]$ being given, we say that $f \in$ iff the family $\left(\left\langle S \mid X^{n}\right\rangle f^{* n}\right)_{n \geq 0}$ is summable. It is easy to check that, if $f \in \operatorname{Dom}(S) \cap \operatorname{Dom}(T)$ and $\alpha \in A$, one has

$$
\begin{equation*}
(\alpha S)(f)=\alpha S(f) ;(S+T)(f)=S(f)+T(f) \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
(T S)(f)=T(f) * S(f) \tag{26}
\end{equation*}
$$

If $\left((f)^{n}\right)_{n \geq 0}$ is summable and $S(0)=0$ then

$$
\begin{equation*}
f \in \operatorname{Dom}(S) \cap \operatorname{Dom}(T(S)) ; S(f) \in \operatorname{Dom}(T) \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
T(S)(f)=T(S(f)) \tag{28}
\end{equation*}
$$

[^4]Proof. Let us first prove eq. 26 . As $f \in \operatorname{Dom}(S) \cap \operatorname{Dom}(T)$,
the families $\left(\left\langle S \mid X^{n}\right\rangle f^{* n}\right)_{n \geq 0}$ and $\left(\left\langle T \mid X^{m}\right\rangle f^{* m}\right)_{n \geq 0}$ are summable, then so is

$$
\begin{equation*}
\left(\left\langle T \mid X^{m}\right\rangle f^{* m} *\left\langle S \mid X^{n}\right\rangle f^{* n}\right)_{n, m \geq 0} \tag{29}
\end{equation*}
$$

as, for every $x \in V, \delta(x)=\sum_{i=1}^{N} x_{i}^{(1)} \otimes x_{i}^{(2)}$ and for every $i \in I$,

$$
\operatorname{supp}_{w . r . t . m}\left(\left\langle T \mid X^{m}\right\rangle f^{* m}\left(x_{i}^{(1)}\right)\right) ; \operatorname{supp}_{\text {w.r.t. } n}\left(\left\langle S \mid X^{n}\right\rangle f^{* n}\left(x_{i}^{(2)}\right)\right)
$$

are finite. Then outside of the cartesian product of the (finite) union of these supports, the product

$$
\begin{equation*}
\left(\left\langle T \mid X^{m}\right\rangle f^{* m} *\left\langle S \mid X^{n}\right\rangle f^{* n}\right)(x)=\mu_{W}\left(\left(\left\langle T \mid X^{m}\right\rangle f^{* m} \otimes\left\langle S \mid X^{n}\right\rangle f^{* n}\right)(\delta(x))\right) \tag{30}
\end{equation*}
$$

is zero. Hence the summability. Now

$$
\begin{align*}
T(f) * S(f)= & \sum_{m=0}^{\infty}\left(\left\langle T \mid X^{m}\right\rangle f^{* m}\right) * \sum_{n=0}^{\infty}\left(\left\langle S \mid X^{n}\right\rangle f^{* n}\right)= \\
& \sum_{m=0}^{\infty} \sum_{n=0}^{\infty}\left(\left\langle T \mid X^{m}\right\rangle\left\langle S \mid X^{n}\right\rangle f^{* n+m}\right)= \\
& \sum_{s=0}^{\infty}\left(\sum_{n+m=s}^{\infty}\left\langle T \mid X^{m}\right\rangle\left\langle S \mid X^{n}\right\rangle\right) f^{* s}= \\
& \sum_{s=0}^{\infty}\left(\left\langle T S \mid X^{s}\right\rangle\right) f^{* s}=(T S)(f) \tag{31}
\end{align*}
$$

We now prove the statements (27) and (28). If $\left((f)^{* n}\right)_{n \geq 0}$ is summable then f belongs to all domains (i.e. is universally substituable). For all $x \in V$, it exists $N_{x} \in \mathbb{N}$ such that

$$
n>N_{x} \Longrightarrow(f)^{* n}(x)=0
$$

Now, for S such that $S(0)=0$, one has $S=\sum_{n=1}^{\infty}\left\langle S \mid X^{n}\right\rangle X^{n}$ and then $S^{k}=\sum_{n=k}^{\infty}\left\langle S^{k} \mid X^{n}\right\rangle X^{n}$. Now, in view of eq.26, one has

$$
\begin{equation*}
S(f)^{* n}(x)=S^{n}(f)(x)=\sum_{m=n}^{\infty}\left\langle S^{n} \mid X^{m}\right\rangle(f)^{* m}(x) \tag{32}
\end{equation*}
$$

which is zero for $n>N_{x}$. Hence the summability of $\left(S(f)^{* n}\right)_{n \geq 0}$ which implies that $S(f) \in \operatorname{Dom}(T)$. The family $\left(\left\langle T \mid X^{n}\right\rangle\left\langle S^{n} \mid X^{m}\right\rangle(f)^{* m}\right)_{(n, m) \in \mathbb{N}^{2}}$ is summable because, if $x \in V$ and if n or m is greater than N_{x} then

$$
\begin{equation*}
\left\langle T \mid X^{n}\right\rangle\left\langle S^{n} \mid X^{m}\right\rangle(f)^{* m}(x)=0 \tag{33}
\end{equation*}
$$

thus $T(S(f))$ is the sum
$T(S(f))=\sum_{n=0}^{\infty}\left\langle T \mid X^{n}\right\rangle S(f)^{* n}=\sum_{n=0}^{\infty}\left\langle T \mid X^{n}\right\rangle \sum_{m=n}^{\infty}\left\langle S^{n} \mid X^{m}\right\rangle(f)^{* m}=$

$$
\begin{align*}
& \sum_{n=0}^{\infty} \sum_{m=0}^{\infty}\left\langle T \mid X^{n}\right\rangle\left\langle S^{n} \mid X^{m}\right\rangle(f)^{* m}=\sum_{m=0}^{\infty}\left(\sum_{n=0}^{\infty}\left\langle T \mid X^{n}\right\rangle\left\langle S^{n} \mid X^{m}\right\rangle\right)(f)^{* m}= \\
& \sum_{m=0}^{\infty}\left\langle T(S) \mid X^{m}\right\rangle(f)^{* m}=T(S)(f) \tag{34}
\end{align*}
$$

2.2 Theorem of Cartier-Quillen-Milnor-Moore (analytic form)

2.2.1 General properties of bialgebras

Let A be a unitary commutative ring with all (non-zero) integers invertible (i.e. $\mathbb{Q} \subset A$) and ($\left.\mathcal{B}, \mu, e_{\mathcal{B}}, \Delta, \epsilon\right)$ a A-bialgebra. TODO $I d_{+}, \Delta_{+}$.
In a general bialgebra ($\mathcal{B}, \mu, e_{\mathcal{B}}, \Delta, \epsilon$), one can always consider the Lie algebra of primitive elements $\operatorname{Prim}(\mathcal{B})$ and build the map $j_{\mathcal{B}}: \mathcal{U}(\operatorname{Prim}(\mathcal{B})) \rightarrow \mathcal{B}$. Then, $\mathcal{A}=j_{\mathcal{B}}(\mathcal{U}(\operatorname{Prim}(\mathcal{B})))$ is the subalgebra generated by the primitive elements. It is not difficult to see that \mathcal{A} is a sub-bialgebra of \mathcal{B} as, for any list of primitive elements $L=\left[g_{1}, g_{2}, \cdots g_{n}\right]$, one has

$$
\begin{equation*}
\Delta\left(g_{1} g_{2} \cdots g_{n}\right)=\Delta(L[\{1,2, . ., n\}])=\sum_{I+J=\{1,2, \ldots, n\}} L[I] \otimes L[J] \tag{35}
\end{equation*}
$$

where, for $I=\left\{i_{1}<i_{2}<. .<i_{k}\right\} \subset\{1,2, . ., n\}$,

$$
\begin{equation*}
L[I]=g_{i_{1}} g_{i_{1}} \cdots g_{i_{k}} \tag{36}
\end{equation*}
$$

From (35) one gets also that $j_{\mathcal{B}}$ is a morphism of bialgebras. In order to prove that it is always into we need to construct the arrows σ, τ which are a decomposition of a section of $j_{\mathcal{B}}$. Let us remark that, when $\operatorname{Prim}(\mathcal{B})$ is free as a

Figure 1: The sub-bialgebra \mathcal{A} generated by primitive elements.
A-module, the proof of this fact is a consequence of the PBW theorem ${ }^{10}$. But, here, we will construct the section in the general case using projectors which are now classical for the free case but which still can be computed analytically as they lie in $\mathbb{Q}[[X]]$ and still converge in \mathcal{A}.

[^5]Proof. (Injectivity of $j_{\mathcal{B}}$, construction of the section $\tau \circ \sigma$). -
Let \mathcal{A} be the subalgebra of \mathcal{B} generated by $\operatorname{Prim}(\mathcal{B})$, it is straightforward to check that $\operatorname{Im}\left(j_{\mathcal{B}}\right)=\mathcal{A}$.
Remark that all series $\sum_{n \geq 0} a_{n}\left(I_{+}\right)^{* n}$ are summable on \mathcal{A} (not in general on \mathcal{B} for example in case of non-trivial group-like elements).
We first prove that

$$
\begin{equation*}
\pi_{1}=\log _{*}(I)=\sum_{n \geq 1} \frac{(-1)^{n-1}}{n}\left(I_{+}\right)^{* n} \tag{37}
\end{equation*}
$$

is a projector $\mathcal{A} \rightarrow \operatorname{Prim}(\mathcal{B})$. The key point is that $\Delta_{\mathcal{A}}$ (the restriction of the comultiplication to \mathcal{A}) is a morphism of bialgebras ${ }^{11} \mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{A}$. We begin by to proving that $\Delta_{\mathcal{A}}$ "commutes" with the convolution. This is is a consequence of the following property
Lemma 1. i) Let $f_{i} \in \operatorname{End}\left(\mathcal{B}_{i}\right)$, be such that $\varphi f_{1}=f_{2} \varphi$.

Figure 2: Intertwining with a morphism of bialgebras (the functions of f_{i} below will be computed with the respective convolution products).
i) Then, if $P \in A[X]$, one has

$$
\begin{equation*}
\varphi P\left(f_{1}\right)=P\left(f_{2}\right) \varphi \tag{38}
\end{equation*}
$$

ii) If the series $\sum_{n \geq 0}\left(I_{(i)}^{+}\right)^{* n}$, $i=1,2$ are summable, if $f_{1}(1)=0$ and $S \in$ $A[[X]]$, then the families $\left(\left\langle S \mid X^{n}\right\rangle f_{i}^{* n}\right)_{n \in \mathbb{N}}$ are summable, we denote $S\left(f_{i}\right)$ their sums (this definition is coherent with the preceding when S is a polynomial). One has, for the convolution product,

$$
\begin{equation*}
\varphi S\left(f_{1}\right)=S\left(f_{2}\right) \varphi \tag{39}
\end{equation*}
$$

Proof. The only delicate part is (ii). First, one remarks that, if φ is a morphism of bialgebras, one has

$$
\begin{equation*}
(\varphi \otimes \varphi) \circ \Delta_{1}^{+}=\Delta_{2}^{+} \circ \varphi \tag{40}
\end{equation*}
$$

then, the image by φ of an element of order less than N (i.e. such that $\Delta_{1}^{+(N)}(x)=0$) is of order less than N. Let now S be an univariate series

[^6]$S=\sum_{k=0}^{\infty} a_{k} X^{k}$. For every element x of order less than N and $f \in \operatorname{End}(\mathcal{B})$ such that $f\left(1_{\mathcal{B}}\right)=0$, one has
\[

$$
\begin{align*}
S(f)(x) & =\sum_{k=0}^{\infty} a_{k} f^{* k}(x)=\sum_{k=0}^{\infty} a_{k} \mu^{(k-1)} f^{\otimes k} \Delta^{(k-1)}(x) \\
& =\sum_{k=0}^{\infty} a_{k} \mu^{(k-1)}\left(f^{\otimes k}\right) \circ\left(I_{+}^{\otimes k}\right) \Delta^{(k-1)}(x) \\
& =\sum_{k=0}^{N} a_{k} \mu^{(k-1)}\left(f^{\otimes k}\right) \Delta_{+}^{(k-1)}(x) . \tag{41}
\end{align*}
$$
\]

This proves, in view of (i) that $\varphi \circ S\left(f_{1}\right)=S\left(f_{2}\right) \circ \varphi$.
We reprove (credits Reutenauer, Patras, Solomon) that π_{1} is a projector $\mathcal{B} \rightarrow \operatorname{Prim}(\mathcal{B})$ by means of the following lemma.

Proof. The only delicate part is (ii). First, one remarks that, if φ is a morphism of bialgebras, one has

$$
\begin{equation*}
(\varphi \otimes \varphi) \circ \Delta_{1}^{+}=\Delta_{2}^{+} \circ \varphi \tag{42}
\end{equation*}
$$

then, the image by φ of an element of order less than N (i.e. such that $\left.\Delta_{1}^{+(N)}(x)=0\right)$ is of order less than N. Let now S be an univariate series $S=\sum_{k=0}^{\infty} a_{k} X^{k}$. For every element x of order less than N and $f \in \operatorname{End}(\mathcal{B})$ such that, one has

$$
\begin{align*}
S(f)(x) & =\sum_{k=0}^{\infty} a_{k} f^{* k}(x)=\sum_{k=0}^{\infty} a_{k} \mu^{(k-1)} f^{\otimes k} \Delta^{(k-1)}(x) \\
& =\sum_{k=0}^{\infty} a_{k} \mu^{(k-1)}\left(f^{\otimes k}\right) \circ\left(I_{+}^{\otimes k}\right) \Delta^{(k-1)}(x) \\
& =\sum_{k=0}^{N} a_{k} \mu^{(k-1)}\left(f^{\otimes k}\right) \Delta_{+}^{(k-1)}(x) . \tag{43}
\end{align*}
$$

This proves, in view of (i) that $\varphi \circ S\left(f_{1}\right)=S\left(f_{2}\right) \circ \varphi$.
Now, in case \mathcal{B} is cocommutative, the comultiplication Δ is a morphism of bialgebras, so one has

$$
\begin{equation*}
\Delta \circ \log _{*}(I)=\log _{*}(I \otimes I) \circ \Delta \tag{44}
\end{equation*}
$$

But

$$
\begin{align*}
\log _{*}(I \otimes I) & =\log _{*}(I \otimes e) *(e \otimes I) \\
= & \log _{*}(I \otimes e)+\log _{*}(e \otimes I) \\
= & \log _{*}(I) \otimes e+e \otimes \log _{*}(I) \tag{45}
\end{align*}
$$

Then

$$
\begin{equation*}
\Delta\left(\log _{*}(I)\right)=\left(\log _{*}(I) \otimes e+e \otimes \log _{*}(I)\right) \circ \Delta \tag{46}
\end{equation*}
$$

which implies that $\log _{*}(I)(\mathcal{B}) \subset \operatorname{Prim}(\mathcal{B})$. To finish to prove that π_{1} is a projector onto $\operatorname{Prim}(\mathcal{B})$, one has just to remark that, for $x \in \operatorname{Prim}(\mathcal{B})$ and $n \geq 2\left(\operatorname{Id}^{+}\right)^{* n}(x)=0$ then

$$
\begin{equation*}
\log _{*}(I)(x)=\mathrm{Id}^{+}(x)=x . \tag{47}
\end{equation*}
$$

Now, we consider

$$
\begin{equation*}
I_{\mathcal{A}}=\exp _{*}\left(\log _{*}\left(I_{\mathcal{A}}\right)\right)=\sum_{n \geq 0} \frac{1}{n!} \pi_{1,[\mathcal{A}]}^{* n} \tag{48}
\end{equation*}
$$

where $\pi_{1,[\mathcal{A}]}=\log _{*}\left(I_{\mathcal{A}}\right)$.
Let us prove that the summands form an resolution of unity.
First, one defines $\mathcal{A}_{[n]}$ as the linear span of the powers $\left\{P^{n}\right\}_{P \in \operatorname{Prim}(\mathcal{B})}$ or, equivalently of the symmetrized products

$$
\begin{equation*}
\frac{1}{n!} \sum_{\sigma \in \mathfrak{S}_{n}} P_{\sigma(1)} P_{\sigma(2)} \cdots P_{\sigma(n)} \tag{49}
\end{equation*}
$$

It is obvious that $\operatorname{Im}\left(\pi_{1,[\mathcal{A}]}^{* n}\right) \subset \mathcal{A}_{[n]}$. We remark that

$$
\begin{equation*}
\pi_{1,[\mathcal{A}]}^{* n}=\mu_{\mathcal{B}}^{(n-1)} \pi_{1,[\mathcal{A}]}^{\otimes n} \Delta^{(n-1)}=\mu_{\mathcal{B}}^{(n-1)} \pi_{1,[\mathcal{A}]}^{\otimes n} I_{+}^{\otimes n} \Delta^{(n-1)}=\mu_{\mathcal{B}}^{(n-1)} \pi_{1,[\mathcal{A}]}^{\otimes n} \Delta_{+}^{(n-1)} \tag{50}
\end{equation*}
$$

as $\pi_{1,[\mathcal{A}]} I_{+}=\pi_{1,[\mathcal{A}]}$. Now, let $P \in \operatorname{Prim}(\mathcal{A})$. We compute $\pi_{1,[\mathcal{A}]}^{* n}\left(P^{m}\right)$. Indeed, if $m<n$, one has

$$
\begin{equation*}
\pi_{1,[\mathcal{A}]}^{* n}\left(P^{m}\right)=\mu_{\mathcal{B}}^{n-1} \Delta_{+}^{n-1}\left(P^{m}\right)=0 . \tag{51}
\end{equation*}
$$

If $n=m$, one has, from (35)

$$
\begin{equation*}
\Delta_{+}^{n-1}\left(P^{n}\right)=n!P^{\otimes n} \tag{52}
\end{equation*}
$$

and hence $\pi_{1,[\mathcal{A}]}^{* n}$ is the identity on $\mathcal{A}_{[n]}$. If $m>n$, the nullity of $\pi_{1,[\mathcal{A}]}^{* n}\left(P^{m}\right)$ is a consequence of the following lemma.

Lemma 2. Let \mathcal{B} be a bialgebra and P a primitive element of \mathcal{B}. Then
i) The series $\log _{*}(I)$ is summable on each power P^{m}
ii) $\log _{*}(I)\left(P^{m}\right)=0$ for $m>2$

Proof. i) As $\Delta_{+}^{* N}\left(P^{m}\right)=0$ for $N>m$, one has $I_{+}^{* N}\left(P^{m}\right)=0$ for these values.
ii) The morphism of AAU $\varphi_{P}: A[X] \rightarrow \mathcal{B}$, defined by

$$
\begin{equation*}
\varphi_{P}(X)=P \tag{53}
\end{equation*}
$$

is, in fact a morphism of bialgebras and one checks easily that One has just to

Figure 3:
check that $\pi_{1,[A[X]]}\left(X^{m}\right)=0$ for $m>2$ which is a consequence of the equality

$$
\begin{equation*}
\sum_{w \in Y^{*}}\left(w \otimes \pi_{1}(w)\right)=\log \left(\sum_{w \in Y^{*}} w \otimes w\right) \tag{54}
\end{equation*}
$$

because, for $Y=X$ one has

$$
\begin{align*}
\log \left(\sum_{w \in Y^{*}} w \otimes w\right)=\log \left(\sum_{n \geq 0} X^{n} \otimes X^{n}\right) & = \\
\log \left(\sum_{n \geq 0} \frac{1}{n!}(X \otimes X)^{(ш \otimes \text { conc }) n}\right) & = \\
\log (\exp (X \otimes X)) & =X \otimes X \tag{55}
\end{align*}
$$

this proves that $\pi_{1,[\mathcal{A}]}^{* n}\left(\mathcal{A}_{[m]}\right)=0$ for $m \neq n$ and hence the summands of the sum

$$
\begin{equation*}
I_{\mathcal{A}}=\exp _{*}\left(\log _{*}\left(I_{\mathcal{A}}\right)\right)=\sum_{n \geq 0} \frac{1}{n!} \pi_{1,[\mathcal{A}]}^{* n} . \tag{56}
\end{equation*}
$$

are pairwise orthogonal projectors with $\operatorname{Im}\left(\pi_{1,[\mathcal{A}]}^{* n}\right)=\mathcal{A}_{[n]}$ and then

$$
\begin{equation*}
\mathcal{A}=\oplus_{n \geq 0} \mathcal{A}_{[n]} . \tag{57}
\end{equation*}
$$

This decomposition permits to construct σ by

$$
\begin{equation*}
\sigma\left(P^{n}\right)=\frac{1}{n!} \Delta_{+}^{(n-1)}\left(P^{n}\right) \in T_{n}(\operatorname{Prim}(\mathcal{B})) \tag{58}
\end{equation*}
$$

and $\sigma\left(1_{\mathcal{B}}\right)=1_{T(\operatorname{Prim}(\mathcal{B})}$. One checks easily that $j_{\mathcal{B}} \circ \tau \circ \sigma=I d_{\mathcal{A}}$.

2.2.2 The theorem from the point of view of summability

The bialgebra \mathcal{B} being supposed cocommutative, we discuss the equivalent conditions under which we are in the presence of an enveloping algebra i.e.

$$
\begin{equation*}
\mathcal{B} \cong{ }_{A-\text { bialg }} \mathcal{U}(\operatorname{Prim}(\mathcal{B})) \tag{59}
\end{equation*}
$$

from the point of view of the convergence of the series $\log _{*}(I)^{12}$. These conditions are know as the theorem of Cartier-Quillen-Milnor-Moore (CQMM).

Theorem 1. [4] Let \mathcal{B} be a A-cocommutative bialgebra (A is a $\mathbb{Q}-A A U$) and \mathcal{A}, as above, the subalgebra generated by $\operatorname{Prim}(\mathcal{B})$. Then, the following conditions are equivalent :
i) \mathcal{B} admits an increasing filtration

$$
\mathcal{B}_{0}=A .1_{\mathcal{B}} \subset \mathcal{B}_{1} \subset \cdots \subset \mathcal{B}_{n} \subset \mathcal{B}_{n+1} \cdots
$$

compatible with the structures of algebra (i.e. for all $p, q \in \mathbb{N}$, one has $\mathcal{B}_{p} \mathcal{B}_{q} \subset \mathcal{B}_{p+q}$) and coalgebra :

$$
\forall n \in \mathbb{N}, \quad \Delta\left(\mathcal{B}_{n}\right) \subset \sum_{p+q=n} \mathcal{B}_{p} \otimes \mathcal{B}_{q}
$$

ii) $\left(\left(\mathrm{Id}^{+}\right)^{* n}\right)_{n \in \mathbb{N}}$ is summable in $\operatorname{End}(\mathcal{B})$.
iii) $\mathcal{B}=\mathcal{A}$.

Proof. We prove

$$
\begin{equation*}
(\mathrm{ii}) \Longrightarrow(\mathrm{iii}) \Longrightarrow(\mathrm{i}) \Longrightarrow(\mathrm{ii}) \tag{61}
\end{equation*}
$$

(ii) \Longrightarrow (iii). -

The image of $j_{\mathcal{B}}$ it is the subalgebra generated by the primitive elements. Let us prove that, when $\left(\left(\mathrm{Id}^{+}\right)^{* n}\right)_{n \in \mathbb{N}}$ is summable, one has $\operatorname{Im}\left(j_{\mathcal{B}}\right)=\mathcal{B}$. The series $\log (1+X)$ is without constant term so, in virtue of (28) and the summability of $\left(\left(\mathrm{Id}^{+}\right)^{* n}\right)_{n \in \mathbb{N}}$, one has

$$
\begin{equation*}
\exp \left(\log \left(e+\mathrm{Id}^{+}\right)\right)=\exp (\log (1+X))\left(I d^{+}\right)=1_{\operatorname{End}(\mathcal{B})}+I d^{+}=e+I d^{+}=I \tag{62}
\end{equation*}
$$

Set $\pi_{1}=\log \left(e+\mathrm{Id}^{+}\right)$.
To end this part, let us compute, for $x \in \mathcal{B}$

$$
\begin{equation*}
x=\exp \left(\pi_{1}\right)(x)=\left(\sum_{n \geq 0} \frac{1}{n!} \pi_{1}^{* n}\right)(x)=\left(\sum_{n=0}^{N} \frac{1}{n!} \mu^{(n-1)} \pi_{1}^{\otimes n}\right) \Delta^{(n-1)}(x) \tag{63}
\end{equation*}
$$

where N is the first order for which $\Delta^{+(n-1)}(x)=0$ (as $\pi_{1} \circ \mathrm{Id}^{+}=\pi_{1}$). This proves that \mathcal{B} is generated by its primitive elements.
(iii) $\Longrightarrow($ i).

$$
\begin{align*}
& { }^{12} \text { In a } A \text {-bialgebra, one can always consider the series of endomorphisms } \\
& \qquad \sum_{n \geq 1} \frac{(-1)^{n-1}}{n}\left(I^{+}\right)^{* n} \tag{60}
\end{align*}
$$

The family $\left(\frac{(-1)^{n-1}}{n}\left(I^{+}\right)^{* n}\right)_{n \geq 0}$ is summable iff $\left(\left(I^{+}\right)^{* n}\right)_{n \geq 0}$ is (use eq.20).

Remark 1. i) The equivalence $(i) \Longleftrightarrow$ (iii) is the classical CQMM theorem (see [4]). The equivalence with (ii) could be called the "Convolutional CQMM theorem". The combinatorial aspects of this last one will be the subject of a forthcoming paper [CT, HNM, GHED Nguyen ?]
ii) When $\operatorname{Prim}(\mathcal{B})$ is free, we have $\mathcal{B} \cong_{k-\text { bialg }} \mathcal{U}(\operatorname{Prim}(\mathcal{B}))$ and \mathcal{B} is an enveloping algebra.

3 Case study : ϕ-deformed stuffle

3.1 Results for the ϕ-deformed stuffle

Let $Y=\left\{y_{i}\right\}_{i \in I}$ be still a totally ordered alphabet and $A\langle Y\rangle$ be equipped with the ϕ-deformed stuffle defined by
i) for any $w \in Y^{*}, 1_{Y^{*}} \boldsymbol{\pm}_{\phi} w=w \boldsymbol{\pm}_{\phi} 1_{Y^{*}}=w$,
ii) for any $y_{i}, y_{j} \in Y$ and $u, v \in Y^{*}$,

$$
y_{i} u \pm_{\phi} y_{j} v=y_{j}\left(y_{i} u \pm_{\phi} v\right)+y_{i}\left(u \pm_{\phi} y_{j} v\right)+\phi\left(y_{i}, y_{j}\right) u \pm_{\phi} v,(64
$$

where ϕ is an arbitrary mapping

$$
\phi: Y \times Y \quad \longrightarrow \quad A Y .
$$

Definition 2. Let

$$
\phi: Y \times Y \quad \longrightarrow \quad A Y
$$

defined by its structure constants

$$
\left(y_{i}, y_{j}\right) \longmapsto \phi\left(y_{i}, y_{j}\right)=\sum_{k \in I} \gamma_{i, j}^{k} y_{k}
$$

Proposition 3. The recursion (64) defines a unique mapping

$$
\uplus_{\phi}: Y^{*} \times Y^{*} \quad \longrightarrow \quad A\langle Y\rangle
$$

Proof. Let us denote $\left(Y^{*} \times Y^{*}\right)_{\leq n}$ the set of words $(u, v) \in Y^{*} \times Y^{*}$ such that $|u|+|v| \leq n$. We construct a sequence of mappings

$$
\uplus_{\phi_{\leq n}}:\left(Y^{*} \times Y^{*}\right)_{\leq n} \longrightarrow A Y
$$

which satisfy the recursion of eq. 64 . For $n=0$, we have only a premiage and $\uplus_{\phi \leq 0}\left(1_{Y^{*}}\right)=1_{Y^{*}} \otimes 1_{Y^{*}}$. Suppose $\uplus_{\phi \leq n}$ constructed and let $(u, v) \in\left(Y^{*} \times Y^{*}\right)_{\leq n+1} \backslash\left(Y^{*} \times Y^{*}\right)_{\leq n}$, i..e. $|u|+|v|=n+1$.
One has three cases : $u=1_{Y^{*}}, v=1_{Y^{*}}$ and $(u, v) \in Y^{+} \times Y^{+}$. For the two first, one uses the initialisation of the recursion thus

$$
\boldsymbol{\uplus}_{\phi \leq n+1}\left(w, 1_{Y^{*}}\right)=\boldsymbol{\pm}_{\phi \leq n+1}\left(1_{Y^{*}}, w\right)=w
$$

for the last case, write $u=y_{i} u^{\prime}, v=y_{j} v^{\prime}$ and use, to get

$$
\Psi_{\phi \leq n+1}\left(y_{i} u^{\prime}, y_{j} v^{\prime}\right)=y_{i} \uplus_{\phi \leq n}\left(u^{\prime}, y_{j} v^{\prime}\right)+y_{j} \uplus_{\phi \leq n}\left(y_{i} u^{\prime}, v^{\prime}\right)+y_{i+j} \uplus_{\phi \leq n}\left(u^{\prime}, v^{\prime}\right)
$$

this proves the existence of the sequence $\left(\uplus_{\phi_{\leq n}}\right)_{n \geq 0}$. Every $\uplus_{\phi_{\leq n+1}}$ extends the preceding so there is a mapping

$$
\pm_{\phi}: Y^{*} \times Y^{*} \longrightarrow A\langle Y\rangle .
$$

which extends all the ${ }^{ \pm}{ }_{\phi \leq n+1}$ (the graph of which is the union of the graphs of the $\left.\uplus_{\phi_{\leq n}}\right)$. This proves the existence. For unicity, just remark that, if there were two mappings $\uplus_{\phi}, \uplus^{\prime}{ }_{\phi}$, the fact that they must fulfill the recursion (64) implies that $\uplus_{\phi}=\uplus^{\prime}{ }_{\phi}$.

We still denote ϕ and \uplus_{ϕ} the linear extension of ϕ and \uplus_{ϕ} to $A Y \otimes A Y$ and $A\langle Y\rangle \otimes A\langle Y\rangle$ respectively.
Then \uplus_{ϕ} is a law of algebra (with $1_{Y^{*}}$ as unit) on $A\langle Y\rangle$.
Lemma 3. Let Δ be the morphism $A\langle Y\rangle \rightarrow A\left\langle\left\langle Y^{*} \otimes Y^{*}\right\rangle\right.$ defined on the letters by

$$
\begin{equation*}
\Delta\left(y_{s}\right)=y_{s} \otimes 1+1 \otimes y_{s}+\sum_{n, m \in I} \gamma_{n, m}^{s} y_{n} \otimes y_{m} \tag{65}
\end{equation*}
$$

Then
i) for all $w \in Y^{+}$we have

$$
\begin{equation*}
\Delta(w)=w \otimes 1+1 \otimes w+\sum_{u, v \in Y^{+}}\langle\Delta(w) \mid u \otimes v\rangle u \otimes v \tag{66}
\end{equation*}
$$

ii) for all $u, v, w \in Y^{*}$, one has

$$
\begin{equation*}
\left\langle u \pm_{\phi} v \mid w\right\rangle=\langle u \otimes v \mid \Delta(w)\rangle^{\otimes 2} \tag{67}
\end{equation*}
$$

Proof. i) By recurrence on $|w|$. If $w=y_{s}$ is of length one, it is obvious from the definition. If $w=y_{s} w^{\prime}$, we have, from the fact that Δ is a morphism

$$
\begin{align*}
\Delta(w)= & \left(y_{s} \otimes 1+1 \otimes w+\sum_{i, j \in I} \gamma_{i, j}^{s} y_{i} \otimes y_{j}\right) \\
& \left(w^{\prime} \otimes 1+1 \otimes w^{\prime}+\sum_{u, v \in Y^{+}}\left\langle u \otimes v \mid \Delta\left(w^{\prime}\right)\right\rangle\right) \tag{68}
\end{align*}
$$

the development of which proves that $\Delta(w)$ is of the desired form.
ii) Let $S(u, v):=\sum_{w \in Y^{*}}\langle u \otimes v \mid \Delta(w)\rangle w$. It is easy to check (and left to the reader) that, for all $u \in Y^{*}, S(u, 1)=S(1, u)=u$. Let us now prove that, for all $y_{i}, y_{j} \in Y$ and $u, v \in Y^{*}$

$$
\begin{equation*}
S\left(y_{i} u, y_{j} v\right)=y_{i} S\left(u, y_{j} v\right)+y_{j} S\left(y_{i} u, v\right)+\phi\left(y_{i}, y_{j}\right) S(u, v) \tag{69}
\end{equation*}
$$

Indeed, remarking that $\Delta(1)=1 \otimes 1$, one has

$$
\begin{aligned}
S\left(y_{i} u, y_{j} v\right)= & \sum_{w \in Y^{*}}\left\langle y_{i} u \otimes y_{j} v \mid \Delta(w)\right\rangle w=\sum_{w \in Y^{+}}\left\langle y_{i} u \otimes y_{j} v \mid \Delta(w)\right\rangle w \\
= & \sum_{y_{s} \in Y, w^{\prime} \in Y^{*}}\left\langle y_{i} u \otimes y_{j} v \mid \Delta\left(y_{s} w^{\prime}\right)\right\rangle y_{s} w^{\prime} \\
= & \sum_{y_{s} \in Y, w^{\prime} \in Y^{*}}\left\langle y_{i} u \otimes y_{j} v \mid\left(y_{s} \otimes 1+1 \otimes y_{s}+\sum_{n, m \in I} \gamma_{n, m}^{s} y_{n} \otimes y_{m}\right) \Delta\left(w^{\prime}\right)\right\rangle y_{s} w^{\prime} \\
= & \sum_{y_{s} \in Y, w^{\prime} \in Y^{*}}\left\langle y_{i} u \otimes y_{j} v \mid\left(y_{s} \otimes 1\right) \Delta\left(w^{\prime}\right)\right\rangle y_{s} w^{\prime} \\
& +\sum_{y_{s} \in Y, w^{\prime} \in Y^{*}}\left\langle y_{i} u \otimes y_{j} v \mid\left(1 \otimes y_{s}\right) \Delta\left(w^{\prime}\right)\right\rangle y_{s} w^{\prime} \\
& +\sum_{y_{s} \in Y, w^{\prime} \in Y^{*}}\left\langle y_{i} u \otimes y_{j} v \mid\left(\sum_{n, m \in I} \gamma_{n, m}^{s} y_{n} \otimes y_{m}\right) \Delta\left(w^{\prime}\right)\right\rangle y_{s} w^{\prime} \\
= & \sum_{w^{\prime} \in Y^{*}}\left\langle u \otimes y_{j} v \mid \Delta\left(w^{\prime}\right)\right\rangle y_{i} w^{\prime}+\sum_{w^{\prime} \in Y^{*}}\left\langle y_{i} u \otimes v \mid \Delta\left(w^{\prime}\right)\right\rangle y_{j} w^{\prime} \\
+ & \sum_{y_{s} \in Y, w^{\prime} \in Y^{*}}\left\langle u \otimes v \mid \gamma_{i, j}^{s} \Delta\left(w^{\prime}\right)\right\rangle y_{s} w^{\prime} \\
= & y_{i} \sum_{w^{\prime} \in Y^{*}}\left\langle u \otimes y_{j} v \mid \Delta\left(w^{\prime}\right)\right\rangle w^{\prime}+y_{j} \sum_{w^{\prime} \in Y^{*}}\left\langle y_{i} u \otimes v \mid \Delta\left(w^{\prime}\right)\right\rangle w^{\prime} \\
+ & \sum_{y_{s} \in Y} \gamma_{i, j}^{s} y_{s} \sum_{w^{\prime} \in Y^{*}}\left\langle u \otimes v \mid \Delta\left(w^{\prime}\right)\right\rangle w^{\prime} \\
= & y_{i} S\left(u, y_{j} v\right)+y_{j} S\left(y_{i} u, v\right)+\phi\left(y_{i}, y_{j}\right) S(u, v)
\end{aligned}
$$

then the computation of S shows that, for all $u, v \in Y^{*}, S(u, v)=u \pm_{\phi} v$ as S is bilinear, one has $S=\uplus_{\phi}$.

Theorem 2. i) The law Ψ_{ϕ} is commutative if and only if the extension

$$
\phi: A Y \otimes A Y \longrightarrow A Y
$$

is so.
ii) The law \uplus_{ϕ} is associative if and only if the extension

$$
\phi: A Y \otimes A Y \longrightarrow A Y
$$

is so.
iii) Let $\gamma_{x, y}^{z}:=\langle\phi(x, y) \mid z\rangle$ be the structure constants of ϕ (w.r.t. the basis Y), then $\boldsymbol{\pm}_{\phi}$ is dualizable if and only if $\left(\gamma_{x, y}^{z}\right)_{x, y, z \in X}$ is of finite decomposition
type ${ }^{13}$ in its superscript in the following sense

$$
\begin{equation*}
(\forall z \in X)\left(\#\left\{(x, y) \in X^{2} \mid \gamma_{x, y}^{z} \neq 0\right\}<+\infty\right) \tag{70}
\end{equation*}
$$

Proof. (i) First, let us suppose that ϕ be commutative and consider T, the twist, i.e. the operator in $A\left\langle\left\langle Y^{*} \otimes Y^{*}\right\rangle\right\rangle$ defined by

$$
\begin{equation*}
\langle T(S) \mid u \otimes v\rangle=\langle S \mid v \otimes u\rangle \tag{71}
\end{equation*}
$$

it is left to the reader to prove that T is a morhism of algebras. If ϕ is commutative, then so is the following diagram.

and, then, the two morphisms $\Delta_{ \pm_{\phi}}$ and $T \circ \Delta_{ \pm_{\phi}}$ coincide on the generators Y of the algebra $A\langle Y\rangle$ and hence over $A\langle Y\rangle$ itself. Now for all $u, v, w \in Y^{*}$, one has

$$
\begin{align*}
& \left\langle v \boldsymbol{\pm}_{\phi} u \mid w\right\rangle=\left\langle v \otimes u \mid \Delta_{\mathbf{+}_{\phi}}(w)\right\rangle=\left\langle u \otimes v \mid T \circ \Delta_{\mathbf{\pm}_{\phi}}(w)\right\rangle= \\
& \left\langle u \otimes v \mid \Delta_{\boldsymbol{\pm}_{\phi}}(w)\right\rangle=\left\langle u \boldsymbol{\pm}_{\phi} v \mid w\right\rangle \tag{72}
\end{align*}
$$

which proves that $v \uplus_{\phi} u=u \pm_{\phi} v$. Conversely, if \uplus_{ϕ} is commutative, one has, for $i, j \in I$

$$
\begin{equation*}
\phi\left(y_{j}, y_{i}\right)=y_{j} \uplus_{\phi} y_{i}-\left(y_{j} \amalg y_{i}\right)=y_{i} \uplus_{\phi} y_{j}-\left(y_{i} \amalg y_{j}\right)=\phi\left(y_{i}, y_{j}\right) \tag{73}
\end{equation*}
$$

(ii) Likewise, if ϕ is associative, let us define the operators

$$
\begin{equation*}
\overline{\Delta_{\mathbf{t}_{\phi}} \otimes I}: A\left\langle\left\langle Y^{*} \otimes Y^{*}\right\rangle\right\rangle A\left\langle\left\langle Y^{*} \otimes Y^{*} \otimes Y^{*}\right\rangle\right\rangle \tag{74}
\end{equation*}
$$

by

$$
\begin{equation*}
\left\langle\overline{\Delta_{\uplus_{\phi}} \otimes I}(S) \mid u \otimes v \otimes w\right\rangle=\left\langle S \mid\left(u \uplus_{\phi} v\right) \otimes w\right\rangle \tag{75}
\end{equation*}
$$

and, similarly,

$$
\begin{equation*}
\overline{I \otimes \Delta_{ \pm \|_{\phi}}}: A\left\langle\left\langle Y^{*} \otimes Y^{*}\right\rangle\right\rangle A\left\langle\left\langle Y^{*} \otimes Y^{*} \otimes Y^{*}\right\rangle\right\rangle \tag{76}
\end{equation*}
$$

by

$$
\begin{equation*}
\left\langle\overline{I \otimes \Delta_{\Perp_{\phi}}}(S) \mid u \otimes v \otimes w\right\rangle=\left\langle S \mid u \otimes\left(v \uplus_{\phi} w\right)\right\rangle \tag{77}
\end{equation*}
$$

it is easy to check by direct calculation that they are well defined morphisms and that the following diagram

[^7]
is commutative. This proves that the two composite morphisms
$$
\overline{\Delta_{\uplus_{\phi}} \otimes I \circ \Delta_{\uplus_{\phi}}}
$$
and
$$
\overline{I \otimes \Delta_{\text {t }_{\phi}}} \circ \Delta_{\text {แt }_{\phi}}
$$
coincide on Y and then on $A\langle Y\rangle$. Now, for $u, v, w, t \in Y^{*}$, one has
\[

$$
\begin{aligned}
& \left\langle\left(u \uplus_{\phi} v\right) \uplus_{\phi} w \mid t\right\rangle=\left\langle\left(u \uplus_{\uplus_{\phi}} v\right) \otimes w \mid \Delta_{\uplus_{\phi}}(t)\right\rangle=\left\langle u \otimes v \otimes w \mid\left(\overline{\Delta_{\uplus_{\phi}} \otimes I}\right) \Delta_{\uplus_{\phi}}(t)\right\rangle= \\
& \langle u \otimes v \otimes w|\left(\overline{\left.I \otimes \Delta_{\uplus_{\phi}}\right)} \Delta_{\uplus_{\phi}}(t)\right\rangle=\left\langle u \otimes\left(v \uplus_{\phi} w\right) \mid \Delta_{\uplus_{\phi}}(t)\right\rangle=\left\langle u \uplus_{\phi}\left(v \uplus_{\phi} w\right) \mid t\right\rangle
\end{aligned}
$$
\]

which proves the associatvity of the law \uplus_{ϕ}. Conversely, if u_{ϕ} is associative, the direct expansion of the right hand side of

$$
\begin{equation*}
0=\left(y_{i} \uplus_{\phi} y_{j}\right) \uplus_{\phi} y_{k}-y_{i} \uplus_{\phi}\left(y_{j} \uplus_{\phi} y_{k}\right) \tag{78}
\end{equation*}
$$

proves the associativity of ϕ.
iii) We suppose that $\left(\gamma_{x, y}^{z}\right)_{x, y, z \in X}$ is of finite decomposition type in its superscript, in this case $\Delta_{ \pm_{\phi}}$ takes its values in $A\langle Y\rangle \otimes A\langle Y\rangle$ therefore its dual, the law \uplus_{ϕ} is dualizable. Conversely, if $\operatorname{Im}\left(\Delta_{\boldsymbol{\omega}_{\phi}}\right) \subset A\langle Y\rangle \otimes A\langle Y\rangle$, one has, for every $s \in I$

$$
\sum_{n, m \in I} \gamma_{n, m}^{s} y_{n} \otimes y_{m}=\Delta\left(y_{s}\right)-\left(y_{s} \otimes 1+1 \otimes y_{s}\right) \in A\langle Y\rangle \otimes A\langle Y\rangle
$$

which proves the claim.
Theorem 3. Let A be a commutative ring with unit and $\phi: A Y \otimes A Y \longrightarrow$ $A Y$ be an associative and commutative law (of algebra) on $A Y$. Then if ϕ is dualizable ${ }^{14}$, let $\Delta_{ \pm_{\phi}^{\phi}}: A\langle Y\rangle \longrightarrow A\langle Y\rangle \otimes A\langle Y\rangle$ denote its dual comultiplication, then
a) $\mathcal{B}_{\phi}=\left(A\langle Y\rangle\right.$, conc, $\left.1_{Y^{*}}, \Delta_{\boldsymbol{\Psi}_{\phi}}, \varepsilon\right)$ is a bialgebra.

[^8]b) If A is a field of characteristic 0 then \mathcal{B}_{ϕ} is an enveloping bialgebra if and only if the algebra $A X$ admits an increasing filtration $\left((A Y)_{n}\right)_{n \in \mathbb{N}}$ with $(A Y)_{0}=\{0\}$ and compatible with both the multiplication and the comultiplication $\Delta_{\boldsymbol{\pm}_{\phi}}$ i.e.
\[

$$
\begin{aligned}
(A Y)_{p}(A Y)_{q} & \subset \\
\Delta_{\boldsymbol{\Perp}_{\phi}}\left((A Y)_{n}\right) & \subset \sum_{p+q=n}(A Y)_{p+q} \\
&
\end{aligned}
$$
\]

Proof. i) All the properties of bialgebra have been checked for

$$
\mathcal{B}_{\phi}=\left(A\langle Y\rangle, \text { conc }, 1_{Y^{*}}, \Delta_{\boldsymbol{\omega}_{\phi}}, \varepsilon\right)
$$

save one : the fact that $\Delta_{ \pm_{\phi}}$ be a morphism for the product. This is a consequence of the fact that, in the general case,

$$
\Delta_{\boldsymbol{t}_{\phi}}: A\langle Y\rangle \rightarrow A\left\langle\left\langle Y^{*} \otimes Y^{*}\right\rangle\right\rangle
$$

is a morphism of algebras.
ii) Let us suppose first that $\mathcal{B}_{\phi}=\mathcal{U} G$ is a enveloping algebra. Then, the intersection of the standard increasing filtration with $A Y$ i.e.

$$
(A Y)_{n}:=\operatorname{span}\left(G^{n}\right) \cap A Y
$$

is compatible with product and coproduct and $(A Y)_{0}:=K .1_{\mathcal{U G}} \cap A Y=\{0\}$. Conversely let $\left((A Y)_{n}\right)_{n \in \mathbb{N}} \mathrm{~b}$ an increasing filtration of $A Y$ which fulfils the conditions of the theorem and set

$$
\begin{equation*}
\left(\mathcal{B}_{\phi}\right)_{n}=k .1_{\mathcal{B}_{\phi}}+\sum_{k \geq 0} \sum_{\substack{p_{1}+p_{2}+\cdots p_{p}=n \\ p_{i}>0}} \operatorname{span}\left((A Y)_{p_{1}}(A Y)_{p_{2}} \cdots(A Y)_{p_{k}}\right) \tag{79}
\end{equation*}
$$

has the properties required for the application of the theorem of Cartier-MilnorMoore. Hence \mathcal{B}_{ϕ} is an enveloping algebra.

With the co-unit

$$
\begin{equation*}
\forall P \in A\langle Y\rangle, \quad \epsilon(P)=\left\langle P \mid 1_{Y^{*}}\right\rangle \tag{80}
\end{equation*}
$$

and the antipode defined by, for any $w=x_{i_{1}} \ldots x_{i_{r}} \in Y^{*}$,

$$
\begin{equation*}
a_{\boldsymbol{\pm}_{\phi}}\left(y_{i_{1}} \ldots y_{i_{r}}\right)=-\sum_{k=1}^{r-1} a_{\boldsymbol{\pm}_{\phi}}\left(y_{i_{1}} \ldots y_{i_{k}}\right) \uplus_{\phi} y_{i_{k+1}} \ldots y_{i_{r}} \tag{81}
\end{equation*}
$$

one gets mutually dual Hopf algebras $\mathcal{H}_{\boldsymbol{\pm}_{\phi}}=\left(\mathbb{Q}\langle Y\rangle\right.$, conc, $\left.1_{Y^{*}}, \Delta_{ \pm_{\phi}}, \epsilon, a_{ \pm_{ \pm_{\phi}}}\right)$ and $\mathcal{H}_{\mathbf{\pm}_{\phi}}^{\vee}=\left(\mathbb{Q}\langle Y\rangle, \uplus_{\phi}, 1_{Y^{*}}, \Delta_{\text {conc }}, \epsilon, a_{\text {แ土 }_{\phi}}\right)$.

Lemma 4. Let $\mathcal{P}=\left\{P \in \mathbb{Q}\langle Y\rangle \mid \Delta_{\mathbf{\pm}_{\phi}} P=P \otimes 1+1 \otimes P\right\}$. Then \mathcal{P} is stable by the Lie bracket and by linear combinations.

Proof. Since $\Delta_{ \pm_{\phi}} y_{1}=y_{1} \otimes 1+1 \otimes y_{1}$ then $\mathcal{P} \neq \emptyset$. Let $P, Q \in \mathcal{P}$ and $p, q \in \mathbb{Q}$. Firstly, since $\Delta_{\boldsymbol{t}_{\phi}}([P, Q])=\Delta_{\mathbf{t}_{\phi}}(P Q-Q P)=\Delta_{\mathbf{t}_{\phi}}(P Q)-\Delta_{\boldsymbol{t}_{\phi}}(Q P)$, $\Delta_{\mathbf{t +}_{\phi}}(Q P)=\left(\Delta_{\boldsymbol{\pm}_{\phi}} Q\right)\left(\Delta_{\mathbf{t}_{\phi}} P\right)$ and $\Delta_{\boldsymbol{t}_{\phi}}(P Q)=\left(\Delta_{\boldsymbol{t}_{\phi}} P\right)\left(\Delta_{\boldsymbol{\pm}_{\phi}} Q\right)$ then one has $\Delta_{\boldsymbol{\pm}_{\phi}}([P, Q])=\Delta_{\boldsymbol{\pm}_{\phi}}([P, Q]) \otimes 1+1 \otimes \Delta_{\boldsymbol{\pm}_{\phi}}([P, Q])$ meaning that $[P, Q] \in \mathcal{P}$ and \mathcal{P} is stable by the Lie bracket. Secondly, $\Delta_{ \pm_{\phi}}(p P+q Q)=$ $p \Delta_{\boldsymbol{\pm}_{\phi}} P+q \Delta_{ \pm_{\phi}} Q=p(P \otimes 1+1 \otimes P)+q(Q \otimes 1+1 \otimes Q)=(p P+q Q) \otimes$ $1+1 \otimes(p P+q Q)$ meaning that $p P+q Q \in \mathcal{P}$ and \mathcal{P} is then stable by linear combinations.

Lemma 5. With the notations of Lemma 4, then $Y \subset \mathcal{P} \Longleftrightarrow \mathcal{L i} e_{\mathbb{Q}}\langle Y\rangle=\mathcal{P}$.
Proof. Since $\mathcal{L i e}_{\mathbb{Q}}\langle Y\rangle$ is the smallest algebra containing Y and it is stable by the Lie bracket and by linear combinations then, by Lemma $4, \mathcal{P} \subset \mathcal{L} i e_{\mathbb{Q}}\langle Y\rangle$. If $\mathcal{P}=\mathcal{L} e_{\mathbb{Q}}\langle Y\rangle$ then $Y \subset \mathcal{P}$. Conversely, if $Y \subset \mathcal{P} \subset \mathcal{L} i e_{\mathbb{Q}}\langle Y\rangle$ then, by definition, $\mathcal{L i}_{\mathbb{Q}}\langle Y\rangle \subset \mathcal{P}$.

Proposition 4. With the notations of Lemma 4, then $\mathcal{P} \subsetneq \mathcal{L} i e_{\mathbb{Q}}\langle Y\rangle$.
Proof. For any $k \geq 2$ the letter y_{k} is a Lie polynomial but, by (??), one has $\Delta_{\boldsymbol{\omega}_{\phi}} y_{k} \neq y_{k} \otimes 1+1 \otimes y_{k}$. Thus, by Lemma 5 , it follows the conclusion.

Lemma 6 (Friedrichs criterium). Let $S \in \mathbb{Q}\langle\langle Y\rangle\rangle$ such that $\left\langle S \mid 1_{Y^{*}}\right\rangle=1$. Then, for the co-product $\Delta_{\mathbf{\pm}_{\phi}}$,
i) S is primitive, i.e. $\Delta_{ \pm_{\phi}} S=S \otimes 1+1 \otimes S$, if and only if,

$$
\forall u, v \in Y^{+}, \quad\left\langle S \mid u \pm_{\phi} v\right\rangle=0
$$

ii) S is group-like, i.e. $\Delta_{\mathbf{\pm}_{\phi}} S=S \otimes S$, if and only if,

$$
\forall u, v \in Y^{+}, \quad\left\langle S \mid u \uplus_{\phi} v\right\rangle=\langle S \mid u\rangle\langle S \mid v\rangle .
$$

Proof. The expected equivalence is due respectively to the following facts

$$
\begin{aligned}
& \Delta_{ \pm} S=S \otimes 1+1 \otimes S-\left\langle S \mid 1_{Y^{*}} \otimes 1_{Y^{*}}\right\rangle 1 \otimes 1+\sum_{u, v \in Y^{+}}\left\langle S \mid u \pm{ }_{\phi} v\right\rangle u \otimes v, \\
& \Delta_{ \pm+} S=\sum_{u, v \in Y^{*}}\left\langle S \mid u \boxplus_{\phi} v\right\rangle u \otimes v \quad \text { and } \quad S \otimes S=\sum_{u, v \in Y^{*}}\langle S \mid u\rangle\langle S \mid v\rangle u \otimes v .
\end{aligned}
$$

Lemma 7. Let $S \in \mathbb{Q}\langle\langle Y\rangle\rangle$ such that $\left\langle S \mid 1_{Y^{*}}\right\rangle=1$. Then, for the co-product $\Delta_{\mathbf{+}_{\phi}}$, S is group-like if and only $i f^{15} \log S$ is primitive.

$$
\begin{aligned}
& { }^{15} \text { For any } S \in \mathbb{Q}\langle Y\rangle \hat{\otimes} \mathbb{Q}\langle Y\rangle \text {, if }\left\langle S \mid 1_{Y^{*}} \otimes 1_{Y^{*}}\right\rangle=0 \text { then one defines } \\
& \qquad \log (1+S)=\sum_{n \geq 1} \frac{(-1)^{n-1}}{n} S^{n} \quad \text { and } \quad \exp (S)=\sum_{n \geq 1} \frac{S^{n}}{n!} .
\end{aligned}
$$

and one has usual formulas $\log (\exp (S))=S$ and $\exp (\log (1+S))=1+S$.

Proof. Since $\Delta_{\boldsymbol{\pm}_{\phi}}$ and the maps $T \mapsto T \otimes 1, T \mapsto 1 \otimes T$ are continous homomorphisms then if $\log S$ is primitve then $\Delta_{ \pm_{\phi}}(\log S)=\log S \otimes 1+1 \otimes \log S$ (see Lemma $6(90)$) and since $\log S \otimes 1$ and $1 \otimes \log S$ commute then we get successily

$$
\begin{aligned}
\Delta_{\boldsymbol{\pm}_{\phi}} S & =\Delta_{\boldsymbol{\pm}_{\phi}}(\exp (\log S)) \\
& =\exp \left(\Delta_{\boldsymbol{\pm}_{\phi}}(\log S)\right) \\
& =\exp (\log S \otimes 1) \exp (1 \otimes \log S) \\
& =(\exp (\log S) \otimes 1)(1 \otimes \exp (\log S)) \\
& =S \otimes S
\end{aligned}
$$

This means S is group-like. The reciprocal can be obtained in the same way.
Lemma 8. Let $\left\{\chi_{l}\right\}_{l \in \mathcal{L} y n Y}$ be a transcendence basis of $\left(\mathbb{Q}\langle Y\rangle, \boldsymbol{\iota}_{\phi}\right)$ and let $\left\{\chi_{w}\right\}_{w \in Y^{*}}$ be the completed basis of $\left(\mathbb{Q}\langle Y\rangle, \uplus_{\phi}\right)$ (viewed as a \mathbb{Q}-module) defined by, for any $w=l_{1} \ldots l_{n}$ with $l_{1}, \ldots, l_{n} \in \mathcal{L} y n Y$ and $l_{1} \geq \ldots \geq l_{n}$,

$$
\chi_{w}=\chi_{l_{1}} \uplus_{\phi} \ldots \uplus_{\phi} \chi_{l_{n}}
$$

in duality with $\left\{\xi_{w}\right\}_{w \in Y^{*}}$:

$$
\forall u, v \in Y^{*}, \quad\left\langle\chi_{u} \mid \xi_{v}\right\rangle=\delta_{u, v}
$$

Then, for any $w=l_{1} \ldots l_{n}$ with $l_{1}, \ldots, l_{n} \in \mathcal{L} y n Y$ and $l_{1} \geq \ldots \geq l_{n}$, one has

$$
\left\langle\chi_{w} \mid 1_{Y^{*}}\right\rangle=\left\langle\xi_{w} \mid 1_{Y^{*}}\right\rangle=0 \quad \text { and } \quad\left\langle\chi_{w} \mid \chi_{l_{1}} \ldots \chi_{l_{n}}\right\rangle=\left\langle\xi_{w} \mid \chi_{l_{1}} \ldots \chi_{l_{n}}\right\rangle=1
$$

Proof. It is immediate by construction and by duality.
Lemma 9. With the notations of Lemma 8, if $w \notin \mathcal{L} y n Y$ and if ${ }^{16}$

$$
\forall l \in \mathcal{L} y n Y, \quad\left\langle\chi_{l_{1}} \uplus_{\phi} \ldots \pm_{\phi} \chi_{l_{n}} \mid \xi_{l}\right\rangle=0
$$

then the polynomials $\left\{\xi_{l}\right\}_{l \in \mathcal{L} y n Y}$ are primitive, for the co-product $\Delta_{\boldsymbol{\Psi}_{\phi}}$.
Proof. We have

$$
\begin{aligned}
\Delta_{\boxplus_{\phi}} \xi_{l} & =\sum_{u \in Y^{+}}\left\langle u \boldsymbol{\boxplus}_{\phi} 1_{Y^{*}} \mid \xi_{l}\right\rangle u \otimes 1+\sum_{v \in Y^{+}}\left\langle 1_{Y^{*}} \uplus_{\phi} v \mid \xi_{l}\right\rangle 1 \otimes v \\
& +\sum_{u, v \in Y^{+}}\left\langle u \boldsymbol{\boxplus}_{\phi} v \mid \xi_{l}\right\rangle u \otimes v+\left\langle 1_{Y^{*} \uplus_{\phi}} 1_{Y^{*}} \mid \xi_{l}\right\rangle 1 \otimes 1 \\
& =\xi_{l} \otimes 1+1 \otimes \xi_{l} .
\end{aligned}
$$

Because, after decomposing the words u and v on the transcendence basis $\left\{\chi_{l}\right\}_{l \in \mathcal{L} y n Y}$ and by assumption, the third sum is vanishing. The last one is also vanishing since the ξ_{l} 's are proper (see Lemma 6).

Lemma 10. Let S_{1}, \ldots, S_{n} be proper formal power series in $\mathbb{Q}\langle\langle Y\rangle\rangle$.
Let P_{1}, \ldots, P_{m} be primitive elements in $\mathbb{Q}\langle Y\rangle$, for the co-product Δ_{\amalg}.

[^9]i) If $n>m$ then $\left\langle S_{1} \uplus_{\phi} \ldots \uplus_{\phi} S_{n} \mid P_{1} \ldots P_{m}\right\rangle=0$.
ii) If $n=m$ then
$$
\left\langle S_{1} \uplus_{\phi} \ldots \uplus_{\phi} S_{n} \mid P_{1} \ldots P_{n}\right\rangle=\sum_{\sigma \in \mathfrak{S}_{n}} \prod_{i=1}^{n}\left\langle S_{i} \mid P_{\sigma(i)}\right\rangle .
$$
iii) If $n<m$ then, by considering the language \mathcal{M} over $\mathcal{A}=\left\{P_{1}, \ldots, P_{m}\right\}$
$$
\mathcal{M}=\left\{w \in \mathcal{A}^{*}\left|w=P_{j_{1}} \ldots P_{j_{|w|}}, j_{1}<\ldots<j_{|w|},|w| \geq 1\right\}\right.
$$
and the morphism $\mu: \mathbb{Q}\langle\mathcal{A}\rangle \longrightarrow \mathbb{Q}\langle Y\rangle$, one has:
$$
\left\langle S_{1} \uplus_{\phi} \ldots \uplus_{\phi} S_{n} \mid P_{1} \ldots P_{m}\right\rangle=\sum_{\substack{w_{1} \\ w_{1} \uplus^{w_{1}} \ldots \uplus^{w_{m} \in \mathcal{M}} \phi_{\phi} w_{m}=P_{1} \ldots P_{m}}} \prod_{i=1}^{n}\left\langle S_{i} \mid \mu\left(w_{i}\right)\right\rangle .
$$

Proof. On the one hand, since the P_{i} 's are primitive then

$$
\Delta_{\not \pm{ }_{\phi}}^{(n-1)}\left(P_{i}\right)=\sum_{p+q=n-1} 1^{\otimes p} \otimes P_{i} \otimes 1^{\otimes q}
$$

On the other hand, one has $\Delta_{+_{+}}^{(n-1)}\left(P_{1} \ldots P_{m}\right)=\Delta_{+t_{\phi}}^{(n-1)}\left(P_{1}\right) \ldots \Delta_{ \pm \Psi_{\phi}}^{(n-1)}\left(P_{m}\right)$ and $\left\langle S_{1} \uplus_{\phi} \ldots \uplus_{\phi} S_{n} \mid P_{1} \ldots P_{m}\right\rangle=\left\langle S_{1} \otimes \ldots \otimes S_{n} \mid \Delta_{ \pm_{\phi}}^{(n-1)}\left(P_{1} \ldots P_{m}\right)\right\rangle$. Hence,

$$
\left\langle S_{1} \uplus_{\phi} \ldots \uplus_{\phi} S_{n} \mid P_{1} \ldots P_{m}\right\rangle=\left\langle\bigotimes_{i=1}^{n} S_{i} \mid \prod_{i=1}^{m} \sum_{p+q=n-1} 1^{\otimes p} \otimes P_{i} \otimes 1^{\otimes q}\right\rangle .
$$

i) For $n>m$, by expanding $\Delta_{\dot{ \pm}_{\phi}}^{(n-1)}\left(P_{1}\right) \ldots \Delta_{+ \pm{ }_{\phi}}^{(n-1)}\left(P_{m}\right)$, one obtains a sum of tensors contening at least one factor equal to 1 . For $j=1, . ., n$, the formal power series S_{j} is proper and the result follows immediatly.
ii) For $n=m$, since

$$
\prod_{i=1}^{n} \Delta_{++_{\phi}}^{(n-1)}\left(P_{i}\right)=\sum_{\sigma \in \mathfrak{S}_{n}} \bigotimes_{i=1}^{n} P_{\sigma(i)}+Q
$$

where Q is sum of tensors contening at least one factor equal to 1 and the S_{j},'s are proper then $\left\langle S_{1} \otimes \ldots \otimes S_{n} \mid Q\right\rangle=0$. Thus, the result follows.
iii) For $n<m$, since, for $j=1, . ., n$, the power series S_{j} is proper then the expected result follows by expanding the product

$$
\prod_{i=1}^{m} \Delta_{\substack{ \\(n-1)}}^{\left(P_{i}\right)}=\prod_{i=1}^{m} \sum_{p+q=n-1} 1^{\otimes p} \otimes P_{i} \otimes 1^{\otimes q} .
$$

Definition 3. Let π_{1} and $\check{\pi}_{1}$ be the mutually adjoint degree-preserving linear endomorphisms of $\mathbb{Q}\langle Y\rangle$ given by, for any $w \in Y^{+}$,

$$
\begin{aligned}
& \pi_{1}(w)=w+\sum_{k \geq 2} \frac{(-1)^{k-1}}{k} \sum_{u_{1}, \ldots, u_{k} \in Y^{+}}\left\langle w \mid u_{1} \uplus_{\phi} \ldots \uplus_{\phi} u_{k}\right\rangle u_{1} \ldots u_{k}, \\
& \check{\pi}_{1}(w)=w+\sum_{k \geq 2} \frac{(-1)^{k-1}}{k} \sum_{u_{1}, \ldots, u_{k} \in Y^{+}}\left\langle w \mid u_{1} \ldots u_{k}\right\rangle u_{1} \uplus_{\phi} \ldots \uplus_{\phi} u_{k} .
\end{aligned}
$$

In particular, for any $y_{k} \in Y$, the polynomials $\pi_{1}\left(y_{k}\right)$ and $\check{\pi}_{1}\left(y_{k}\right)$ are given by

$$
\pi_{1}\left(y_{k}\right)=y_{k}+\sum_{l \geq 2} \frac{(-1)^{l-1}}{l} \sum_{\substack{j_{1}, \ldots, j_{l} \geq 1 \\ j_{1}+\ldots+j_{l}=k}} y_{j_{1}} \ldots y_{j_{l}} \quad \text { and } \quad \check{\pi}_{1}\left(y_{k}\right)=y_{k}
$$

Proposition 5. Let \mathcal{D}_{Y} be the diagonal series over Y :

$$
\mathcal{D}_{Y}=\sum_{w \in Y^{*}} w \otimes w
$$

Then
i) $\log \mathcal{D}_{Y}=\sum_{w \in Y^{+}} w \otimes \pi_{1}(w)=\sum_{w \in Y^{+}} \check{\pi}_{1}(w) \otimes w$.
ii) For any $w \in Y^{*}$, we have

$$
\begin{aligned}
w & =\sum_{k \geq 0} \frac{1}{k!} \sum_{u_{1}, \ldots, u_{k} \in Y^{*}}\left\langle w \mid u_{1} \uplus_{\phi} \ldots \uplus_{\phi} u_{k}\right\rangle \pi_{1}\left(u_{1}\right) \ldots \pi_{1}\left(u_{k}\right) \\
& =\sum_{k \geq 0} \frac{1}{k!} \sum_{u_{1}, \ldots, u_{k} \in Y^{*}}\left\langle w \mid u_{1} \ldots u_{k}\right\rangle \check{\pi}_{1}\left(u_{1}\right) \uplus_{\phi} \ldots \uplus_{\phi} \check{\pi}_{1}\left(u_{k}\right) .
\end{aligned}
$$

Proof. i) Expanding by different ways the logarithm, it follows the results :

$$
\begin{aligned}
\log \mathcal{D}_{Y} & =\sum_{k \geq 1} \frac{(-1)^{k-1}}{k}\left(\sum_{w \in Y^{+}} w \otimes w\right)^{k} \\
& =\sum_{k \geq 1} \frac{(-1)^{k-1}}{k} \sum_{u_{1}, \ldots, u_{k} \in Y^{+}}\left(u_{1} \uplus_{\phi} \ldots \uplus_{\phi} u_{k}\right) \otimes u_{1} \ldots u_{k} \\
& =\sum_{w \in Y^{+}} w \otimes \sum_{k \geq 1} \frac{(-1)^{k-1}}{k} \sum_{u_{1}, \ldots, u_{k} \in Y^{+}}\left\langle w \mid u_{1} \uplus_{\phi} \ldots \uplus_{\phi} u_{k}\right\rangle u_{1} \ldots u_{k} . \\
\log \mathcal{D}_{Y} & =\sum_{w \in Y^{+}} \sum_{k \geq 1} \frac{(-1)^{k-1}}{k} \sum_{u_{1}, \ldots, u_{k} \in Y^{+}}\left\langle w \mid u_{1} \ldots u_{k}\right\rangle u_{1} \uplus_{\phi} \ldots \uplus_{\phi} u_{k} \otimes w .
\end{aligned}
$$

ii) Since $\mathcal{D}_{Y}=\exp \left(\log \left(\mathcal{D}_{Y}\right)\right)$ then, by the previous results, one has separately,

$$
\begin{aligned}
& \mathcal{D}_{Y}=\sum_{k \geq 0} \frac{1}{k!}\left(\sum_{w \in Y^{+}} w \otimes \pi_{1}(w)\right)^{k} \\
& =\sum_{k \geq 0} \frac{1}{k!} \sum_{u_{1}, \ldots, u_{k} \in Y^{+}}\left(u_{1} \uplus_{\phi} \ldots \downarrow_{\phi} u_{k}\right) \otimes\left(\pi_{1}\left(u_{1}\right) \ldots \pi_{1}\left(u_{k}\right)\right) \\
& \left.=\sum_{w \in Y^{+}} w \otimes \sum_{k \geq 1} \frac{1}{k!} \sum_{u_{1}, \ldots, u_{k} \in Y^{+}}\langle w| u_{1} \text { เ๖ }_{\phi} \ldots \text { เป }_{\phi} u_{k}\right\rangle \pi_{1}\left(u_{1}\right) \ldots \pi_{1}\left(u_{k}\right) \text {. } \\
& \mathcal{D}_{Y}=\sum_{k \geq 0} \frac{1}{k!} \sum_{u_{1}, \ldots, u_{k} \in Y^{+}}\left(\check{\pi}_{1}\left(u_{1}\right) \not \uplus_{\phi} \ldots \uplus_{\phi} \check{\pi}_{1}\left(u_{k}\right)\right) \otimes\left(u_{1} \ldots u_{k}\right) \\
& =\sum_{w \in Y^{+}} \sum_{k \geq 0} \frac{1}{k!} \sum_{u_{1}, \ldots, u_{k} \in Y^{+}}\left\langle w \mid u_{1} \ldots u_{k}\right\rangle \check{\pi}_{1}\left(u_{1}\right) \not \downarrow_{\phi} \ldots \downarrow_{\phi} \check{\pi}_{1}\left(u_{k}\right) \otimes w .
\end{aligned}
$$

It follows then the expected result.
Lemma 11. For any $w \in Y^{+}$, one has $\Delta_{\boldsymbol{\uplus}_{\phi}} \pi_{1}(w)=\pi_{1}(w) \otimes 1+1 \otimes \pi_{1}(w)$.
Proof. Let α be the alphabet duplication isomorphism defined by

$$
\forall \bar{y} \in \bar{Y}, \quad \bar{y}=\alpha(y)
$$

Applying the tensor product of algebra isomorphisms $\alpha \otimes \mathrm{Id}$ to the diagonal series \mathcal{D}_{Y}, we obtain, by Lemma 6, a group-like element and then applying the logarithm of this element (or equivalently, applying $\alpha \otimes \pi_{1}$ to \mathcal{D}_{Y}) we obtain \mathcal{S} which is, by Lemma 7, a primitive element :

$$
(\alpha \otimes \mathrm{Id}) \mathcal{D}_{Y}=\sum_{w \in Y^{*}} \alpha(w) w \quad \text { and } \quad \mathcal{S}=\left(\alpha \otimes \pi_{1}\right) \mathcal{D}_{Y}=\sum_{w \in Y^{*}} \alpha(w) \pi_{1}(w)
$$

The two members of the identity $\Delta_{\boldsymbol{\uplus}_{\phi}} \mathcal{S}=\mathcal{S} \otimes 1+1 \otimes \mathcal{S}$ give respectively

$$
\sum_{w \in Y^{*}} \alpha(w) \Delta_{\uplus_{\phi}} \pi_{1}(w) \quad \text { and } \quad \sum_{w \in Y^{*}} \alpha(w) \pi_{1}(w) \otimes 1+\sum_{w \in Y^{*}} \alpha(w) 1 \otimes \pi_{1}(w)
$$

Since $\{w\}_{w \in \bar{Y}^{*}}$ as a basis for $\mathbb{Q}\langle\bar{Y}\rangle$ then identifying the coefficients th the previous expressions, we get $\Delta_{{ }_{+{ }_{\phi}}} \pi_{1}(w)=\pi_{1}(w) \otimes 1+1 \otimes \pi_{1}(w)$ meaning that $\pi_{1}(w)$ is primitive.

3.2 Pair of bases in duality on ϕ-deformed stuffle algebra

Definition 4. Let $\left\{\Pi_{l}\right\}_{l \in \mathcal{L} y n Y}$ and $\left\{\Pi_{w}\right\}_{w \in Y^{*}}$ be the families of respectively $\mathcal{L i e}_{\mathbb{Q}}\langle Y\rangle$ and $\mathcal{U}\left(\mathcal{L i}_{\mathbb{Q}}\langle Y\rangle\right)$ obtained as follows

$$
\begin{aligned}
\Pi_{y_{k}} & =\pi_{1}\left(y_{k}\right) & \text { for } k \geq 1, \\
\Pi_{l} & =\left[\Pi_{s}, \Pi_{r}\right] & \text { for } l \in \mathcal{L} y n X, \text { standard factorization of } l=(s, r), \\
\Pi_{w} & =\Pi_{l_{1}}^{i_{1}} \ldots \Pi_{l_{k}}^{i_{k}} & \text { for } w=l_{1}^{i_{1}} \ldots l_{k}^{i_{k}}, l_{1}>\ldots>l_{k}, l_{1} \ldots, l_{k} \in \mathcal{L} y n Y .
\end{aligned}
$$

Let $\left\{\Sigma_{w}\right\}_{w \in Y^{*}}$ be the family of the quasi-shuffle algebra (viewed as a \mathbb{Q}-module) obtained by duality with $\left\{\Pi_{w}\right\}_{w \in Y^{*}}$:

$$
\forall u, v \in Y^{*}, \quad\left\langle\Sigma_{v} \mid \Pi_{u}\right\rangle=\delta_{u, v} .
$$

Proposition 6. Let $\overline{\mathcal{P}}=\left\{P \in \mathbb{Q}\langle\bar{Y}\rangle \mid \Delta_{\mathbf{t}_{\phi}} P=P \otimes 1+1 \otimes P\right\}$, where $\bar{Y}=\left\{\pi_{1}\left(y_{k}\right)\right\}_{k \geq 1}$. Then ${ }^{17}{\mathcal{L} i e_{\mathbb{Q}}}\langle\bar{Y}\rangle=\overline{\mathcal{P}}$.

Proof. By Lemma 11 and by Lemma 5, we get then the expected result.
Proposition 7. i) For $l \in \mathcal{L} y n Y$, the polynomial Π_{l} is upper triangular :

$$
\Pi_{l}=l+\sum_{v>w,(v)=(l)} c_{v} v .
$$

ii) The families $\left\{\Pi_{w}\right\}_{w \in Y^{*}}$ and $\left\{\Sigma_{w}\right\}_{w \in Y^{*}}$ are upper and lower triangular respectively ${ }^{18}$. On other words, for any $w \in Y^{+}$, by denoting (w) the degree of w with $\left(y_{k}\right)=\operatorname{deg}\left(y_{k}\right)=k$, one has

$$
\Pi_{w}=w+\sum_{v>w,(v)=(w)} c_{v} v \quad \text { and } \quad \Sigma_{w}=w+\sum_{v<w,(v)=(w)} d_{v} v .
$$

Proof. i) Let us prove it by induction on the length of l : the result is immediat for $l \in Y$. The result is suppose verified for any $l \in \mathcal{L} y n Y \cap Y^{k}$ and $0 \leq k \leq N$. At $N+1$, by the standard factorization $\left(l_{1}, l_{2}\right)$ of l, one has $\Pi_{l}=\left[\Pi_{l_{1}}, \Pi_{l_{2}}\right]$ and $l_{2} l_{1}>l_{1} l_{2}=l$. By induction hypothesis,

$$
\begin{aligned}
\Pi_{l_{1}}=l_{1}+\sum_{v>l_{1},(v)=\left(l_{1}\right)} c_{v} v & \text { and } \quad \Pi_{l_{2}}=l_{2}+\sum_{u>l_{2},(v)=\left(l_{2}\right)} d_{u} u \\
& \Rightarrow \quad \Pi_{l}=l+\sum_{w>l,(w)=(l)} e_{w} w
\end{aligned}
$$

getting e_{w} 's from c_{v} 's and d_{u} 's. Actually, the Lie bracket gives

$$
\begin{aligned}
\Pi_{l}= & {\left[l_{1}, l_{2}\right]+\sum_{u>l_{2},(v)=\left(l_{2}\right)} d_{u} l_{1} u+\sum_{\substack{v>l_{1},(v)=\left(l_{2}\right) \\
u>l_{2},(u)\left(l_{1}\right)}} c_{v} d_{u} v u } \\
& -\sum_{v>l_{1},(v)=\left(l_{1}\right)} c_{v} l_{2} v-\sum_{\substack{v>1_{1},(v)=\left(l_{2}\right) \\
u>l_{2},(u)=\left(l_{1}\right)}} c_{v} u v \\
= & {\left[l_{1}, l_{2}\right]+\sum_{u>l_{1} l_{2},(v)=\left(l_{1} l_{2}\right)} d_{u}^{\prime} u+\sum_{v>l_{1} d_{u} v u}^{v u>l_{1},(v u)=\left(l_{1} l_{2}\right)} c_{v}^{\prime} v-\sum_{u v>l_{2},\left(l_{1},(u v)=\left(l_{2} l_{1}\right)\right.} c_{v} d_{u} u v }
\end{aligned}
$$

[^10]\[

$$
\begin{aligned}
=\left[l_{1}, l_{2}\right] & +\sum_{u>l,(v)=(l)} d_{u}^{\prime} u+\sum_{v u>l,(v u)=(l)} c_{v} d_{u} v u \\
& -\sum_{v>l_{2} l_{1}>l,(v)=(l)} c_{v}^{\prime} v-\sum_{u v>l_{2} l_{1}>l,(u v)=(l)} c_{v} d_{u} u v .
\end{aligned}
$$
\]

Hence, the conclusion follows.
ii) Let $w=l_{1} \ldots l_{k}$, with $l_{1} \geq \ldots \geq l_{k}$ and $l_{1}, \ldots, l_{k} \in \mathcal{L} y n Y$. One has

$$
\Pi_{l_{i}}=l_{i}+\sum_{v>l_{i},(v)=\left(l_{i}\right)} c_{i, v} v \quad \text { and } \quad \Pi_{w}=l_{1} \ldots l_{k}+\sum_{u>w,(v)=(w)} d_{u} u
$$

where the d_{u} 's are obtained from the $c_{i, v}$'s. Hence, the family $\left\{\Pi_{w}\right\}_{w \in Y^{*}}$ is upper triangular and, by duality, the family $\left\{\Sigma_{w}\right\}_{w \in Y^{*}}$ is lower triangular.

Theorem 4. i) The family $\left\{\Pi_{l}\right\}_{l \in \mathcal{L} y n Y}$ forms a basis of the free Lie algebra.
ii) The family $\left\{\Pi_{w}\right\}_{w \in Y^{*}}$ forms a basis of the free associative algebra $\mathbb{Q}\langle Y\rangle$.
iii) The family $\left\{\Sigma_{w}\right\}_{w \in Y^{*}}$ generate freely the quasi-shuffle algebra.
iv) The family $\left\{\Sigma_{l}\right\}_{l \in \mathcal{L} y n Y}$ forms a transcendence basis of $\left(\mathbb{Q}\langle Y\rangle, \uplus_{\phi}\right)$.

Proof. The family $\left\{\Pi_{l}\right\}_{l \in \mathcal{L} y n Y}$ of primitive upper triangular polynomials is free. By Lemma 4 and then by a theorem of Viennot [9], we get the first result. The second is a direct consequence of the Poincaré-Birkhoff-Witt theorem. By the Cartier-Quillen-Milnor-Moore theorem, we get the third one and the last one is obtained as consequence of the constructions of $\left\{\Sigma_{l}\right\}_{l \in \mathcal{L} y n Y}$ and $\left\{\Sigma_{w}\right\}_{w \in Y^{*}}$.

Proposition 8. Let $\pi_{Y}:\left(\mathbb{Q} \oplus \mathbb{Q}\langle X\rangle x_{1},.\right) \rightarrow(\mathbb{Q}\langle Y\rangle$,.) be the morphism mapping $x_{0}^{s_{1}-1} x_{1} \ldots x_{0}^{s_{r}-1} x_{1} \in X^{*} x_{1}$ to $y_{s_{1}} \ldots y_{s_{r}} \in Y^{*}$ and let π_{X} be its inverse. Then
i) The homogeneous polynomials $\left\{\pi_{Y} P_{\pi_{X} l}\right\}_{l \in \mathcal{L} y n Y}$ are upper triangular and linearly independent ${ }^{19}$ and

$$
\pi_{Y} P_{\pi_{X} l}=\Pi_{l}+\sum_{v>l,(v)=(l)} p_{v} v
$$

ii) For any $w \in Y^{*}$, the following homogeneous polynomial

$$
\pi_{Y} P_{\pi_{X} w}=\Pi_{w}+\sum_{v>w,(v)=(w)} c_{v} v
$$

is of degree (w) and the family $\left\{\pi_{Y} P_{\pi_{X} w}\right\}_{w \in Y^{*}}$ forms a basis for $\mathbb{Q}\langle Y\rangle$.

[^11]iii) Let $\left\{\Theta_{w}\right\}_{w \in Y^{*}}$ be the family of homogeneous polynomials in duality with the family $\left\{\pi_{Y} P_{\pi_{X} w}\right\}_{w \in Y^{*}}$:
$$
\forall u, v \in Y^{*}, \quad\left\langle\pi_{Y} P_{\pi_{X} u} \mid \Theta_{u}\right\rangle=\delta_{u, v}
$$

Then, the family $\left\{\Theta_{w}\right\}_{w \in Y^{*}}$ generate freely the quasi-shuffle algebra and, for any $w \in Y^{*}, \Theta_{w}$ is upper triangular of degree (w) :

$$
\Theta_{w}=\Sigma_{w}+\sum_{v<w,(v)=(w)} d_{v} v
$$

iv) The family $\left\{\Theta_{l}\right\}_{l \in \mathcal{L} y n Y}$ does not form a transcendence basis of $\left(\mathbb{Q}\langle Y\rangle, \Psi_{\phi}\right)$.

Proof. i) By (11) (resp. by Proposition 7), for any $l \in \mathcal{L} y n X($ resp. $\mathcal{L} y n Y)$, one has $\operatorname{deg}\left(P_{l}\right)=|l|\left(\right.$ resp. $\left.\operatorname{deg}\left(\Pi_{l}\right)=(l)\right)$ and

$$
P_{l}=l+\sum_{v>l,|v|=\mid} a_{v} v \quad\left(\text { resp. } \quad \Pi_{l}=l+\sum_{v>l,(v)=(l)} c_{v} v\right),
$$

Hence, for any $l \in \mathcal{L} y n Y$, we have $\pi_{X} l \in \mathcal{L} y n X$ and

$$
\begin{aligned}
P_{\pi_{X} l} & =\pi_{X}\left[\Pi_{l}-\sum_{v>l,(v)=(l)} c_{v} v\right]+\sum_{v>\pi_{X} l,|v|=\mid \|} a_{v} v \\
\Rightarrow \quad \pi_{Y} P_{\pi_{X} l} & =\Pi_{l}+\sum_{u>l,(u)=(l)}\left(a_{u}^{\prime}-c_{u}^{\prime}\right) u .
\end{aligned}
$$

Hence, we get the expected results by putting $p_{u}=a_{u}^{\prime}-c_{u}^{\prime}$, where the coefficients a_{u}^{\prime} 's (resp. c_{u}^{\prime} 's) are obtained from a_{v} 's (resp. c_{v} 's) by completing some nul coefficients when it is necessary and by using the fact

$$
\forall w_{1}, w_{2} \in Y^{*} x_{1}, \quad w_{1}>w_{2} \quad \Rightarrow \quad \pi_{Y} w_{1}>\pi_{Y} w_{2}
$$

By Proposition 7, the polynomials $\left\{\Pi_{l}\right\}_{l \in \mathcal{L} y n Y}$ are upper triangular (see Note 5) and are linearly independent then the $\left\{\pi_{Y} P_{\pi_{X} l}\right\}_{l \in \mathcal{L} y n Y}$ are also.
ii) As in Proposition 7, let $w=l_{1} \ldots l_{k}$, with $l_{1}>\ldots>l_{k}, l_{1}, \ldots, l_{k} \in \mathcal{L} y n Y$. Firstly, one has $\left(\pi_{X} l_{1}\right) \ldots\left(\pi_{X} l_{k}\right)=\pi_{X} w$ and secondly,

$$
P_{\pi_{X} l_{i}}=\pi_{X} l_{i}+\sum_{v>l_{i},|v|=\left|\left.\right|_{i}\right|} c_{i, v} v \quad \text { and } \quad P_{\pi_{X} w}=\pi_{X} w+\sum_{u>w,|v|=|c|} d_{u} u
$$

where the d_{u} 's are obtained from the $c_{i, v}$'s. Hence, the family $\left\{P_{\pi_{X} w}\right\}_{w \in Y^{*}}$ is upper triangular. Using the restriction of π_{Y}, as being morphism from $\left(\mathbb{Q} \oplus \mathbb{Q}\langle X\rangle x_{1}, ..\right)$ to $(\mathbb{Q}\langle Y\rangle,$.$) , we get the degree of the upper triangular$ homogeneous polynomial $\pi_{Y} P_{\pi_{X} w}$ as image of Π_{w} is (see Proposition 7). The family $\left\{\pi_{Y} P_{\pi_{X} w}\right\}_{w \in Y^{*}}$ forms then a basis for the free algebra $\mathbb{Q}\langle Y\rangle$.
iii) It is a consequence of the Cartier-Quillen-Milnor-Moore theorem.
iv) If $\left\{\Theta_{l}\right\}_{l \in \mathcal{L} y n Y}$ constitutes a transcendence basis of $\left(\mathbb{Q}\langle Y\rangle, \uplus_{\phi}\right)$ then, for any $l \in \mathcal{L} y n Y, \pi_{Y} P_{\pi_{X} l}$ is primitive but it is false in general (see Note 19).

Now, let us clarify the basis $\left\{\Sigma_{w}\right\}_{w \in Y^{*}}$ and then the transcendence basis $\left\{\Sigma_{l}\right\}_{l \in \mathcal{L} y n Y}$ of the quasi-shuffle algebra $\left(\mathbb{Q}\langle Y\rangle, \pm_{\phi}\right)$ as follows

Proposition 9. We have
i) For $w=1_{Y^{*}}, \Sigma_{w}=1$.
ii) For any $w=l_{1}^{i_{1}} \ldots l_{k}^{i_{k}}$, with $l_{1}, \ldots, l_{k} \in \mathcal{L} y n Y$ and $l_{1}>\ldots>l_{k}$,

$$
\Sigma_{w}=\frac{\Sigma_{l_{1}}^{\mathbf{+}_{\phi} i_{1}} \mathbf{\Psi}_{\phi} \ldots \boldsymbol{\pm}_{\phi} \Sigma_{l_{k}}^{\mathbf{L J}_{\phi} i_{k}}}{i_{1}!\ldots i_{k}!}
$$

iii) For any $y \in Y, \Sigma_{y}=\check{\pi}_{1}(y)$.

Proof. i) Since $\Pi_{1_{Y^{*}}}=1$ then $\Sigma_{1_{Y^{*}}}=1$.
ii) Let $u=u_{1} \ldots u_{n}=l_{1}^{i_{1}} \ldots l_{k}^{i_{k}}, v=v_{1} \ldots v_{m}=h_{1}^{j_{1}} \ldots h_{p}^{j_{p}}$ with $l_{1} \ldots, l_{k}$, $h_{1}, \ldots, h_{p}, u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{m} \in \mathcal{L} y n Y, l_{1}>\ldots>l_{k}, h_{1}>\ldots>h_{p}$, $u_{1} \geq \ldots \geq u_{n}, v_{1} \geq \ldots \geq v_{m}$ and $i_{1}+\ldots+i_{k}=n, j_{1}+\ldots+j_{p}=m$. Hence, if $m \geq 2$ (resp. $n \geq 2$) then $v \notin \mathcal{L} y n Y$ (resp. $u \notin \mathcal{L} y n Y)$. Since
$\left\langle\Sigma_{u_{1}} \uplus_{\phi} \ldots \uplus_{\phi} \Sigma_{u_{n}} \mid \prod_{i=1}^{n} \Pi_{u_{i}}\right\rangle=\left\langle\Sigma_{u_{1}} \otimes \ldots \otimes \Sigma_{u_{n}} \mid \Delta_{\dot{+}_{\phi}}^{(n-1)}\left(\Pi_{v_{1}} \ldots \Pi_{v_{m}}\right)\right\rangle$
then many cases occur :
(a) Case $n>m$. By Lemma 10(90), $\left\langle\Sigma_{u_{1}} \uplus_{\phi} \ldots \uplus_{\phi} \Sigma_{u_{n}} \mid \Pi_{v_{1}} \ldots \Pi_{v_{m}}\right\rangle=$ 0.
(b) Case $n=m$. By Lemma 10(87), one has

$$
\begin{aligned}
\left\langle\Sigma_{u_{1}} \uplus_{\phi} \ldots \uplus_{\phi} \Sigma_{u_{n}} \mid \prod_{i=1}^{n} \Pi_{v_{i}}\right\rangle & =\sum_{\sigma \in \Sigma_{n}} \prod_{i=1}^{n}\left\langle\Sigma_{u_{i}} \mid \Pi_{v_{\sigma(i)}}\right\rangle \\
& =\sum_{\sigma \in \Sigma_{n}} \prod_{i=1}^{n} \delta_{\Sigma_{u_{i}}, \Pi_{v_{\sigma(i)}}} .
\end{aligned}
$$

Thus, if $u \neq v$ then $\left(u_{1}, \ldots, u_{n}\right) \neq\left(v_{1}, \ldots, v_{n}\right)$ then the second member is vanishing else, i.e. $u=v$, the second member equals 1 because the factorization by Lyndon words is unique.
(c) Case $n<m$. By Lemma 10(iii), let us consider the following language over the alphabet $\mathcal{A}=\left\{\Pi_{v_{1}}, \ldots, \Pi_{v_{m}}\right\}$:

$$
\mathcal{M}=\left\{w \in \mathcal{A}^{*}\left|w=\Pi_{v_{j_{1}}} \ldots \Pi_{v_{j_{|w|}}}, j_{1}<\ldots<j_{|w|},|w| \geq 1\right\}\right.
$$

and the morphism $\mu: \mathbb{Q}\langle\mathcal{A}\rangle \longrightarrow \mathbb{Q}\langle Y\rangle$. We get:

$$
\left\langle\Sigma_{u_{1}} \uplus_{\phi} \cdots \uplus_{\phi} \Sigma_{u_{n}} \mid \prod_{i=1}^{n} \Pi_{u_{i}}\right\rangle=\sum_{\substack{w_{1} \\
w_{1} \uplus^{w_{1}} \cdots w_{\begin{subarray}{c}{w_{m} \in \mathcal{M} \\
\phi_{m}=w_{1} \ldots P_{m}} }}}\end{subarray}} \prod_{i=1}^{n}\left\langle\Sigma_{u_{i}} \mid \mu\left(w_{i}\right)\right\rangle=0 .
$$

Because in the side, on the one hand, there is at least one $w_{i},\left|w_{i}\right| \geq 2$, corresponding to $\mu\left(w_{i}\right)=\Pi_{v_{j_{1}}} \ldots \Pi_{v_{j_{\left|w_{i}\right|}}}$ such that $v_{j_{1}} \geq \ldots \geq v_{j_{\left|w_{i}\right|}}$ and on the other hand, $\nu_{i}:=v_{j_{1}} \ldots v_{j_{\left|w_{i}\right|}} \notin \mathcal{L} y n Y$ and $u_{i} \in \mathcal{L} y n Y$.

By consequent,

$$
\left\langle\Sigma_{u} \mid \Pi_{v}\right\rangle=\left\langle\left.\frac{\Sigma_{l_{1}}^{\boldsymbol{\Psi}_{\phi} i_{1}} \uplus_{\phi} \ldots \uplus_{\phi} \Sigma_{l_{k}}^{\mathbf{\Psi}_{\phi} i_{k}}}{i_{1}!\ldots i_{k}!} \right\rvert\, \Pi_{h_{1}}^{j_{1}} \ldots \Pi_{h_{p}}^{j_{p}}\right\rangle=\delta_{u, v} .
$$

iii) For any $l \in Y, \Pi_{l}=\pi_{1}(l), \Sigma_{l}=\check{\pi}_{1}(l)$ and $\pi_{1}, \check{\pi}_{1}$ are mutually adjoint.

Proposition 10. i) For $w \in Y^{+}$, the polynomial Σ_{w} is proper and homogeneous of degree (w), for $\operatorname{deg}\left(y_{i}\right)=i$, and of rational positive coefficients.
ii) $\mathcal{D}_{Y}=\sum_{w \in Y^{*}} \Sigma_{w} \otimes \Pi_{w}=\prod_{l \in \mathcal{L} y n Y}^{\searrow} \exp \left(\Sigma_{l} \otimes \Pi_{l}\right)$.
iii) The family $\mathcal{L} y n Y$ forms a transcendence basis ${ }^{20}$ of the quasi-shuffle algebra and the family of proper polynomials of rational positive coefficients defined by, for any $w=l_{1}^{i_{1}} \ldots l_{k}^{i_{k}}$ with $l_{1}>\ldots>l_{k}$ and $l_{1}, \ldots, l_{k} \in \mathcal{L} y n Y$,

$$
\chi_{w}=\frac{l_{1}^{\boldsymbol{\pm}_{\phi} i_{1}} \boldsymbol{\pm}_{\phi} \ldots \boldsymbol{\pm}_{\phi} l_{k}^{\mathbf{แ}_{\phi} i_{k}}}{i_{1}!\ldots i_{k}!}
$$

forms a basis of the quasi-shuffle algebra.
iv) Let $\left\{\xi_{w}\right\}_{w \in Y^{*}}$ be the basis of the envelopping algebra $\mathcal{U}\left(\mathcal{L} i e_{\mathbb{Q}}\langle X\rangle\right)$ obtained by duality with the basis $\left\{\chi_{w}\right\}_{w \in Y^{*}}$:

$$
\forall u, v \in Y^{*}, \quad\left\langle\chi_{v} \mid \xi_{u}\right\rangle=\delta_{u, v} .
$$

Then the family $\left\{\xi_{l}\right\}_{l \in \mathcal{L} y n Y}$ forms a basis of the free Lie algebra $\mathcal{L} i e_{\mathbb{Q}}\langle Y\rangle$.

[^12]Proof. i) The proof can be done by induction on the length of w using the fact that the product \uplus_{ϕ} conserve the property, l'homogenity and rational positivity of the coefficients.
ii) Expressing w in the basis $\left\{\Sigma_{w}\right\}_{w \in Y^{*}}$ of the quasi-shuffle algebra and then in the basis $\left\{\Pi_{w}\right\}_{w \in Y^{*}}$ of the envelopping algebra, we obtain successively

$$
\begin{aligned}
& \mathcal{D}_{Y}=\sum_{w \in Y^{*}}\left(\sum_{u \in Y^{*}}\left\langle\Pi_{u} \mid w\right\rangle \Sigma_{u}\right) \otimes w \\
& =\sum_{u \in Y^{*}} \Sigma_{u} \otimes\left(\sum_{w \in Y^{*}}\left\langle\Pi_{u} \mid w\right\rangle w\right) \\
& =\sum_{u \in Y^{*}} \Sigma_{u} \otimes \Pi_{u} \\
& =\sum_{\substack{l_{1}>\ldots>l_{k} \\
i_{1}, \ldots, i_{k} \geq 1}} \frac{\Sigma_{l_{1}}^{\text {H }_{\phi} i_{1}} \uplus_{\phi} \ldots \pm_{\phi} \Sigma_{l_{k}}^{\uplus_{\phi} i_{k}}}{i_{1}!\ldots i_{k}!} \otimes \Pi_{l_{1}}^{i_{1}} \ldots \Pi_{l_{k}}^{i_{k}} \\
& =\prod_{l \in \mathcal{L} y n Y}^{\downarrow} \sum_{i \geq 0} \frac{\Sigma_{l}^{\boldsymbol{+}{ }_{\phi} i}}{i!} \otimes \Pi_{l}^{i} \\
& =\prod_{l \in \mathcal{L} y n Y}^{\searrow} \exp \left(\Sigma_{l} \otimes \Pi_{l}\right) .
\end{aligned}
$$

iii) For $w=l_{1}^{i_{1}} \ldots l_{k}^{i_{k}}$ with $l_{1}, \ldots, l_{k} \in \mathcal{L} y n Y$ and $l_{1}>\ldots>l_{k}$, by Proposition 7, the proper polynomial of positive coefficients Σ_{w} is lower triangular :

$$
\Sigma_{w}=\frac{\Sigma_{l_{1}}^{\mathbf{+}_{\phi} i_{1}} \uplus_{\phi} \ldots \boldsymbol{\pm}_{\phi} \Sigma_{l_{k}}^{\mathbf{L +}_{\phi} i_{k}}}{i_{1}!\ldots i_{k}!}=w+\sum_{v<w,(v)=(w)} c_{v} v .
$$

In particular, for any $l_{j} \in \mathcal{L} y n Y, \Sigma_{l_{j}}$ is lower triangular :

$$
\Sigma_{l_{j}}=l_{j}+\sum_{v<l_{j},(v)=\left(l_{j}\right)} c_{v} v .
$$

Hence, $\Sigma_{w}=\chi_{w}+\chi_{w}^{\prime}$, where χ_{w}^{\prime} is a proper polynomial of $\mathbb{Q}\langle Y\rangle$ of rational positive coefficients. We deduce then the support of χ_{w} contains words which are less than w and $\left\langle\chi_{w} \mid w\right\rangle=1$. Thus, the proper polynomial χ_{w} of rational positive coefficients is lower triangular :

$$
\begin{aligned}
\chi_{w} & =w+\sum_{v<w,(v)=(w)} c_{v} v, \\
\Rightarrow \quad \forall l \in \mathcal{L} y n Y, \quad \chi_{l} & =l+\sum_{v<l,(v)=(l)} c_{v} v .
\end{aligned}
$$

It follows then expected results.
iv) By duality, for $w \in Y^{*}$, the proper polynomial ξ_{w} is upper triangular. In particular, for any $l \in \mathcal{L} y n Y$, the proper polynomial ξ_{l} is upper triangular :

$$
\xi_{l}=l+\sum_{v>l,(v)=(l)} d_{v} v .
$$

Hence, the family $\left\{\xi_{l}\right\}_{l \in \mathcal{L}_{y n} Y}$ is free and its elements verify an analogous of the generalized criterion of Friedrichs :

- for $w \in \mathcal{L} y n Y$, one has $\left\langle\chi_{w} \mid \xi_{l}\right\rangle=\delta_{w, l}$,
- for $w=l_{1} \ldots l_{n} \notin \mathcal{L} y n Y$ with $l_{1}, \ldots, l_{n} \in \mathcal{L} y n Y$ and $l_{1} \geq \ldots \geq l_{n}$, one has $\left\langle\chi_{l_{1}} \uplus_{\phi} \ldots \pm_{\phi} \chi_{l_{n}} \mid \xi_{l}\right\rangle=\left\langle\chi_{w} \mid \xi_{l}\right\rangle=0($ since $l \in \mathcal{L} y n Y)$.

Moreover, by Lemma 9 , the polynomials ξ_{l} 's are primitive.. By Lemma 4 and then by a Viennot's theorem [9], we get the expected result.

3.3 Particular case : q-deformation of the shuffle product

In the sequel, we focus on the particular case where

$$
\forall y_{i}, y_{j} \in Y, \quad \phi\left(y_{i}, y_{j}\right)=q y_{i+j}
$$

We call a standard sequence of Lyndon words to be a sequence

$$
\begin{equation*}
S=\left(\ell_{1}, \cdots, \ell_{k}\right), k \geq 1 \tag{82}
\end{equation*}
$$

if for all i, either ℓ_{i} to be a letter or the standard factorization $\sigma\left(\ell_{i}\right)=\left(\ell_{i}^{\prime}, \ell_{i}^{\prime \prime}\right)$ and $\ell_{i}^{\prime \prime} \geq \ell_{i+1}, \cdots, \ell_{n}$. Note that a decreasing sequence of Lyndon words is also a standard sequence. A rise of a sequence S is an index i such that $\ell_{i}<\ell_{i+1}$. A legal rise of sequence \bar{S} is a rise of i such that $\ell_{i+1} \geq \ell_{i+2}, \cdots, \ell_{k}$; with the legal rise i, we define

$$
\begin{align*}
\lambda_{i}(S) & =\left(\ell_{1}, \cdots, \ell_{i-1}, \ell_{i} \ell_{i+1}, \ell_{i+2}, \cdots, \ell_{n}\right) \tag{83}\\
\rho_{i}(S) & =\left(\ell_{1}, \cdots, \ell_{i-1}, \ell_{i+1}, \ell_{i}, \ell_{i+2}, \cdots, \ell_{n}\right) \tag{84}
\end{align*}
$$

We denote $S \Rightarrow T$ if $T=\lambda_{i}(S)$ or $T=\rho_{i}(S)$ for some legal rise i; and $S \stackrel{*}{\Rightarrow} T$, transitive closure of \Rightarrow.
A derivation tree $\mathcal{T}(S)$ of S to be a labelled rooted tree with the following properties: if S is decreasing, then $\mathcal{T}(S)$ is reduced to its root, labelled S; if not, $\mathcal{T}(S)$ is the tree with root labelled S, with left and right immediate subtree $\mathcal{T}\left(S^{\prime}\right)$ and $\mathcal{T}\left(S^{\prime \prime}\right)$, where $S^{\prime}=\lambda_{i}(S), S^{\prime \prime}=\rho_{i}(S)$ for some legal rise i of S; we define $\Pi(S)=\Pi_{\ell_{1}} \ldots \Pi_{\ell_{n}}$ (note that, $\Pi(S) \neq \Pi_{\ell_{1} \ldots \ell_{k}}$ because $\ell_{1}, \cdots, \ell_{k}$ can be not a decreasing sequence).
Conversely, we call a fall of sequence S is an index i such that $\ell_{1}, \cdots, \ell_{i} \in$ $Y, \ell_{i}>\ell_{i+1}$. We define

$$
\rho_{i}^{-1}(S)=\left(\ell_{1}, \cdots, \ell_{i+1}, \ell_{i}, \cdots, \ell_{n}\right) .
$$

We call a landmark of sequence S is an index i such that $\ell_{1}, \cdots, \ell_{i-1} \in Y, \ell_{i} \in$ $Y^{*} \backslash Y$, and we define

$$
\lambda_{i}^{-1}(S)=\left(\ell_{1}, \cdots, \ell_{i-1}, \ell_{i}^{\prime}, \ell_{i}^{\prime \prime}, \ell_{i+1}, \cdots, \ell_{n}\right)
$$

where $\sigma\left(\ell_{i}\right)=\left(\ell_{i}^{\prime}, \ell_{i}^{\prime \prime}\right)$. We will denote by $S \Leftarrow T$ if $T=\rho_{i}^{-1}(S)$ or $T=\lambda_{i}^{-1}(S)$ for some fall or landmark i; and $S \stackrel{*}{\Leftarrow} T$, transitive closure of \Leftarrow. Similarly, we call the conversely derivation tree $\mathcal{T}^{-1}(S)$ with root labelled S, with left and right immediate subtree $\mathcal{T}^{-1}\left(S^{\prime}\right)$ and $\mathcal{T}^{-1}\left(S^{\prime \prime}\right)$, where $S^{\prime}=\rho_{i}^{-1}(S)$ for some fall $i, S^{\prime \prime}=\lambda_{i}^{-1}(S)$ for some landmark i.

Lemma 12. For each standard sequence $S, \Pi(S)$ is the sum of all $\Pi(T)$ for T a leaf in a fixed derivation tree of S.

Proof. The Lemma is a consequence of the definitions (83), (84) of $\lambda_{i}(S)$ and $\rho_{i}(S)$, of that of $\mathcal{T}(S)$ and $\Pi(S)$, and of the identity in $\mathbb{Q}[q]\langle X\rangle$:

$$
\Pi_{\ell_{i}} \Pi_{\ell_{i+1}}=\left[\Pi_{\ell_{i}}, \Pi_{\ell_{i+1}}\right]+\Pi_{\ell_{i+1}} \Pi_{\ell_{i}}=\Pi_{\ell_{i} \ell_{i+1}}+\Pi_{\ell_{i+1}} \Pi_{\ell_{i}} .
$$

Example 1. $\Pi\left(y_{4}, y_{2}, y_{1}\right)=\Pi_{y_{4} y_{2} y_{1}}+\Pi_{y_{2} y_{1}} \Pi_{y_{4}}+\Pi_{y_{4} y_{1} y_{2}}+\Pi_{y_{2}} \Pi_{y_{4} y_{1}}+\Pi_{y_{1}} \Pi_{y_{4} y_{2}}+$ $\Pi_{y_{1}} \Pi_{y_{2}} \Pi_{y_{4}}$, we can see the following diagram (note that $y_{4}<y_{2}<y_{1}$)

Figure 4: Derivation tree $\mathcal{T}\left(y_{4}, y_{2}, y_{1}\right)$

Proposition 11. i) For any Lyndon word $y_{s_{1}} \ldots y_{s_{k}}$, we have

$$
\begin{align*}
\Sigma_{y_{s_{1}} \ldots y_{s_{k}}}= & \sum_{\substack{\left\{s_{1}^{\prime}, \cdots, s_{i}^{\prime}\right\} \subset\left\{s_{1}, \cdots, s_{k}\right\} \\
\ell_{1} \geq \cdots \geq \ell_{n} i n \mathcal{L} y n Y}} \frac{q^{i-1}}{i!} y_{s_{1}^{\prime}+\cdots+s_{i}^{\prime}} \Sigma_{\ell_{1} \cdots \ell_{n}} . \tag{85}\\
& \left(y_{\left.s_{1} \cdots y_{s_{k}}\right)} \stackrel{\text { 当 }\left(y_{s_{1}^{\prime}}, \cdots, y_{\left.s_{n}^{\prime}, \ell_{1}, \cdots, \ell_{n}\right)}\right.}{ }\right.
\end{align*}
$$

ii) In special case, if $y_{s_{1}} \leq \cdots \leq y_{s_{k}}$ then

$$
\begin{equation*}
\Sigma_{y_{s_{1} \ldots y_{s_{k}}}}=\sum_{i=1}^{k} \frac{q^{i-1}}{i!} y_{s_{1}+\cdots+s_{i}} \Sigma_{y_{s_{i+1}} \ldots y_{s_{k}}} \tag{86}
\end{equation*}
$$

Proof. (Proposition 11) At first, we remark that the equality (85) is equivalent to saying that for any word u and any letter y_{s},

$$
\begin{equation*}
\left\langle\Sigma_{y_{s_{1}} \ldots y_{s_{k}}} \mid y_{s} u\right\rangle=\sum_{\substack{\left\{s_{s}^{\prime}, \ldots, s_{i}^{\prime}\right\} \subset\left\{s_{1}, \ldots, s_{k}\right\} \\ \ell_{1} \geq \cdots \geq \ell_{n} i n<y n Y}} \frac{q^{i-1}}{i!} \delta_{s_{1}^{\prime}+\cdots+s_{i}^{\prime}, s}\left\langle\Sigma_{\ell_{1} \ldots \ell_{n}} \mid u\right\rangle . \tag{87}
\end{equation*}
$$

Since the duality, we have

$$
u=\sum_{w \in Y^{*}}\left\langle\Sigma_{w} \mid u\right\rangle \Pi_{w}
$$

this and (??) we imply

$$
\begin{align*}
y_{s} u & =\sum_{w}\left\langle\Sigma_{w} \mid u\right\rangle y_{s} \Pi_{w} \tag{88}\\
& =\sum_{w}\left\langle\Sigma_{w} \mid u\right\rangle\left(\sum_{i \geq 1} \frac{q^{i-1}}{i!} \sum_{s_{1}^{\prime}+\cdots+s_{i}^{\prime}=s} \Pi_{y_{s_{1}^{\prime}}} \ldots \Pi_{y_{s_{i}^{\prime}}}\right) \Pi_{w} \tag{89}\\
& =\sum_{w}\left\langle\Sigma_{w} \mid u\right\rangle \sum_{i \geq 1} \frac{q^{i-1}}{i!} \sum_{s_{1}^{\prime}+\cdots+s_{i}^{\prime}=s} \Pi_{y_{s_{1}^{\prime}}} \ldots \Pi_{y_{s_{i}^{\prime}}} \Pi_{w} \tag{90}
\end{align*}
$$

For each w fixed, we write w form factorization of Lyndon words $w=\ell_{1} \ldots \ell_{n}, \ell_{1} \geq$ $\cdots \geq \ell_{n}$, then we have $S:=\left(y_{s_{1}^{\prime}}, \cdots, y_{s_{i}^{\prime}}, \ell_{1}, \cdots, \ell_{n}\right)$ is a standard sequence, so we obtain from Lemma 12

$$
\Pi(S)=\Pi\left(y_{s_{1}^{\prime}}, \cdots, y_{s_{i}^{\prime}}, \ell_{1}, \cdots, \ell_{n}\right) \quad=\sum_{S \stackrel{*}{\Rightarrow} T} \alpha_{T} \Pi(T)
$$

Consequently

$$
\begin{aligned}
\left\langle\Sigma_{y_{1} \ldots y_{k}} \mid y_{s} u\right\rangle & =\sum_{w}\left\langle\Sigma_{w} \mid u\right\rangle \sum_{i \geq 1} \frac{q^{i-1}}{i!} \sum_{s_{1}^{\prime}+\cdots+s_{i}^{\prime}=s}\left\langle\Sigma_{y_{1} \cdots y_{k}} \mid \Pi_{y_{s_{1}^{\prime}}} \ldots \Pi_{y_{s_{i}^{\prime}}} \Pi_{w}\right\rangle \\
& =\sum_{\ell_{1} \geq \cdots \geq \ell_{n} i n \mathcal{L} y n Y}\left\langle\Sigma_{\ell_{1} \ldots \ell_{n}} \mid u\right\rangle \sum_{i \geq 1} \frac{q^{i-1}}{i!} \sum_{\substack{s_{1}^{\prime}+\cdots+s_{i}^{\prime}=s \\
\left(y_{s 1}, \ldots, y_{s_{i}}, \ell_{n}, \cdots, \ell_{n}\right){ }^{\prime} T}} \alpha_{T}\left\langle\Sigma_{y_{1} \ldots y_{k}} \mid \Pi(T)\right\rangle .
\end{aligned}
$$

Note that, the leaves T 's of derivation tree $\mathcal{T}(S)$ are decreasing sequences of Lyndon words with length ≥ 2 except leaves form $T=(\ell)$, where $\ell \in \mathcal{L} y n Y$. Therefore $\left\langle\Sigma_{y_{1} \ldots y_{k}} \mid \Pi(T)\right\rangle \neq 0$ if $T=\left(y_{s_{1}} \ldots y_{s_{k}}\right)$. By maps ρ^{-1} and λ^{-1}, we construct a conversely derivation tree from the standard sequence of one Lyndon word $S=$
$\left(y_{s_{1}} \ldots y_{s_{k}}\right)$, we take standard sequences form $\left(y_{s 1}, \cdots, y_{s_{i}}, \ell_{n}, \cdots, \ell_{n}\right), i \geq 1$; at that time, for each S of these sequences, we get unique leaf $T=\left(y_{s_{1}} \ldots y_{s_{k}}\right)$ in the derivation tree $\mathcal{T}(S)$, it mean $\alpha_{T}=1$. We thus get (87).
In other words, if $y_{s_{1}} \leq \cdots \leq y_{s_{k}}$ then the standard sequence ($y_{s_{1}} \ldots y_{s_{k}}$) may only be a leaf of a derivation tree $\mathcal{T}(S)$ after applying map λ_{i} more times, we imply that $\left\langle\Sigma_{y_{s_{1}} \ldots y_{s_{k}}} \mid \Pi_{y_{s_{1}^{\prime}}} \ldots \Pi_{y_{s_{i}^{\prime}}} \Pi_{w}\right\rangle \neq 0$ if and only if $y_{s_{1}} \ldots y_{s_{k}}=$ $y_{s_{1}^{\prime}} \ldots y_{s_{i}^{\prime}} \ell_{1} \ldots \ell_{n}$, then $y_{s_{1}}=y_{s_{1}^{\prime}}, \cdots, y_{s_{i}^{\prime}}=y_{s_{i}}$ and $y_{s_{i+1}} \ldots y_{s_{k}}=\ell_{1} \ldots \ell_{n}$. Hence

$$
\left\langle\Sigma_{y_{s_{1} \ldots y_{s_{k}}}} \mid \Pi_{y_{s_{1}^{\prime}}} \ldots \Pi_{y_{s_{i}^{\prime}}} \Pi_{w}\right\rangle=\delta_{s_{1}+\cdots+s_{i}, s} \delta_{y_{s_{i+1} \ldots y_{s_{k}}}, w}
$$

we thus get

$$
\begin{aligned}
\left\langle\Sigma_{y_{s_{1} \ldots y_{s_{k}}}} \mid y_{s} u\right\rangle & =\sum_{w}\left\langle\Sigma_{w} \mid u\right\rangle \sum_{i \geq 1} \frac{q^{i-1}}{i!} \sum_{s_{1}^{\prime}+\cdots+s_{i}^{\prime}=s}\left\langle\Sigma_{y_{s_{1}} \ldots y_{s_{k}}} \mid \Pi_{y_{s_{1}^{\prime}}} \ldots \Pi_{y_{s_{i}^{\prime}}} \Pi_{w}\right\rangle \\
& =\frac{q^{i-1}}{i!} \delta_{s_{1}+\cdots+s_{i}, s}\left\langle\Sigma_{y_{s_{i+1}} \ldots y_{s_{k}}} \mid u\right\rangle .
\end{aligned}
$$

References

[1] J. Berstel, C. Reutenauer.- Rational series and their languages, ??
[2] Boubaki, N. .- N. Bourbaki, théorie des ensembles, Springer (2006)
[3] Boubaki, N. .- N. Bourbaki, Algèbre, Chap I-III, Springer (2006)
[4] Boubaki, N. .- N. Bourbaki, Groupes et Algbres de Lie, Chap II-III, Springer (2006)
[5] K.T. Chen, R.H. Fox, R.C. Lyndon.- Free differential calculus, IV. The quotient groups of the lower central series, Ann. of Math., 68 (1958) pp. 8195
[6] D.E. Radford.- A natural ring basis for shuffle algebra and an application to group schemes Journal of Algebra, 58, pp. 432-454, 1979.
[7] Ree R.,- Lie elements and an algebra associated with shuffles Ann. Math 68 210-220, 1958.
[8] Reutenauer, C..- Free Lie Algebras, London Math. Soc. Monographs, New Series-7, Oxford Science Publications, 1993.
[9] Viennot, G.- Algèbres de Lie Libres et Monodes Libres, (1978) 691: 94-112, January 01, 1978

[^0]: ${ }^{1}$ Version du 21-02-2013 16:08

[^1]: ${ }^{2}$ In the sequel, the order on the words will be understood as the lexicographic by length total ordering.
 ${ }^{3}$ The basis can be reindexed by Lyndon words and then one uses the canonical factorization of the words.

[^2]: ${ }^{4}$ Therefore \mathcal{A} is a polynomial algebra $\mathcal{A} \simeq \mathbb{Q}[\mathcal{L} y n X]$.
 ${ }^{5}$ Recall that the duality preserves the (multi)homogeneous degrees and interchanges the triangularity of polynomials [8]. For that, one can construct the triangular matrices M and N admitting as entries the coefficients of the multihomogeneous triangular polynomials, $\left\{\mathrm{P}_{w}\right\}_{w \in X^{k}}$ and $\left\{S_{w}\right\}_{w \in X^{k}}$ in the basis $\{w\}_{w \in X^{*}}$ respectively :

 $$
 M_{u, v}=\left\langle P_{u} \mid v\right\rangle \quad \text { and } \quad N_{u, v}=\left\langle S_{u} \mid v\right\rangle .
 $$

[^3]: ${ }^{6}$ In general Y^{X} is the set of all mappings $X \rightarrow Y$ [2] Ch 2.5.2
 ${ }^{7}$ In fact, the algebra of commutative (resp. noncommutative) series on an alphabet X is the total algebra of the free commutative (resp. X^{*}) monoid on X
 ${ }^{8}$ Here $A[M]$ is identified with the submodule of finitely supported functions $M \rightarrow A$.

[^4]: ${ }^{9}$ In case \mathcal{A} is a geometric space, this morphism is called "evaluation at f " and corresponds to a Dirac measure.

[^5]: ${ }^{10}$ See [4] Ch2 $\S 1 \mathrm{n}^{\mathrm{o}} 6$ th 1 for a field of characteristic zero and $\S 1$ Ex. 10 for the free case (over a ring A with $\mathbb{Q} \subset A$).

[^6]: ${ }^{11}$ In fact it is the case for any cocommutative bialgebra, be it generated by its primitive elements or not.

[^7]: ${ }^{13}$ One can prove that, in case Y is a semigroup, the associated ϕ is fulfills eq. 70 iff Y fulfills "condition D" of Bourbaki (see [3])

[^8]: ${ }^{14}$ For the pairing defined by

 $$
 \left.\forall x, y \in Y, \quad\langle x \mid y\rangle=\delta_{x, y}\right)
 $$

[^9]: ${ }^{16}$ This condition can be viewed as an analogous of the generalized Friedrichs' criterion [8].

[^10]: ${ }^{17}$ Any $P \in \mathbb{Q}\langle\bar{Y}\rangle$ is a Lie polynomial if and only if P is primitive, for $\Delta \boldsymbol{\rightharpoonup}_{\phi}$.
 ${ }^{18}$ The duality preserves the homogeneous degree and interchanges the triangularity of polynomials (see Note 5 for the same construction of the triangular matrices of coeeficients).

[^11]: ${ }^{19}$ For any $l \in \mathcal{L} y n Y, P_{\pi_{X} l}$ and Π_{l} are primitive but $\pi_{Y} P_{\pi_{X} l}$ is not neccessarily primitive.. For example, $P_{\pi_{Y} y_{2}}=\left[x_{0}, x_{1}\right]$ and $\Pi_{y_{2}}=y_{2}-\frac{1}{2} y_{1}^{2}$ are primitive but $\pi_{Y} P_{x_{0} x_{1}}=y_{2}$ is not.

[^12]: ${ }^{20}$ This result is an analogous of a Radford theorem (see [8]). Thus the bases $\mathcal{L} y n Y$ and $\left\{\Sigma_{l}\right\}_{l \in \mathcal{L} y n Y}$ belong to the class of Radford bases, i.e. the class of trancensdence bases, of the quasi-shuffle algebra, as well as the bases $\mathcal{L} y n X$ and $\left\{P_{l}\right\}_{l \in \mathcal{L} y n X}$ belong to the class of Radford bases of the shuffle algebra.

