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MARTIN BOUNDARY OF MEASURES WITH INFINITE SUPPORT IN

HYPERBOLIC GROUPS

SÉBASTIEN GOUËZEL

Abstract. Given a probability measure on a finitely generated group, its Martin bound-
ary is a natural way to compactify the group using the Green function of the corresponding
random walk. For finitely supported measures in hyperbolic groups, it is known since the
work of Ancona and Gouëzel-Lalley that the Martin boundary coincides with the geometric
boundary. The goal of this paper is to weaken the finite support assumption. We first show
that, in any non-amenable group, there exist probability measures with exponential tails
giving rise to pathological Martin boundaries. Then, for probability measures with super-
exponential tails in hyperbolic groups, we show that the Martin boundary coincides with
the geometric boundary by extending Ancona’s inequalities. We also deduce asymptotics
of transition probabilities for symmetric measures with superexponential tails.

1. Introduction

Consider a probability measure µ on a finitely generated group Γ, whose support generates
Γ as a semigroup (we say that µ is admissible). The Green function associated to µ is
Gµ(x, y) = G(x, y) =

∑∞
n=0 µ

n(x−1y). The Green function is defined so that the random
walk with transition probabilities p(a, b) = µ(a−1b) starting from x spends an average
time G(x, y) at y. We will always assume that this sum is finite (i.e., the random walk is
transient). The function G contains a lot of information about the transition probabilities
and the asymptotic properties of the random walk. Moreover, it is at the heart of the
potential theory of µ, making it possible to describe all positive harmonic functions through
the notion of Martin boundary.

The Martin boundary ∂µΓ is defined as follows: a sequence of points yn ∈ Γ going to
infinity converges in Γ∪∂µΓ if and only if, for all z, the sequence Kyn(z) = G(z, yn)/G(e, yn)
converges, where e denotes the identity of the group. One can associate to any ξ ∈ ∂µΓ
the corresponding Martin kernel Kξ(z) = limKyn(z). This function is superharmonic (i.e.,
if Pµ denotes the Markov operator associated to µ, then PµKξ ≤ Kξ), and any positive
superharmonic function on Γ can be decomposed as an integral of the kernels Kξ with
respect to some finite measure on Γ∪ ∂µΓ (the decomposition is unique if one requires that
the measure is supported on Γ and on the minimal part of the Martin boundary, made of
those ξ whose kernel Kξ is harmonic and minimal among positive harmonic functions). See
for instance [Dyn69, Saw97, Woe00].

Describing concretely the Martin boundary in specific examples is difficult, especially in
non-amenable situations. A landmark result in this direction is a theorem by Ancona [Anc88]
showing that, for finitely supported probability measures in a hyperbolic group, the Martin
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boundary coincides with the geometric boundary of the group. His result is not restricted
to probability measures: Green functions and Martin boundary can be defined for any finite
measure µ, and Ancona’s result is true for any measure µ such that rµ has a finite Green
function for some r > 1 (we will say that such a µ has the property Anc∗, since this property
is called (∗) in Ancona’s paper). Ancona’s proof is based on an inequality saying that the
Green function of a measure with property Anc∗ is essentially multiplicative along geodesics
in the group: there exists a constant C such that, for any x, y, z on a geodesic of the group
(in this order), one has

(1.1) C−1G(x, y)G(y, z) ≤ G(x, z) ≤ CG(x, y)G(y, z).

While the first inequality is always true, the second one is highly nontrivial. It is used by
Ancona to show that the Martin boundary coincides with the geometric boundary. It also
plays an important role in the article [BHM11] by Blachère, Haïssinsky and Mathieu: they
prove that this inequality is necessary and sufficient so that a natural distance associated
to the random walk, the Green distance, is hyperbolic (and they prove several properties of
the harmonic measure at infinity under this condition). It is also instrumental in the arti-
cles [GL11, Gou12] by Gouëzel and Lalley, where the asymptotics of transition probabilities
in hyperbolic groups are determined (note that the authors need to extend Ancona inequal-
ities to some measures that do not satisfy Anc∗). All those results rely on the finiteness of
the support of the measure µ.

Our goal in this article is to see to what extent the previous results can be extended to
measures with infinite support. The tails of the measure, i.e., the speed at which µ(B(e, n)c)
tends to 0 (where B(e, n)c denotes the complement of the ball centered at e of radius n, for
some word distance in the group) will play an important role in the results. We will say
that a measure has exponential tails if there exists M > 1 such that, for large enough n,
µ(B(e, n)c) ≤ M−n. We will say that µ has superexponential tails if this condition is true
for all M > 1.

Our first result shows that one can not expect a reasonable description of the Martin
boundary if one only demands an exponential decay of the tails:

Theorem 1.1. Consider a non-amenable finitely generated group Γ, and a sequence yn
going to infinity in Γ. There exists an admissible symmetric probability measure µ on Γ,
with exponential tails, such that yn does not converge in the Martin boundary ∂µΓ.

This implies in particular that there exist uncountably many possible different Martin
boundaries for measures with exponential tails, by a standard diagonal argument.

If the tails have a better behavior (i.e., if they are superexponential), we can extend
Ancona’s results:

Theorem 1.2. In a hyperbolic group Γ, consider an admissible measure satisfying Anc∗,
with superexponential tails. Then it satisfies Ancona inequalities (1.1). In particular, its
Martin boundary coincides with the geometric boundary of the group.

It follows that all the results of [BHM11] describing the geometry of the harmonic mea-
sure (and in particular its pointwise dimension), originally obtained for finitely supported
measures, still hold for measures with superexponential tails.
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As we explained before, the results of [GL11, Gou12] require Ancona inequalities for mea-
sures that do not satisfy Anc∗. We extend their results to measures with superexponential
tails:

Theorem 1.3. In a hyperbolic group Γ, consider an admissible measure µ with superex-
ponential tails and finite Green function. Assume that one of the following conditions is
satisfied:

(1) The measure µ is symmetric.
(2) The group Γ is a free group on finitely many generators.
(3) The group Γ is a cocompact lattice of PSL(2,R).

Then µ satisfies Ancona inequalities (1.1). In particular, its Martin boundary coincides with
the geometric boundary of the group.

It is likely that the above conditions (µ symmetric or Γ planar) are not necessary for
this theorem, but this is unknown even in the case of a finitely supported µ. The above
conditions are precisely those that are used in [GL11, Gou12] to obtain (for finitely supported
measures) Ancona inequalities and a description of the Martin boundary.

The motivation for the results of [GL11, Gou12] was to obtain asymptotics of transition
probabilities for random walks. We deduce the corresponding statement in our setting:

Theorem 1.4. In a hyperbolic group Γ, consider a symmetric admissible probability measure
µ with superexponential tails. Denote by R > 1 the inverse of the spectral radius of the
corresponding random walk. For any x, y ∈ Γ, there exists C(x, y) > 0 such that

pn(x, y) ∼ C(x, y)R−nn−3/2

if the walk is aperiodic. If the walk is periodic, this asymptotics holds for even (resp. odd)
n if the distance from x to y is even (resp. odd).

This result is new even for random walks on free groups. Note that, even in the finitely
supported case, the proof requires the symmetry of the measure since the very end of the
argument relies on spectral properties of the Markov operator.

The paper is organized as follows. In Section 2, we recall basic properties of the Green
function. Section 3 is devoted to the construction of pathological Green functions for mea-
sures with exponential tails, proving in particular Theorem 1.1. The main idea of the
construction is that, even with exponential tails, one can ensure that the most likely way to
reach some point is by doing a direct jump. This makes it possible to prescribe very precisely
the asymptotics of the Green function. Finally, Section 4 is devoted to the positive results
in hyperbolic groups, for measures with superexponential tails. Ancona’s arguments to get
his inequality rely on a subtle induction, that does not seem generalizable to the infinite
support situation. We will rather use a lemma of [GL11] (see Lemma 4.4 below) showing
that some upper bounds on relative Green functions imply Ancona inequalities. Such upper
bounds are more manageable, and can be proved for infinitely supported measures as we
will show.

2. The Green function

Consider a finite admissible measure µ on a finitely generated group Γ. We will always
assume that its Green function G(x, y) =

∑

µn(x−1y) is finite for some x, y (and therefore
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for all x, y by admissibility). Denote by Pµ the operator associated to µ, given by Pµf(x) =
∑

µ(x−1y)f(y) – when µ is a probability measure, this is simply the Markov operator
associated to the corresponding random walk. Even when µ is not a probability measure,
we will use probabilistic notations such as pn(x, y) = µn(x−1y), and think of G(x, y) =
∑

(Pn
µ δx)(y) as an average time spent at y if one starts from x.

The Green function can also be formulated in terms of paths. Let τ = (x, x1, . . . , xn−1, y)
be a path of length n from x to y, we define its µ-weight (or simply weight) πµ(τ) = π(τ)
by

π(τ) =

n−1
∏

i=0

p(xi, xi+1),

where x0 = x and xn = y by convention, and we write p(a, b) = µ(a−1b). We think of π(τ)
as the “probability” to follow the path τ . By definition, G(x, y) =

∑

π(γ), where the sum
is over all paths from x to y.

If Ω is a subset of Γ, one defines the restricted Green function G(x, y; Ω) as
∑

π(γ) where
the sum is over all paths γ = (x, x1, . . . , xn−1, y) such that xi ∈ Ω for 1 ≤ i ≤ n− 1. If A is
a subset of Γ and x, y 6∈ A, one has

G(x, y) = G(x, y;Ac) +
∑

a∈A

G(x, a;Ac)G(a, y) = G(x, y;Ac) +
∑

a∈A

G(x, a)G(a, y;Ac),

where Ac denotes the complement of A. Indeed, the first (resp. second) formula is proved
by splitting a path from x to y according to its first (resp. last) visit to A if it exists, the
remaining trajectories giving the contribution G(x, y;Ac). If all trajectories from x to y have
to go through A, this contribution vanishes. This is used crucially in the usual arguments for
finitely supported measures, where one uses wide enough “barriers” A between x and y that
any trajectory has to visit. In the infinite support situation, the contribution G(x, y;Ac)
will always be present.

More generally, if Ω is a subset of Γ containing x and y, the above formula holds restricted
to Ω, i.e.,

G(x, y; Ω) = G(x, y; Ω ∩Ac) +
∑

a∈A∩Ω

G(x, a;Ac ∩ Ω)G(a, y; Ω)

= G(x, y; Ω ∩Ac) +
∑

a∈A∩Ω

G(x, a; Ω)G(a, y;Ac ∩ Ω).

Let d be a word distance on Γ coming from a finite symmetric generating set. If x and y
are at distance d, there is a path from x to y with weight bounded from below by C−d, and
staying close to a geodesic segment from x to y. We deduce that, for any z,

(2.1) C−d(x,y) ≤ G(x, z)/G(y, z) ≤ Cd(x,y),

and similar inequalities hold for the Green functions restricted to any set containing a fixed
size neighborhood of a geodesic segment from x to y. These inequalities are called Harnack
inequalities.

The first visit Green function is F (x, y) = G(x, y; {y}c). It only takes into account the first
visits to y. When µ is a probability measure, F (x, y) is the probability to reach y starting
from x. One has G(x, y) = F (x, y)G(y, y) = F (x, y)G(e, e). Moreover, F (x, y)G(y, z) ≤
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G(x, z) (since the concatenation of a path from x to y with a path from y to z gives a path
from x to z). Hence,

(2.2) G(x, y)G(y, z) ≤ G(e, e)G(x, z).

This shows that the left inequality in (1.1) is always true.

3. Pathological constructions in non-amenable groups

Let Γ be a finitely generated non-amenable group. In this section, we construct admissible
symmetric probability measures with exponential tails that behave in a pathological way
regarding their Green functions and Martin boundaries.

The basic idea is the following. We start from a symmetric probability measure ν sup-
ported by a finite generating set of Γ, and we add Dirac masses, with a very small mass
but supported far away from the identity. If we adjust carefully the weights, the way to
reach some far away points with highest probability is to jump directly onto them (possibly
with some short jumps), since an accumulation of small jumps has a lower probability that
one single big jump. In this way, we will prescribe the behavior of the Green function at
different scales.

This type of behavior is reminiscent of Lévy processes on R: when such a process is large,
this is typically due to one single large jump, the sum of the other jumps being negligible.
We are constructing a kind of Lévy process on Γ, but with exponential tails. The reason
behind this counterintuitive phenomenon (in R, Lévy processes need to have heavy tails) is
that exponentially small tails can still dominate the diffusive behavior since the diffusion is
also exponentially small in non-amenable groups.

The precise construction is as follows. Let ρ < 1 be the spectral radius of the random
walk given by ν. It is also the norm of the associated Markov operator Pν since ν is
symmetric. Let us fix a decreasing sequence ri (the exponential weights) with er0ρ < 1
and lim ri = r > 0. Let us also fix a sequence ni tending very quickly to infinity, and a
symmetric measure µi supported on the ball B(e, ni). Let

µ = ν +
∑

e−riniµi and µ′ = µ/µ(Γ).

The probability measure µ′ is symmetric, and has exponential tails of order r. We will
see that we can prescribe the behavior of its Green function. Since most interesting things
happen with one jump, we may equivalently work with µ′ or µ. It will be more convenient
to formulate the estimates for µ.

The fact that ri is strictly decreasing is a central point of the construction. Roughly
speaking, if one uses only the measures µi with i ≤ I, then a jump of size n ≤ nI is made
with probability at most e−rIn. This implies that a point at a large distance n of e will be
reached with probability roughly e−rIn. Let us take n = nI+1, and x a point in the support
of µI+1. It can be reached by a direct jump, with probability of the order of e−rI+1n, which
is much bigger than e−rIn since rI+1 < rI . Hence, direct jumps are more likely than a
combination of small jumps, as desired.

The rigorous version of this argument is slightly more complicated: using the measures µi

with i ≤ I, one can in fact reach a point at distance n with a probability at most C(s)e−sn

for any s < rI . Hence, we need to introduce another sequence: we fix once and for all
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si+1 ∈ (ri+1, ri) (we also require that si+1 < 2ri+1 for technical reasons). In the following,
we will always assume that ni grows quickly enough so that

(3.1) ri+1ni+1 ≥ rini + i+ 1

and

(3.2)
1

1− ρer0

∑

e−(ri−si+1)ni ≤
1

2
.

Since ri − si+1 > 0, this can easily be guaranteed. From this point on, the letter C will
denote a constant that can vary from one line to the other, but does not depend on the
choices we have made provided the conditions (3.1) and (3.2) are satisfied.

Let us estimate the Green function G(e, x) associated to µ. This is the sum of the
weights of paths from e to x. We will group together those paths corresponding to the same
measure ν or µi. This is most conveniently done in terms of Markov operators as follows.
We will write P = Pν and Pi = Pµi

for the operators associated respectively to ν and µi.
They satisfy Pµ = P +

∑

e−riniPi. Developing Pn
µ and grouping together the successive

occurrences of P , we get

G(e, x) =
∑

n

〈Pn
µ δe, δx〉 =

∞
∑

ℓ=0

∑

a0,i1,a1...,iℓ,aℓ

〈P a0e−ri1ni1Pi1P
a1 · · ·P aℓ−1e−riℓniℓPiℓP

aℓδe, δx〉.

Each term in the double sum corresponds to the weight of several trajectories. We will say
that the associated sequence t = (a0, i1, a1, . . . , aℓ) is a template for this set of trajectories.
The norm of P a on ℓ2(Γ) is bounded by ρa, and the norm of Pi is at most 1. Hence, the
sum of the weights of trajectories in a template t is bounded by its weight π(t) defined by

π(t) = ρa0+···+aℓe−ri1ni1 · · · e−riℓniℓ .

Summing over the templates, we obtain

(3.3) G(e, x) ≤
∑′

π(t),

where the notation
∑′ indicates that we can remove from the sum all those templates that

give a vanishing contribution to G(e, x), i.e., those for which no trajectory can go from e to
x.

Let us use this formula to show that G(e, x) is bounded, uniformly in x (it is not even
clear that G(e, x) is well defined, since µ is not a probability measure). We have

(3.4)
∑

t

π(t) ≤
∑

ℓ

(

∞
∑

a=0

ρa

)ℓ+1(
∑

i

e−rini

)ℓ

.

The sum over ℓ is a geometric series. It is finite if its general term is < 1, i.e., 1
1−ρ

∑

e−rini <

1. This is a consequence of the (stronger) condition (3.2). As G(e, x) ≤
∑

π(t), this shows
that G(e, x) is well defined and uniformly bounded.

We need additional notations regarding templates. Given a template t = (a0, i1, a1, . . . ,
aℓ), define its length |t| =

∑

ak +
∑

nik : any trajectory in the template ends at a point
at distance at most |t| of the origin. Let also max t = sup ik give the size of the biggest
jump in t. We will write t1 · t2 for the concatenation of two templates t1 and t2. It satisfies
π(t1 · t2) = π(t1)π(t2).
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The crucial estimates for template weights are the following:

Lemma 3.1. For every integers i and n,

(3.5)
∑

max t≥i

π(t) ≤ Ce−rini

and

(3.6)
∑

max t<i, |t|≥n

π(t) ≤ Ce−sin.

As a consequence, for every i ∈ N and for every z ∈ Γ,

(3.7) G(e, z) ≤ Ce−rini + Ce−si|z|.

The inequality (3.5) controls what happens when there is at least one big jump, while (3.6)
controls the combination of several small jumps. The last inequality (3.7) is a consequence
of the other two. Note that, if |z| is comparable to ni, then the second term in (3.7) is
negligible compared to the first one since si > ri. This shows rigorously that the most
efficient way to visit z is to do one big jump rather than many small jumps, as we already
explained informally.

Proof. Let us first show (3.5). A template t with max t ≥ i can be decomposed as t =
t1 · (j) · t2 where t1 and t2 are shorter templates and j corresponds to a jump of length at
least i. Therefore,

∑

max t≥i

π(t) ≤

(

∑

t1

π(t1)

)





∞
∑

j=i

e−rjnj





(

∑

t2

π(t2)

)

.

The first sum and the last sum are finite by (3.4). The middle one is bounded by Ce−rini

thanks to (3.1). This proves (3.5).
Let us now show (3.6). Writing t = (a0, i1, . . . , aℓ), the corresponding sum is

∑

max t<i, |t|≥n

e−si(a0+···+aℓ+ni1
+···+niℓ

)(ρesi)a0+···+aℓe−(ri1−si)ni1 · · · e−(riℓ−si)niℓ .

The first factor is e−si|t| ≤ e−sin. This yields a bound

e−sin
∑

max t<i

(ρesi)a0+···+aℓe−(ri1−si)ni1 · · · e−(riℓ−si)niℓ

= e−sin
∑

ℓ

(

∞
∑

a=0

(ρesi)a

)ℓ+1




i−1
∑

j=0

e−(rj−si)nj





ℓ

.

This is again a geometric series. Let us bound esi with er0 in the first factor, and e−(rj−si)nj

with e−(rj−sj+1)nj in the second factor. We get that the general term of this geometric series
is bounded by

1

1− ρer0

∑

j≥0

e−(rj−sj+1)nj .
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Condition (3.2) guarantees that this is ≤ 1/2. Hence, the geometric series is uniformly
bounded, yielding a bound Ce−sin. This proves (3.6).

Let us finally prove (3.7) using (3.3). To go from e to z, the templates with max t ≥ i
give an overall contribution at most Ce−rini , by (3.5). On the other hand, if max t < i, then
it is possible to reach z using a trajectory in the template only if |t| ≥ |z|. By (3.6), those

terms contribute at most Ce−si|z|. �

This lemma implies that, in general, there is no Ancona inequality (1.1) in non-amenable
groups, for measures with exponential tails:

Proposition 3.2. Let Γ be a finitely generated non-amenable group. There exists an ad-
missible symmetric probability measure µ′ on Γ whose Green function G′ = Gµ′ does not
satisfy Ancona inequalities: there is no constant C such that G′(x, z) ≤ CG′(x, y)G′(y, z)
for any x, y, z ∈ Γ on a geodesic in this order.

Proof. We use the previous construction, with µi = (δzi + δz−1
i
)/2 where zi is a point at

distance ni of e. We will assume that ni is even, and we will denote by yi the midpoint of
a geodesic segment from e to zi. We will show that

(3.8) G′(e, zi) ≥ Ce−rini ,

and

(3.9) G′(e, z) ≤ Ce−sini/2

for any z with d(e, z) = ni/2. Hence, G′(e, yi)G
′(yi, zi) ≤ C2e−sini = o(G′(e, zi)), contra-

dicting any Ancona inequality.
The inequality (3.8) is obvious since the Green function is bounded from below by the

contribution of single jumps: G′(e, zi) ≥ µ′(zi) = µ(Γ)−1e−rini/2.
As G′ ≤ G, the inequality (3.9) follows from (3.7) since |z| = ni/2. (The first term in (3.7)

is dominated by the second term since we have requested that si < 2ri.) �

We now turn to the proof of Theorem 1.1. Starting from a sequence yn going to infinity,
we wish to construct the measures µ and µ′ (using the above construction) so that G′ = Gµ′

is such that, for some point z, the sequence G′(z, yn)/G
′(e, yn) does not converge. We will

write G′ = Gµ′ and G = Gµ.
We need to fix an additional sequence s′i ∈ (ri, si), for instance the middle of this interval,

to get some additional freedom. Taking a subsequence of yn, we can assume that

(3.10) (s′i/ri − 1) |yi| → ∞, (1− s′i/si) |yi| → ∞.

Let ni = (s′i/ri) |yi|. One has yi ∈ B(e, ni) by construction. The condition (3.10) ensures
that, for any C, for large enough i, a point y with |y| ≤ |yi|+C belongs to B(e, ni). Taking
a further subsequence of yi if necessary, we can also assume that the growth conditions (3.1)
and (3.2) are satisfied by ni.

To get the divergence of G′(z, yi)/G
′(e, yi) for some point z, we will choose the measures

µi so that the limits of this sequence are different along even and odd values of i (with a
limit of the order of 1 along odd i, and a small limit along a subsequence of even i). For
i even, we let µi = (δyi + δy−1

i
)/2. The choice of µi for odd i is postponed, let us first see

the consequences of our choice for even i. The statements we will give now are valid for
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any choice of µi for odd i, with the only restriction that it has to be a probability measure,
supported in B(e, ni).

Let us describe the asymptotics of G(e, zyi) for any fixed z.

Lemma 3.3. There exists a function Φ : Γ → (0,+∞), tending to 0 at infinity, such that
for every z there exist infinitely many even indices i for which

G(e, zyi) ≤ Φ(z)e−rini .

Let us stress that the function Φ does not depend on the choice of µi for odd i.

Proof. The idea is that, to go from e to zyi, the random walk will most likely make one big
jump of size ni (corresponding to the measure µi), with weight e−rini/2, and several small
jumps. If z is large enough, a large number of small jumps will be needed, giving a small
contribution Φ(z). The other cases (no big jump, or too many big jumps) will have a very
small contribution. In this proof, i will implicitly be restricted to even values.

For the rigorous computation, we start from the bound (3.3) and cut the sum into several
pieces. We should specify in which piece each template t = (a0, i1, . . . , aℓ) goes.

• We put in J1 the templates with max t > i.
• We put in J2 the templates where at least two jumps ik are equal to i.
• We put in J3 the templates with max t < i for which a trajectory can go from e to
zyi.

• Finally, we put in J4 the remaining templates, i.e., those with a single jump of size
ni and other shorter jumps, for which a trajectory can go from e to zyi.

Denote by Σp the sum corresponding to templates in Jp. We will show that, for p ≤ 3,
one has Σp = o(e−rini) when i tends to infinity, and that for infinitely many indices Σ4 ≤
Ψ(z)e−rini for some function Ψ tending to 0 at infinity. The result follows with Φ = 2Ψ.

The inequality (3.5) implies that Σ1 ≤ Ce−ri+1ni+1 . As ri+1ni+1 > rini + i+ 1 by (3.1),
this is negligible compared to e−rini , as desired.

A template t ∈ Σ2 can be decomposed as t = t1 · (i) · t2 · (i) · t3, for some templates t1, t2
and t3. Since the sum of the weights of all templates is bounded, we obtain

Σ2 ≤ Ce−riniCe−riniC.

This is again negligible with respect to e−rini .
A template t in J3 satisfies |t| ≥ |zyi| and max t < i. Hence, (3.6) gives the bound

Σ3 ≤ Ce−si|zyi|. We have

si |zyi| − rini ≥ si(|yi| − |z|)− rini = si(|yi| − |z|)− s′i |yi| = si

((

1−
s′i
si

)

|yi| − |z|

)

.

As (1− s′i/si) |yi| → ∞ by (3.10), this tends to infinity. Hence,

(3.11) e−si|zyi| = o(e−rini).

This shows that Σ3 is negligible with respect to e−rini .
It remains to estimate Σ4. A template t ∈ J4 can be decomposed uniquely as t = t1 ·(i)·t2 ,

for some templates t1 and t2 with maximum < i. If this template contributes to G(e, zyi),
then zyi can be written as uy±1

i v with |u| ≤ |t1| and |v| ≤ |t2|. Denote by φi(z) the minimum
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of the quantities |u|+ |v| over all decompositions zyi = uy±1
i v, we get |t1|+ |t2| ≥ φi(z). In

particular, |t1| ≥ φi(z)/2 or |t2| ≥ φi(z)/2. It follows that

Σ4 ≤ 2





∑

|t1|≥φi(z)/2, max t1<i

π(t1)



 e−rini

(

∑

t2

π(t2)

)

.

The first sum is bounded by Ce−siφi(z)/2 ≤ Ce−rφi(z)/2 by (3.6), and the last sum is uniformly
bounded. Hence,

Σ4 ≤ Ce−rφi(z)/2e−rini .

To conclude, we have to show that φi(z) is large for infinitely many values of i, if z
is far away from e. Let A > 0, let us denote by Bi the set of z that can be written as
uy±1

i vy−1
i for some u and v with |u|+ |v| ≤ A. The set Bi is finite, with cardinality at most

f(A) = 2(CardB(e,A))2. If z 6∈ Bi, it satisfies φi(z) > A by definition. The points with
lim supφi(z) ≤ A belong to

⋃

n

⋂

i>nBi. This is an increasing union of sets of cardinality
at most f(A), hence it has cardinality at most f(A). This shows that, apart from finitely

many exceptions, lim supφi(z) > A, hence Σ4 ≤ Ce−rA/2e−rini for infinitely many i’s. �

Let us fix a point z away from the origin, so that Φ(z) is suitably small (how small will
be seen later in the proof). We now define the measures µi for odd i. If i is large enough,
zyi ∈ B(e, ni) thanks to (3.10). For those i’s, let

µi =
1

4
(δyi + δzyi + δy−1

i
+ δ(zyi)−1).

The choice of µi for smaller i is not relevant (take for instance µi = δe).

If i is large and odd, Lemma 3.1 gives G(e, zyi) ≤ Ce−rini + Ce−si|zyi|. By (3.11), the
second term is negligible with respect to the first one. Hence, G(e, zyi) ≤ Ce−rini . In the
same way G(e, yi) ≤ Ce−rini .

The Green function G′ = Gµ′ is bounded by G = Gµ. For i large and odd, we obtain
G′(e, zyi) ≤ Ce−rini and G′(e, yi) ≤ Ce−rini . As it is possible to jump directly from e to
zyi or yi with weight µ(Γ)−1e−rini/4, corresponding lower bounds hold. In particular, there
exists a constant C0 such that, for i large and odd,

G′(e, zyi)

G′(e, yi)
∈ [C−1

0 , C0].

For infinitely many (even) values of i, we have G′(e, zyi) ≤ Φ(z)e−rini by Lemma 3.3.
Moreover, G′(e, yi) ≥ C−1e−rini (since one can jump directly from e to yi with weight
µ(Γ)−1e−rini/2). Hence, for those values of i, there exists a constant C1 such that

G′(e, zyi)

G′(e, yi)
≤ C1Φ(z).

We can finally specify the choice of z: as Φ tends to 0 at infinity, we may choose z such
that C1Φ(z) < C−1

0 . The previous estimates imply that

lim inf
i

G′(e, zyi)

G′(e, yi)
≤ C1Φ(z) < C−1

0 ≤ lim sup
G′(e, zyi)

G′(e, yi)
.
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In particular, the sequence G′(e, zyi)/G
′(e, yi) does not converge when i tends to infinity.

Equivalently, G′(z−1, yi)/G
′(e, yi) does not converge. This concludes the proof of Theo-

rem 1.1. �

4. Positive results in hyperbolic groups

4.1. Preliminaries. A hyperbolic group is a finitely generated group in which geodesic tri-
angles are δ-thin for some δ, i.e., each side of the triangle is included in the δ-neighborhood
of the union of the other sides. This notion is independent of the choice of the generat-
ing system (albeit the constant δ does change with the generating system). See for in-
stance [GdlH90]. This essentially means that finite configurations of points in the group
resemble finite configurations of points in a tree – this intuition is made precise by the
following classical theorem:

Theorem 4.1. For any n ∈ N and δ > 0, there exists a constant C = C(n, δ) with the
following property. Consider a subset A of a δ-hyperbolic group, of cardinality at most n.
There exists a map Φ from A to a metric tree such that, for any x, y ∈ A,

d(x, y) − C ≤ d(Φ(x),Φ(y)) ≤ d(x, y).

Another intuition is that δ-hyperbolic spaces resemble the usual hyperbolic space H
m.

Again, this is made precise by the following theorem [BS00]:

Theorem 4.2. Consider an hyperbolic group Γ. If m is large enough, there exist a mapping
Ψ : Γ → H

m and λ > 0, C > 0 such that |λdH(Ψ(u),Ψ(v)) − d(u, v)| ≤ C for all u, v ∈ Γ.

Ancona’s original strategy [Anc88] to prove Ancona inequalities (1.1) for finitely sup-
ported measures, based on a subtle induction, is apparently difficult to extend to measures
with infinite support. We will rather rely on the strategy of [GL11], and in particular on
the following lemma (see the proofs of Theorems 4.1 and 4.3 in [GL11]). We recall that the
relative Green function G(x, y; Ω) has been defined in Section 2.

Definition 4.3. Let µ be an admissible measure with finite Green function on a hyperbolic
group. It satisfies pre-Ancona inequalities if, for all K > 0, there exists n0 such that, for all
n ≥ n0, for all points x, y, z on a geodesic segment (in this order) with d(x, y) ∈ [n, 100n]
and d(y, z) ∈ [n, 100n], one has G(x, z;B(y, n)c) ≤ K−n.

Lemma 4.4. Let µ be an admissible measure on a hyperbolic group. Assume that µ satisfies
pre-Ancona inequalities. Then it satisfies Ancona inequalities (1.1).

This lemma justifies the name “pre-Ancona inequalities”. It is proved in [GL11] as follows.
Assume that x, y, z are given along a geodesic, and one wants to prove that G(x, z) ≤
CG(x, y)G(y, z). One constructs a string of beads along a geodesic segment [x, z], the size
of a bead being proportional to its distance to y. Then, using pre-Ancona inequalities, one
shows inductively that the weight of trajectories avoiding any bead is comparatively small.
It follows that most weight comes from trajectories passing in a bead within distance O(1)
of y, as desired.

To prove Ancona inequalities, our strategy will always be to show that pre-Ancona in-
equalities are satisfied.
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4.2. Ancona inequalities for measures satisfying Anc∗. In this paragraph, we prove
Theorem 1.2. Consider an admissible measure µ on a hyperbolic group, with superexponen-
tial tails and satisfying Anc∗, we will show that it satisfies pre-Ancona inequalities. We have
to show that, for any points x, y, z on a geodesic in this order with n ≤ d(x, y), d(y, z) ≤ 100n,
the Green function G(x, z;B(y, n)c) decays superexponentially fast in terms of n.

We express things in terms of operators. Let P = Pµ be the operator associated to µ.
We decompose P as An +Bn where An corresponds to jumps of size at most n/2, and Bn

to the bigger jumps. On ℓ2, they satisfy ‖An‖ ≤ ‖P‖ ≤ µ(Γ) (which is finite since µ has
well-defined tails), and ‖Bn‖ decays superexponentially fast in terms of n by assumption.

Let us fix a constant C0. The Green function G(x, z) is the sum of the weights π(τ) of
all paths τ from x to z. The contribution of paths with length at most C0n is

C0n
∑

k=0

P kδz(x) =

C0n
∑

k=0

(An +Bn)
kδz(x) ≤

C0n
∑

k=0

∥

∥

∥
(An +Bn)

k
∥

∥

∥
≤

C0n
∑

k=0

k
∑

ℓ=0

(

k

ℓ

)

‖An‖
ℓ ‖Bn‖

k−ℓ .

By Anc∗, there exists r > 1 such that the measure rµ has a finite Green function. The
contribution to G(x, z) of paths longer than C0n is

∑

k>C0n

pk(x, z) ≤ r−C0n
∑

k>C0n

rkpk(x, z) ≤ r−C0nGrµ(x, z).

The quantity Grµ(x, z) grows at most exponentially in terms of n, thanks to Harnack inequal-
ity (2.1) and since d(x, z) ≤ 200n. Hence, we obtain from some constant D0 independent of
C0

(4.1) G(x, z) ≤

C0n
∑

k=0

k
∑

ℓ=0

(

k

ℓ

)

‖An‖
ℓ ‖Bn‖

k−ℓ + r−C0nDn
0 .

Let us now estimate G(x, z;B(y, n)c). Consider a trajectory from x to z outside of
B(y, n) with jumps bounded by n/2. Putting geodesics between the successive points of the
trajectory, one obtains a path from x to z avoiding B(y, n/2). This path is exponentially
long (since this is the case in hyperbolic space, to which the group can be compared thanks
to Theorem 4.2). Hence, the number of jumps is at least Ceαn/n ≥ Ceβn. It follows that,
among trajectories of length at most C0n, it is necessary to have a jump larger than n/2.
This shows that, in (4.1), the terms with k = ℓ (i.e., coming from Ak

n) do not contribute to
G(x, z;B(y, n)c). This equation gives

G(x, z;B(y, n)c) ≤

C0n
∑

k=0

k−1
∑

ℓ=0

(

k

ℓ

)

‖An‖
ℓ ‖Bn‖

k−ℓ + r−C0nDn
0 .

As k − ℓ ≥ 1, we can bound ‖Bn‖
k−ℓ with ‖Bn‖, yielding

G(x, z;B(y, n)c) ≤ ‖Bn‖

C0n
∑

k=0

k−1
∑

ℓ=0

(

k

ℓ

)

‖An‖
ℓ + r−C0nDn

0 ≤ ‖Bn‖

C0n
∑

k=0

(‖An‖+ 1)k + r−C0nDn
0

≤ ‖Bn‖

C0n
∑

k=0

(‖P‖+ 1)k + r−C0nDn
0 ≤ ‖Bn‖D

C0n
1 + r−C0nDn

0 ,
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for some constant D1 independent of C0.
We may now conclude the proof. Fix K > 1, we want to show that G(x, z;B(y, n)c) ≤

2K−n if n is large enough. First, we choose C0 with r−C0D0 < K−1, so that the second term
in the previous equation is bounded by K−n. Then, as ‖Bn‖ decays superexponentially, we

have ‖Bn‖D
C0n
1 ≤ K−n if n is large enough. �

Remark 4.5. If the measure µ has finite support, the proof simplifies drastically since
there is no trajectory from x to z with length at most C0n avoiding B(y, n). Hence, one
gets a very simple proof of Ancona’s original results [Anc88] (most of the complexity is in
fact hidden in Lemma 4.4).

4.3. Ancona inequalities in the free group. In this paragraph, we prove the second
item of Theorem 1.3: in a free group, an admissible measure µ with superexponential tails
and finite Green function satisfies Ancona inequalities. Since Ancona inequalities for finitely
supported measures are trivial in the free group, the only difficulty comes from long jumps.
The trick we will devise to handle those long jumps (replacing a trajectory involving a long
jump by a longer trajectory with short jumps) will be used several times in the rest of the
paper.

By Lemma 4.4, it suffices to show that µ satisfies pre-Ancona inequalities. Consider three
points x, y, z on a geodesic in this order with n ≤ d(x, y), d(y, z) ≤ 100n, we want to show
that G(x, z;B(y, n)c) is superexponentially small. We may assume without loss of generality
that y = e. We will first give the proof assuming for simplicity that µ gives positive mass
to every generator of the group.

Denote by Z0, . . . , ZN the finitely many connected components of Γ − B(e, n/2), with
x ∈ Z0 and z ∈ ZN . Let also Ai = Zi ∩ (Γ−B(e, n)).

Consider a trajectory τ = (x0 = x, x1, . . . , xk−1, xk = z) of the random walk from x to
z, avoiding B(e, n). It can not stay forever in A0, let us say that the first jump outside
of A0 is from xi to xi+1. We associate to τ a modified trajectory m(τ) (again from x to
z) as follows. Let a and b be different elements in the support of µ. Let τi be a geodesic
from xi to e, with length ni = |xi|, and let τi+1 be a geodesic from e to xi+1, with length
ni+1 = |xi+1|. We let
(4.2)

m(τ) = (x0, . . . , xi−1, (τi), a, a
−1, . . . , a, a−1, b, b−1, . . . , b, b−1, (τi+1), xi+2, . . . , xk = z),

where we put ni copies of a, a−1 and ni+1 copies of b, b−1. The interest of this insertion
is that the map τ → m(τ) is one-to-one: if one knows m(τ), then the number of a, a−1

following the first return to e gives ni. In the same way, one can determine ni+1. Removing
the pieces of length ni − 1 before the first return to e, and ni+1 − 1 after the last return to
e, one recovers the initial trajectory τ .

To get m(τ), we removed a big jump of τ , and we added 3(ni + ni+1) jumps of length 1
(with weight uniformly bounded from below, by a constant C−1

0 ). We obtain

π(m(τ)) ≥ π(τ)C
−3(ni+ni+1)
0 /π(xi, xi+1).

For any constant K, there exists CK such that π(e, u) ≤ CKK−|u| since µ has superexpo-
nential tails. Hence, we get

π(τ) ≤ π(m(τ))C
3(ni+ni+1)
0 CKK−d(xi,xi+1).
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Since xi and xi+1 belong to different connected components of Γ − B(e, n/2), we have
d(xi, xi+1) ≥ |xi| + |xi+1| − n. As |xi| ≥ n and |xi+1| ≥ n, this gives d(xi, xi+1) ≥ (|xi| +
|xi+1|)/2 = (ni + ni+1)/2. We get

π(τ) ≤ π(m(τ))C
3(ni+ni+1)
0 CKK−(ni+ni+1)/2.

If K is large enough so that C3
0K

−1/4 ≤ 1, we obtain

π(τ) ≤ π(m(τ))CKK−(ni+ni+1)/4 ≤ π(m(τ))CKK−n/2.

The map τ 7→ m(τ) is one-to-one. Summing over all trajectories from x to z outside of
B(e, n), we obtain

G(x, z;B(e, n)c) ≤ CKK−n/2G(x, z).

Since d(x, z) ≤ 200n, we have G(x, z) ≤ Cn by Harnack inequalities (2.1). As K can
be arbitrarily large, this shows that G(x, z;B(e, n)c) is smaller than any exponential, as
desired. This concludes the proof of pre-Ancona inequalities when µ gives positive mass to
all generators.

In the general case, one has to tweak the definition of the modified trajectory m(τ) to
ensure that m(τ) has positive weight, while retaining the injectivity of the map τ 7→ m(τ).
One can for instance proceed as follows. To each generator s, let us associate a path αs

from e to s with π(τs) > 0 – such a path exists since µ is admissible. Then, in the definition
of m(τ), one replaces the geodesic τi = s1 · · · sni

with the concatenation τ̃i of the paths
αs1 · · ·αsni

. In the same way, one replaces τi+1 with the corresponding path τ̃i+1. Note that

π(τ̃i) ≥ C−ni

1 and π(τ̃i+1) ≥ C
−ni+1

1 for some constant C1, since the lengths of τ̃i and τ̃i+1

are bounded respectively by Cni and Cni+1.
A problem that may appear with this construction is that the first return to e in m(τ)

might happen before the end of τ̃i, so that the recovery of τ from m(τ) is problematic. To
avoid this problem, one may add a loop α from e to itself, with π(α) > 0, that does not
appear when one concatenates paths αs along a geodesic segment. In the end, one chooses
for m(τ) the trajectory

(4.3) (x0, . . . , xi−1, (τ̃i), (α), β, . . . , β, γ, . . . , γ, (α), (τ̃i+1), xi+2, . . . , xk = z),

where β and γ are two fixed loops from e to e with positive weight, and one puts |τ̃i|
terms β and |τ̃i+1| terms γ. By construction, τ 7→ m(τ) is one-to-one and π(m(τ)) ≥

π(τ)C
ni+ni+1

2 /π(xi, xi+1) for some constant C2. The rest of the argument goes through. �

4.4. Ancona inequalities for symmetric measures. In this paragraph, we prove the
first item of Theorem 1.3: in a hyperbolic group, a symmetric admissible measure µ with
superexponential tails and finite Green function satisfies Ancona inequalities. By Lemma 4.4,
it suffices to show that it satisfies pre-Ancona inequalities. Consider three points x, y, z on a
geodesic in this order with n ≤ d(x, y), d(y, z) ≤ 100n, we want to show that G(x, z;B(y, n)c)
is superexponentially small. We may assume without loss of generality that y = e.

The proof follows the strategy in [Gou12, Theorem 2.3]: we will construct several barriers
so that most trajectories from x to z will visit them. The construction is made in H

m, using
an approximate embedding of Γ inside H = H

m given by Theorem 4.2. We will think of Hm

using the model of the unit ball in R
m, hence its boundary is identified with the unit sphere

Sm−1. We denote by O the center of the unit ball in R
m. Changing the generators of the
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group if necessary, we may assume that µ gives positive mass to all of them. We will need
to choose at some point in the proof some very small ǫ, and we will denote by C a generic
constant that does not depend on ǫ.

We will use the following easy lemma of hyperbolic geometry:

Lemma 4.6. There exist α > 0 and C > 0 with the following property: for any points a
and b in a ball BH(u, |u|H /9) of Hm, the angle between [Oa] and [Ob] is at most Ce−α|u|

H.

The hyperbolic geodesic from Ψ(x) to Ψ(z) can be extended biinfinitely. Composing Ψ
with a hyperbolic isometry, we can assume that the center O of the unit ball in R

m belongs
to this geodesic, and that Ψ(e) is at a bounded distance of O. Let ξ denote the limit in
negative time of this geodesic.

To an angle θ ∈ [0, π], we associate the union Y (θ) of all semiinfinite geodesics [Oζ) (with
ζ ∈ Sm−1) making an angle θ with [Oξ) (its boundary at infinity is the set of points of
Sm−1 at distance θ of ξ). This is a cone boundary based at O. Let Z(θ) be the union of
all hyperbolic balls BH(u, |u|H /10) for u ∈ Y (θ). This is thickening of Y (θ), thicker and
thicker close to infinity. It cuts H

m into two connected components (except for θ too close
to 0 or π).

Lemma 4.7. If u and v are two points in the two components of Hm − Z(θ), one has

dH(u, v) ≥ (|u|
H
+ |v|

H
)/11.

Proof. The hyperbolic geodesic from u to v intersects Y (θ) at a single point w. It satisfies
dH(u, v) = dH(u,w) + dH(w, v). By assumption, u 6∈ BH(w, |w|H /10), hence dH(u,w) ≥
|w|

H
/10. Trivially, dH(u,w) ≥ |u|

H
− |w|

H
. For any t ∈ [0, 1], we obtain

dH(u,w) ≥ t |w|
H
/10 + (1− t)(|u|

H
− |w|

H
).

Let t = 10/11, so that the terms involving |w|
H

cancel each other. We are left with
dH(u,w) ≥ |u|

H
/11. Since an analogous estimate is true for v, this concludes the proof. �

Let A(θ) = B(e, n)c ∩ Ψ−1(Z(θ)) ⊂ Γ be the set of points of Γ outside of B(e, n) whose
image under Ψ belongs to Z(θ). The previous lemma shows that, if a trajectory in Γ jumps
past A(θ), it has to make a big jump.

Let N = ⌊eǫn⌋. In X = [0, π], let Xi = [(2i− 1)/N, 2i/N ] for 1 ≤ i ≤ N . For any θi ∈ Xi

and θi+1 ∈ Xi+1, the visual angle from O between two points in Y (θi) and Y (θi+1) is at
least e−ǫn. It follows from Lemma 4.6 that, if ǫ is small enough and if n is large enough, the
angle between two points in A(θi) and A(θi+1) is at least e−ǫn/2. This shows in particular
that A(θi) and A(θi+1) are disjoint.

Lemma 4.8. If ǫ is small enough, there exist angles θi ∈ Xi such that, for all 0 ≤ i ≤ N ,

(4.4)
∑

u∈Ai,v∈Ai+1

G(u, v)2 ≤ 1/4,

where G is the Green function associated to µ and we denoted A0 = {x}, AN+1 = {z} and
Ai = A(θi) for 1 ≤ i ≤ N .

This lemma shows that one can choose barriers so that the weight of trajectories going
from one barrier to the next is small. This will guarantee that trajectories visiting all barriers
have a superexponentially small weight. It will remain to handle trajectories jumping past
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barriers – we will use Lemma 4.7 to show that the jumps have to be large, implying that
these trajectories contribute again with a very small weight thanks to the argument of
Subsection 4.3.

Proof. The proof is similar to the proof of Lemma 2.6 in [Gou12], the difference is that we
are considering thicker barriers. For a ∈ Γ, let Xi(a) be the set of angles θ ∈ Xi such that
a ∈ A(θ). If one shows that

(4.5) Leb(Xi(a)) ≤ Ce−α|a|

for some α independent of ǫ, the remaining part of the argument of [Gou12] will apply
verbatim. We sketch very quickly the rest of the argument in [Gou12] for the convenience
of the reader.

Using hyperbolicity, one checks that a supermultiplicative function H with
∑

x∈ΓH(e, x) <

∞ has bounded sum on any sphere S
k, i.e.,

∑

x∈Sk H(e, x) ≤ C uniformly in k, where C
does not depend on H. This estimate applies to Hr(e, x) = Grµ(e, x)Grµ(x, e) for any r < 1.
Letting r tend to 1 and using the symmetry of µ, we obtain

∑

x∈Sk G(e, x)2 ≤ C. Hence,

the function G(e, x) is not in ℓ2(Γ), but close. In particular, if A is a subset such that
Card(A ∩ S

k) is exponentially smaller than S
k, one expects that typically

∑

x∈AG(e, x)2

will be finite (and small if A is thin enough). Of course, this might not be true for all such
subsets A, but it will be true for most subsets A in a suitable sense. The lemma is proved by
showing that, if one chooses θi randomly in Xi, then the estimate (4.4) holds with positive
probability. This follows from the combination of the inequality (4.5) with the estimate
∑

x∈Sk G(e, x)2 ≤ C.
It remains to prove (4.5). Since distances in the group and in hyperbolic space are

equivalent, it is sufficient to show the corresponding estimate in H, i.e.: for all u ∈ H,

Leb{θ : u ∈ Z(θ)} ≤ Ce−α|u|
H .

For u ∈ Z(θ), there exists v ∈ Y (θ) such that dH(u, v) ≤ |v|
H
/10. Since |v|

H
/10 ≤

(dH(u, v) + |u|
H
)/10, we obtain dH(u, v) ≤ |u|

H
/9, i.e., v ∈ BH(u, |u|H /9). Lemma 4.6

shows that the trace at infinity of this ball gives rise to an exponentially small angle. This
concludes the proof. �

We can now prove the pre-Ancona inequalities. The Green function G(x, z;B(e, n)c) is
the sum of the weights π(τ) of the trajectories τ from x to z avoiding B(e, n). We will say
that such a trajectory is walking if it visits in this order the barriers A1, . . . , AN constructed
in Lemma 4.8, and jumping otherwise.

Decomposing walking trajectories according to their first visits to the barriers, we get
that their contribution to G(x, z;B(e, n)c) is bounded by

∑

a1∈A1,...,aN∈AN

G(x, a1)G(a1, a2) · · ·G(aN−1, aN )G(aN , z).

Using the estimate (4.4) on barriers and Cauchy-Schwarz inequality, one shows that this is
bounded by 2−eǫn (see the beginning of the proof of Lemma 2.6 in [Gou12]). Hence, the
contribution of walking trajectories is smaller than any exponential, as desired.

Consider now a jumping trajectory τ = (x0 = x, x1, . . . , xk−1, xk = z), and assume
that the first jump past a barrier happens at index i, from xi to xi+1. One associates
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to τ a modified trajectory m(τ) as in Subsection 4.3 (see Equation (4.2) there – as we
assume that µ gives positive weight to the generators, there is no need to use the more
complicated definition (4.3)). Lemma 4.7 shows that there exists a constant C such that
d(xi, xi+1) ≥ C−1(|xi|+ |xi+1|). This is sufficient for all the computations of Subsection 4.3.
It follows that the contribution of jumping trajectories is smaller than any exponential, as
desired. �

4.5. Ancona inequalities in Fuchsian groups. In this paragraph, we prove the third
item of Theorem 1.3: an admissible measure µ with superexponential tails and finite Green
function on a cocompact lattice Γ of PSL(2,R) satisfies Ancona inequalities. Since the
argument follows rather closely the previous subsection, we will only sketch the argument.
Note that Γ is quasi-isometric with H

2, and that the boundary ∂Γ of Γ is canonically
identified with the circle S1. The planarity of H2 will be essential.

Again, we want to prove pre-Ancona inequalities between points x, y and z with n ≤
d(x, y), d(y, z) ≤ 100n, and we may assume that y = e. As in the previous subsection, we
will construct several barriers between x and z, and treat separately trajectories that visit
all the barriers (walking trajectories) and trajectories that jump past a barrier (jumping
trajectories).

The basic ingredient for the barriers is constructed in [Gou12, Appendix A]: it is shown

there that, for any finite family of disjoint subintervals I(1), . . . , I(N) of S1, one can find

paths X
(i)
n in the Cayley graph of Γ starting from e such that

• One has d(X
(i)
k ,X

(i)
k+1) ≤ 1.

• The path X
(i)
k converges to a point in I(i) when k → ∞.

• There exist α > 0 and C > 0 such that

(4.6) G(e,X
(i)
k ) ≤ Ce−αk and G(X

(i)
k ,X

(j)
ℓ ) ≤ Ce−α(k+ℓ) for all i 6= j.

• For some s > 0, one has d(e,X
(i)
k ) ∼ sk.

The paths X
(i)
k are constructed as typical trajectories of another (symmetric) random walk.

The inequalities for G only rely on the supermultiplicativity (2.2) of the Green function
(and a version of Kingman’s ergodic theorem) – in particular, the finiteness of the support
of µ is not required.

Given such trajectories, one can replace each point X
(i)
k by a ball B(X

(i)
k , C) of some

fixed radius C. This yields barriers that measures with finite support can not avoid, as
in [Gou12]. The inequalities (4.6) guarantee that such barriers satisfy an inequality similar
to (4.4). However, such a thickening does not imply that a jump past the barrier has to be

long. Let us define a thicker barrier by Zi =
⋃

k B(X
(i)
k , ck), where c ≤ 1 is a suitably small

constant, and let Ai = Zi ∩ (Γ−B(e, n)).
As in Lemma 4.7, one shows that jumps above such barriers have to be long. It follows

that jumping trajectories will give a contribution to G(x, z;B(e, n)c) that is smaller than
any exponential, as in Subsection 4.3.
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To control the contribution of walking trajectories, it only remains to prove that an
inequality similar to (4.6) holds: if n is large enough,

(4.7)
∑

u∈Ai,v∈Aj

G(u, v)2 ≤ 1/4.

To prove this estimate, consider two points u and v in Ai and Aj . They belong to balls

B(X
(i)
k , ck) and B(X

(j)
ℓ , cℓ). Note first that

n ≤ |u| ≤
∣

∣

∣
X

(i)
k

∣

∣

∣
+ ck ≤ (1 + c)k.

In particular, k ≥ n/2. In the same way, ℓ ≥ n/2. Thanks to Harnack inequalities (2.1), we
have

G(u, v) ≤ C
d(u,X

(i)
k

)
0 C

d(X
(j)
ℓ

,v)
0 G(X

(i)
k ,X

(j)
ℓ ) ≤ Cck+cℓ

0 Ce−α(k+ℓ).

If c is small enough, this is bounded by Ce−α(k+ℓ)/2. Hence, we get
∑

u∈A,v∈B

G(u, v)2 ≤ C
∑

k,ℓ≥n/2

CardB(e, ck)CardB(e, cℓ)Ce−α(k+ℓ).

If c is small enough, CardB(e, ck) grows at most like eαk/2. The estimate (4.7) follows for
large n. �

4.6. Strong Ancona inequalities. The proof of Theorem 1.4 on the asymptotics of tran-
sition probabilities involves a reinforcement of Ancona inequalities, called strong Ancona
inequalities and defined as follows.

Definition 4.9. An admissible measure µ with finite Green measure on a hyperbolic group
satisfies strong Ancona inequalities if it satisfies Ancona inequalities and, additionally, there
exist constants C > 0 and ρ > 0 such that, for all points x, x′, y, y′ whose configuration is
approximated by a tree as follows

y

y′
x

x′
≥ n

one has

(4.8)

∣

∣

∣

∣

G(x, y)/G(x′, y)

G(x, y′)/G(x′, y′)
− 1

∣

∣

∣

∣

≤ Ce−ρn.

Ancona inequalities ensure that the quantity (G(x, y)/G(x′, y))/(G(x, y′)/G(x′, y′)) in the
left hand side of (4.8) is bounded from above and from below. Strong Ancona inequalities
strengthen this by saying that it is exponentially close to 1, in terms of the distance between
{x, x′} and {y, y′}.

In this paragraph, we will prove the following theorem:

Theorem 4.10. In a hyperbolic group Γ, consider an admissible measure µ with finite Green
function and superexponential tails. Assume that µ satisfies pre-Ancona inequalities. Then
it satisfies strong Ancona inequalities.
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Quantitative inequalities such as strong Ancona inequalities are instrumental to get
asymptotics of transition probabilities. Indeed, the following holds. Consider an admis-
sible symmetric probability measure µ on a hyperbolic group, let R denote the inverse
of the spectral radius of the corresponding random walk, and assume that the measures
rµ (for 1 ≤ r ≤ R) satisfy strong Ancona inequalities, uniformly in r (i.e., with the
same C and the same ρ). If the random walk generated by µ is aperiodic, it follows that

pn(x, y) ∼ C(x, y)R−nn−3/2 for all x, y ∈ Γ. If it is periodic, this is true for even n (resp.
odd n) if the distance from x to y is even (resp. odd). This statement follows from [GL11,
Theorem 9.1] and [Gou12, Theorem 3.1].

Proof of Theorem 1.4. Consider an admissible symmetric probability measure µ with super-
exponential tails in a hyperbolic group Γ. Let R denote the inverse of its spectral radius.

It follows from the discussion in the previous paragraph that, to prove Theorem 1.4, it
suffices to prove strong Ancona inequalities for the measures rµ, uniformly in 1 ≤ r ≤ R.
Pre-Ancona inequalities have been proved in Subsection 4.4 for each of those measures,
hence they also satisfy strong Ancona inequalities by Theorem 4.10. The only remaining
problem is the uniformity of those inequalities for 1 ≤ r ≤ R. One checks in the proof of
Theorem 4.10 that the constants C and ρ one obtains only depend on the constants in the
pre-Ancona inequalities and in the Harnack inequalities. The pre-Ancona inequalities for
Rµ imply the same inequalities for rµ for any r, since rµ ≤ Rµ. Hence, the pre-Ancona
inequalities are uniform. Moreover, it is clear that the Harnack inequality are also uniform
in r. �

The rest of this subsection is devoted to the proof of Theorem 4.10. The argument
dates back to Anderson and Schoen [AS85]. For finitely supported measures, the methods
of [AS85] were adapted to the free group by Ledrappier [Led01], and then to any hyper-
bolic group by Izumi, Neshvaev, and Okayasu [INO08]. The idea is to define a sequence of
shrinking domains on which two given positive harmonic functions (with a common normal-
ization) have to be closer and closer, by an inductive argument: one shows that two positive
harmonic functions defined on one of those domains have a common significant part on a
smaller domain. One can then subtract this common part to both functions in the smaller
domain, and repeat the argument. In particular, one always works with positive harmonic
functions, but defined on smaller and smaller domains.

While we will essentially follow the same strategy, the difficulty in the case of infinitely
supported measures is that harmonicity becomes a global property, involving the whole
group: it will not be possible to work with functions defined only on subdomains, we will
need to keep track of the behavior of functions in the whole group. We will retain positivity
in the smaller domains, but we will also need quantitative controls everywhere in the group.

The proof will involve not only global Ancona inequalities, but also Ancona inequalities
for Green functions restricted to some classes of domains (as defined in Section 2).

Definition 4.11. Let H0 be a constant. Let [x, z] be a geodesic in Γ, and let y ∈ [x, z]. We
say that a subset Ω of Γ is H0-hourglass-shaped around x, y, z if, for any w ∈ [x, z], the ball
B(w,H0 + d(w, y)/2) is included in Ω.

The proof of Ancona inequalities from pre-Ancona inequalities (that we described briefly
after Lemma 4.4) still works in H0-hourglass-shaped domains, since it shows that most
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trajectories flow along the hourglass. This implies the following lemma (this is Theorem 4.1
in [GL11]):

Lemma 4.12. Consider an admissible measure µ satisfying pre-Ancona inequalities in a
hyperbolic group. Let H0 be large enough. There exists C > 0 such that, for any domain
Ω that is H0-hourglass-shaped around three points x, y, z on a geodesic (in this order), the
Green function relative to Ω satisfies Ancona inequalities, i.e.,

G(x, z; Ω) ≤ CG(x, y; Ω)G(y, z; Ω).

From this point on, we fix an admissible measure µ with superexponential tails, which
satisfies pre-Ancona inequalities. We will prove that it satisfies strong Ancona inequalities.
We fix the constant H0 given by Lemma 4.12 for this measure.

The next lemma gives the basic inductive step for the proof of Theorem 4.10. For u, v, z ∈
Γ, we write (u, v)z for their Gromov product, given by (u, v)z = (d(u, z)+d(v, z)−d(u, v))/2.
This is essentially the length of the part that is common to two geodesics [z, u] and [z, v].

L

z̃

Λ

y∗
L L

z0

L L L

z∗
L

x∗

Ω(6)

u ≥ 0, u harmonic

Ω(5) ∼ D

Ω(2)

Ω(1)

Figure 1. The domains in Lemma 4.13

Lemma 4.13. There exists C1 > 1 such that, for any D > 0, the following holds if L is a
large enough even integer. Consider a geodesic segment γ between two points x∗ and y∗, of
length 7L. Let Ω(j) = {z : (y∗, z)x∗

≤ jL} for 1 ≤ j ≤ 6 (this is essentially the points whose
projection on γ is at distance at most jL of x∗) and let z∗ be the point at distance 3L/2 of
x∗ on γ. Let H be the set of functions u : Γ → R satisfying the following properties:

(1) the function u is positive on Ω(6);

(2) for all z ∈ Γ, one has |u(z)| ≤ Dd(z,z∗)u(z∗);

(3) the function u is harmonic on Ω(6), i.e., u(z) =
∑

w∈Γ p(z, w)u(w) for all z ∈ Ω(6)

(note that the previous property ensures that this sum is well defined, since µ has
superexponential tails);
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(4) the function |u(z)| is bounded by a finite linear combination of functions G(z, ti).

Then there exists a domain D, included in Ω(6) and including Ω(5) such that, for all z ∈ Ω(1),
for all u ∈ H,

C−1
1 ≤

u(z)

G(z, z∗;D)u(z∗)
≤ C1.

Note that the Green function G(z, z∗;D) satisfies a Harnack inequality on Ω(1), of the

form G(z, z∗;D) ≤ C
d(z,z′)
0 G(z′, z∗;D) where the constant C0 only depends on µ. Therefore,

the conclusion of the lemma implies that, for all z, z′ ∈ Ω(1), one has

u(z) ≤ C2
1C

d(z,z′)
0 u(z′).

This inequality should be compared to the second assumption on u, involving an arbitrarily
large constant D. Hence, the lemma asserts that a weak growth control implies in fact a
much stronger growth control (but on a smaller domain). This remark will be crucial to
check inductively the assumptions of the lemma.

Proof. Let D > 0 be fixed, we will show the conclusion of the lemma if L is large enough.
We will write oL(1) for a term that may depend on D and L, and tends to 0 when L tends
to infinity (with fixed D). We will also write C for generic constants that do not depend on
D. In particular, the constants in various Harnack inequalities will be denoted by C0.

Step 1. There exists a domain D, containing Ω(5) and contained in a fixed size neighborhood
of Ω(5), such that for all z, z′ ∈ D there exists a path in D from z to z′ with weight at least

C
−d(z,z′)
0 .

Proof. For every z, z′ ∈ Ω(5), let us choose a geodesic τz,z′ from z to z′. If µ gives positive
mass to all the generators s ∈ S, one can take for D the union of all the traces of the
geodesics τz,z′ for z, z′ ∈ Ω(5).

In the general case, every generator s can be written as a product a
(s)
1 · · · a

(s)
ℓs

of elements

in the support of µ. To any geodesic τ , we associate an enlargement E(τ) as follows: for
every w on τ and every s ∈ S such that ws ∈ τ , we add to E(τ) all the points of the form

wa
(s)
1 · · · a

(s)
i for 0 ≤ i ≤ ℓs. Between two points w,w′ in E(τ), there exists a path with

weights at least C
d(w,w′)
0 : this is clear by construction if w and w′ are on τ , and otherwise

one can reach τ within a finite number of jumps.
The set D =

⋃

z,z′∈Ω(5) E(τz,z′) satisfies all the required conditions. �

We deduce in particular of the properties of D that, for all z, z′ ∈ D,

(4.9) G(z, z∗;D) ≥ C
−d(z′,z∗)
0 G(z, z′;D)

since a path from z to z′ can be extended in D by a path from z′ to z∗ with weight at least

C
−d(z′,z∗)
0 .
Let u be a function in H.

Step 2. For all z ∈ Ω(2),

(4.10) u(z) =
∑

w∈Ω(6)−D

G(z, w;D)u(w) + oL(1)G(z, z∗;D)u(z∗).
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One interest of this formula is that the values of u appearing on the right hand side are
all positive since w ∈ Ω(6).

Proof. We start from z and follow the random walk given by µ until time n, stopping it
when one exits D. Since u is harmonic on D, the average value of u at time n coincides
with u(z), i.e.,

(4.11) u(z) =
∑

w 6∈D

G≤n(z, w;D)u(w) +
∑

w∈D

pn(z, w;D)u(w),

where G≤n(z, w;D) is the sum of the weights of all paths from z to w of length at most n
that stay in D except maybe at the last step, and pn(z, w;D) is the same quantity but for
paths of length exactly n. Note that G≤n(z, w;D) converges to G(z, w;D) when n tends to
infinity.

By assumption, the function |u| is bounded by a linear combination of functions G(z, ti).
For each of those functions,

∑

w∈Γ p
n(z, w)G(w, ti) tends to 0 when n tends to infinity (since

this is the sum of the weights of paths from z to ti of length at least n). It follows that the
last sum in (4.11) converges to 0 with n. If u were positive, one would readily deduce that
u(z) =

∑

w 6∈D G(z, w;D)u(w) by passing to the limit. However, since u can be negative on

the complement of Ω(6), we should be more careful. To justify the limit and Equation (4.10),
it suffices to show that:

∑

w 6∈Ω(6)

G(z, w;D) |u(w)| ≤ oL(1)G(z, z∗;D)u(z∗).

Denoting by z′ the last point in D of a trajectory from z to w, this sum can be written as
∑

w 6∈Ω(6)

∑

z′∈D

G(z, z′;D)p(z′, w) |u(w)| .

Bounding |u(w)| by u(z∗)Dd(z,z∗) and using the inequality (4.9), we get that this is at most

∑

w 6∈Ω(6)

∑

z′∈D

G(z, z∗;D)C
d(z′,z∗)
0 p(z′, w)Dd(w,z∗)u(z∗).

The required factor G(z, z∗;D)u(z∗) can be factorized out, one should show that the remain-
ing term is oL(1). The measure µ has superexponential tails. Hence, for any K, one has

p(z′, w) ≤ K−d(z′,w) if L is large enough (since the jump from z′ to w has size at least L/2).
Hence, it suffices to show that

∑

w 6∈Ω(6)

∑

z′∈D

C
d(z′,z∗)
0 Dd(w,z∗)K−d(z′,w) = oL(1).

Let z0 be the point on γ at distance 3L/2 of y∗. By hyperbolicity, any geodesic segment
from w to z′ passes within bounded distance of z0, and its length is at least L/2. Hence,

d(z′, z∗) ≤ d(z′, z0) + d(z0, z
∗) ≤ d(z′, w) + 7L ≤ d(z′, w) + 14d(z′, w) = 15d(z′, w).
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Moreover, d(w, z∗) ≤ d(w, z′) + d(z′, z∗) ≤ 16d(z′, w). Writing n = d(z′, w), we deduce that
the above sum is bounded by

∞
∑

n=L/2

Card{(z′ ∈ D, w 6∈ Ω(6)) : d(z′, w) = n}(C15
0 D16K−1)n.

If z′ and w are at distance n, they both belong to the ball B(z0, n+C). Hence, Card{(z′, w) :
d(z′, w) = n} grows at most exponentially fast, let us say that it is bounded by Cn

2 . If K
was chosen so that C2C

15
0 D16K−1 < 1, the above series is converging, and can be made

arbitrarily small by increasing L, as desired. �

Step 3. Define a domain Λ = Ω(4) − Ω(3). For all z ∈ Ω(2),
(4.12)

u(z) =
∑

w∈Ω(6)−D

∑

w′∈Λ

G(z, w′;D)G(w′, w;D − Λ)u(w) + oL(1)G(z, z∗ ;D)u(z∗) + oL(1)u(z).

Proof. We start from the expression (4.10). Every term G(z, w;D) can be decomposed as

G(z, w;D) =
∑

w′∈Λ

G(z, w′;D)G(w′, w;D − Λ) +G(z, w;D − Λ),

by considering the last visit of a trajectory to Λ if it exists. We have to show that the
contribution of the terms G(z, w;D − Λ) is negligible. Let us consider a trajectory τ from
z to w that does not visit Λ, it has to jump past Λ. Say that the first jump happens from
a point wi to a point wi+1.

If wi+1 = w, i.e., the trajectory has jumped directly out of D, then we can use the same
argument as in Step 2 since we are considering a trajectory ending with a very big jump.
The same argument shows that the overall contribution of those trajectories to (4.10) is
bounded by oL(1)G(z, z∗;D)u(z∗).

Assume now that wi+1 6= w, and in particular wi+1 ∈ D. Let z̃ be the middle point of Λ,
located on γ at distance 7L/2 of x∗. As in Subsection 4.3, we define a modified trajectory
m(τ) by removing the big jump, and replacing it with two almost geodesic trajectories in
D from wi to z̃ and from z̃ to wi+1. The construction of D in Step 1 ensures that one can
find such trajectories, with positive weight. One also adds loops around z̃, counting the
lengths of the trajectories from wi to z̃ and from z̃ to wi+1, to make sure that the map
τ 7→ m(τ) is one-to-one. As in Subsection 4.3, one verifies that the weight of m(τ) is larger
than the weight of τ (the ratio π(m(τ))/π(τ) even tends to infinity when L tends to infinity).
Summing over all those trajectories, we get that their weight is bounded by oL(1)G(z, w;D).

It follows that the term we have to estimate, coming from (4.10), is bounded by

oL(1)
∑

w∈Ω(6)−D

G(z, w;D)u(w)

Formula (4.10) again shows that the sum is bounded by u(z) + oL(1)G(z, z∗;D)u(z∗). This
concludes the proof. �

In the expression (4.12), we can bound each factor G(z, w′;D) using Ancona inequal-

ities in the hourglass-shaped domain D if z ∈ Ω(1). Indeed, a geodesic from z ∈ Ω(1)
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to w′ ∈ Λ passes within bounded distance of z∗ by hyperbolicity, and D is H0-hourglass-
shaped around z, z∗, w′ if L is large enough. It follows from Lemma 4.12 that G(z, w′;D) =
C±1
3 G(z, z∗;D)G(z∗, w′;D) for some constant C3 (this notation means that the ratio of those

quantities belongs to [C−1
3 , C3]). As all the relevant values u(w) are positive, we obtain

u(z) = C±1
3 G(z, z∗;D)

∑

w∈Ω(6)−D

∑

w′∈Λ

G(z∗, w′;D)G(w′, w;D − Λ)u(w)

+ oL(1)G(z, z∗ ;D)u(z∗) + oL(1)u(z).

Applying again the equality (4.12), but to the point z∗ ∈ Ω(2), we get that the double sum
on the right hand side is equal to u(z∗) + oL(1)u(z

∗). This yields

u(z) = C±1
3 G(z, z∗;D)u(z∗) + oL(1)G(z, z∗;D)u(z∗) + oL(1)u(z).

Let L be large enough so that the oL(1) terms are bounded by min(C−1
3 /2, 1/2). We obtain

that the ratio between u(z) and G(z, z∗;D)u(z∗) is bounded from above and from below.
This concludes the proof of Lemma 4.13. �

Proof of Theorem 4.10. Let us fix a large enough constant D (several conditions will appear
in the proof below), and let L be given for this value of D by Lemma 4.13.

Starting with 4 points x, x′, y, y′ as in the statement of strong Ancona inequalities, we
want to show that (4.8) holds. Let x̃ and ỹ denote the branching points of the tree. We can
without loss of generality assume that d(x̃, ỹ) is of the form 7nL for some large integer n.
We have to show that the functions u0(z) = G(z, y)/G(x̃, y) and v0(z) = G(z, y′)/G(x̃, y′)
are exponentially close (in terms of n) in a domain containing x and x′.

Let γ be a geodesic of length 7nL from x̃ to ỹ, we chop it into n pieces γi of length 7L
(the piece γ1 is closest to ỹ). We will successively apply Lemma 4.13 along those pieces. We
will denote by y∗i and x∗i the endpoints of γi, by z∗i the point at distance 3L/2 of x∗i on γi,

and by Ω
(j)
i the corresponding domains defined in the lemma for 1 ≤≤ 6.

Harnack inequalities show that u0 satisfies |u0(z)/u0(z
′)| ≤ C

d(z,z′)
0 for some constant C0.

In particular, if D ≥ C0, the function u0 satisfies all the assumptions of Lemma 4.13 along
the geodesic γ1. We obtain a domain D1 (that does not depend on u0) such that

(4.13) C−1
1 ≤

u0(z)

G(z, z∗1 ;D1)u0(z∗1)
≤ C1,

for all z ∈ Ω
(1)
1 . Using (4.13) at the point x̃ and dividing, we get on Ω

(1)
1

C−2
1 ≤

u0(z)

G(z, z∗1 ;D1)u0(x̃)/G(x̃, z∗1 ;D1)
≤ C2

1 .

Let

φ1(z) =
1

2C2
1

G(z, z∗1 ;D1)

G(x̃, z∗1 ;D1)
u0(x̃).

We note that φ1 depends on u0 only through its value at x̃. By construction, we have on

Ω
(1)
1

(4.14) φ1 ≤ u0/2 ≤ C4
1φ1.
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In particular, the function u1 = u0−φ1 is positive on Ω
(1)
1 . It is also harmonic there. We will

show that u1 satisfies the assumptions of Lemma 4.13 with respect to the geodesic segment
γ2. Since Assumption (4) is trivial, we only have to prove the growth control (2).

Let z ∈ Γ, we have to show that |u1(z)| ≤ Dd(z,z∗2 )u1(z
∗
2). We start with the case

z ∈ Ω
(1)
1 −{z∗2} (the case z = z∗2 is trivial). By construction, u1(z) ≥ 0. Using (twice) (4.13),

and thanks to Harnack inequality, we get

|u1(z)| ≤ u0(z) ≤ C1G(z, z∗1 ;D1)u0(z
∗
1) ≤ C1C

d(z,z∗2)
0 G(z∗2 , z

∗
1 ;D1)u0(z

∗
1)

≤ C2
1C

d(z,z∗2 )
0 u0(z

∗
2) ≤ 2C2

1C
d(z,z∗2)
0 u1(z

∗
2).

If D is large enough so that 2C2
1C0 ≤ D, we obtain |u1(z)| ≤ Dd(z,z∗2 )u1(z

∗
2) for z ∈

Ω
(1)
1 − {z∗2}, as desired. Assume now that z 6∈ Ω

(1)
1 . Thanks to Harnack inequalities,

G(z, z∗1 ;D1) ≤ G(z, z∗1) ≤ C
d(z,z∗1)
0 G(z∗1 , z

∗
1) ≤ C2C

d(z,z∗1)
0 G(z∗1 , z

∗
1 ;D1)

for some C2 > 0. Hence, φ1(z) ≤ C2C
d(z,z∗1)
0 φ1(z

∗
1). As φ1(z

∗
1) ≤ u0(z

∗
1) by (4.14), we obtain

|u1(z)| ≤ |u0(z)| + φ1(z) ≤ Dd(z,z∗1 )u0(z
∗
1) + C2C

d(z,z∗1)
0 u0(z

∗
1).

If D is large enough, this is bounded by 2Dd(z,z∗1 )u0(z
∗
1). The inequality (4.13) at z = z∗2 ,

combined with Harnack inequality, yields u0(z
∗
1) ≤ C1C

d(z∗1 ,z
∗

2 )
0 u0(z

∗
2). Since u0 ≤ 2u1 on

Ω
(1)
1 , we obtain

|u1(z)| ≤ 4C1D
d(z,z∗1)C

d(z∗1 ,z
∗

2)
0 u1(z

∗
2).

As z 6∈ Ω
(1)
1 , we have d(z, z∗2) ≥ d(z, z∗1) + L, whereas d(z∗1 , z

∗
2) = 7L. Hence,

|u1(z)| ≤ 4C1(C
7
0D

−1)LDd(z,z∗2)u1(z
∗
2).

If D is large enough so that 4C1C
7
0D

−1 ≤ 1, we finally obtain |u1(z)| ≤ Dd(z,z∗2)u1(z
∗
2). This

is the requested inequality.

We have shown that the function u1 satisfies the assumptions of Lemma 4.13 along the
geodesic segment γ2. Hence, we may apply the same argument: we obtain a function φ2

with φ2 ≤ u1/2 ≤ C4
1φ2 on Ω

(2)
1 , only depending on u1 through the value of u1(x̃) (and

therefore only depending on u0(x̃)). Let u2 = u1 − φ2, it again satisfies the assumptions of
the lemma along γ3, and we can continue the construction inductively.

In the end, we construct n functions φ1, . . . , φn such that u0 = un + φ1 + · · · + φn,
only depending on u0(x̃). As uk = uk−1 − φk ≤ (1 − C−4

1 /2)uk−1, we have in particular

un ≤ (1 − ǫ)nu0 on Ω
(1)
n , for ǫ = C−4

1 /2 > 0. The same construction can be done starting
from the function v0(z) = G(z, y′)/G(x̃, y′). Since v0(x̃) = u0(x̃) = 1, the functions φi that

we get are the same. Hence, on Ω
(1)
n ,

|u0(z)− v0(z)| = |un(z) − vn(z)| ≤ (1− ǫ)n(u0(z) + v0(z)).

Therefore,
|u0(z)/v0(z)− 1| ≤ (1− ǫ)n(u0(z)/v0(z) + 1).

This implies that u0(z)/v0(z) is bounded by (1 + (1− ǫ)n)/(1− (1− ǫ)n) ≤ 2/ǫ, yielding

|u0(z)/v0(z)− 1| ≤ C(1− ǫ)n.
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In other words,
∣

∣

∣

∣

G(z, y)/G(x̃, y)

G(z, y′)/G(x̃, y′)
− 1

∣

∣

∣

∣

≤ C(1− ǫ)n.

Using this inequality at z = x and z = x′ (those points belong to Ω
(1)
n ), we get the conclusion

of the theorem. �
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