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The stability problem is also addressed and the structure of the variational equations gov-

erning their stability is analyzed. It is shown that the Jacobian matrix is block-diagonal, each

block being associated with a different class of perturbation, namely: in-class, resonant out-of-

class and non-resonant out-of-class perturbations. Further uncouplings of one of these blocks

are revealed by the way the classes of motion are nested in the diagram.

2 Classes of motion

The problem of evaluating classes of motion is posed and some definitions are formally given.

Elementary and multiple classes are then studied.

2.1 Statement of the problem and definitions

A multiresonant (continuous or discrete) nonlinear system is given, in which N natural fre-

quencies xn and (possibly) a forcing frequency x0 are involved in S resonance conditions
X

n2Nþ

ksnxn ¼ 0 s ¼ 1; 2; . . . ;S ksn 2 Z; ð1Þ

where Nþ ¼ f0; 1; . . . ;Ng and small detunings have been neglected. Among Eqs. (1),

R :¼ rank½ksn� are independent equations, while the remaining Q :¼ S� R are linear combi-

nations of the former.

The nonlinear asymptotic behavior of the system is described by the evolution in time of N

complex quantities AnðtÞ; these are the amplitudes of the N interacting linear modes of fre-

quencies xn. If the system is forced, the AMEs also depend on the amplitude A0 of the

excitation. The evolution is governed by the so-called Amplitude Modulation Equations

(AMEs), as, e.g., furnished by the Multiple Scale Method (MSM). These equations, whose

structure has been studied in depth in [1], admit solutions in which only one subset of ampli-

tudes is different from zero, while the remaining amplitudes identically vanish. Such solutions

have been named (incomplete) classes of motion, or M-(modal) classes, i.e., classes in which

only M-amplitudes contribute to the evolution. The question analyzed here consists in evalu-

ating all the classes of motion, without deriving the AMEs in advance, simply by using Eqs. (1).

An algebraic method to address the problem is illustrated in [1] (Resonance Coefficient

Method, RCM); here, a geometrical approach is followed instead, based on a set representation

of the classes. Some definitions are preliminarily given.

The setS :¼ fAnjn 2Nþg of all the amplitudes involved in the S resonances (1) is called the

state-space of the dynamical system A0m ¼LmðSÞ (AMEs). The set SS �S of the amplitudes

An associated with the frequencies xn involved in the s-th resonance is called the elementary s-th

space, or the s-th resonance space; by remembering Eqs. (1) it is SS :¼ fAnjksn 6¼ 0g. A set

C ¼ fAi; i 2M :¼ fi1; i2; . . . ; iMgg is an M-class of motion for the system if it is an invariant

subspace of S; this property holds if and only if LjðSÞ � 0 8j =2M, for any Ai 2 C. If the

forcing amplitude A0 2S, then necessarily A0 2 C, since it cannot vanish. As particular cases,

the null set f0g and the state space S are classes of motion, containing no components or all

the components, respectively. The classes of motion admitted by the s-th resonance (i.e., as

invariant subspaces of SS) are called the elementary classes of motion CS1
, CS2

, . . . of the s-th

resonance. The set of all the elementary classes of motion CSi
is called the family of classes of

motion of the s-th resonance Fs :¼ fCS1
;CS2

; . . .g; the family contains the null-set. The classes
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of motion admitted by two (or more) resonances, e.g., the r-th and the s-th, are the invariant

subspaces of Sr [Ss; they are referred to as multiple classes of motion Crs1
;Crs2

; . . ., and their

collection as the multiple family Frs.

The algorithm described below first calls for evaluation of the elementary classes of motion

of each resonance, and then for their combination in multiple classes.

2.2 Elementary classes

The classes of motion existing under the most common simple ðS ¼ 1Þ resonance conditions are
analyzed. To evaluate them, reference can be made to the relevant AMEs, listed in Tables 1

and 2 of [1]. For example, if the resonance xi ¼ 2xj is considered, the system equations read

(by retaining only the essential terms) A0i ¼LiðA2
j Þ; A0j ¼LjðAi

�AjÞ. It follows that while

C1 :¼ fAig is a 1-class (since Aj ¼ 0 entails Lj ¼ 0), fAjg is not (since Li 6¼ 0 when Ai ¼ 0).

Moreover, C2 :¼ fAi;Ajg is a 2-class, since it coincides with the space SS of the resonance

(complete class). The two elementary classes constitute the family Fs :¼ fC1;C2g associated
with the resonance xi ¼ 2xj. The same result is achieved in a simpler way if the RCM [1] is

applied: since ksi ¼ 1, ksj ¼ �2, fAig is admitted (since ksj

�� �� 6¼ 1) while fAjg is forbidden (since

ksij j ¼ 1).

An efficient geometrical representation of the elementary classes of motion is given in

Tables 1 to 3. The classes are represented by closed curves (sets) surrounding the ampli-

tudes. Table 1 illustrates the internal (not forced) quadratic (order K ¼ 2) and cubic (order

K ¼ 1 and 3) resonances. In the xi ¼ 2xj case previously discussed only a monomodal

solution exists. In the quadratic combination resonance xi ¼ xj � xk, the three 1-class

solutions are all possible; however, no bimodal motion exists, since two amplitudes different

from zero would trigger the third amplitude. On proceeding to analyze the cubic reso-

w i=2w j

w i=w j w i=3w j

Quadratic
resonances

Ai

Ai

Ai Ai

Ah

Ai

Ai

Aj

Aj

Aj

Aj

Aj

Aj

Ak

Ak
Ak

Cubic
resonances

w i=w j±w k

w i=2w j±w k w i=w j±w h±w k

Table 1. Elementary classes of motion
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nances, in the xi ¼ xj case no incomplete motions are found. In the xi ¼ 3xj resonance,

the monomodal of highest frequency is admitted, similarly to the quadratic case. The

xi ¼ 2xj � xk resonance is also similar to the quadratic combination resonance, since all

the monomodal solutions are allowed; however, in addition to that, a bimodal motion

fAi;Akg exists. Finally, in the other cubic combination resonance, xi ¼ xj � xh � xk, in

addition to all the monomodal motions, all bimodal solutions exist (represented in the

figure by solid lines, for the sake of clarity); however, no trimodal motions are allowed,

since no amplitude can vanish alone.

The above results refer to the generic case in which all the coefficients of the AMEs are

different from zero. However, if some of them vanish, a richer scenario exists. To illustrate

this behavior the xi ¼ xj resonance is considered again as an example. The essential

(primary resonant) terms of the relevant AMEs read (see Table 1 of [1])

A0i ¼Li Ai
�AiAj; A2

j
�Aj; A2

j
�Ai

� �
; A0j ¼Lj Aj

�AjAi; A2
i

�Ai; A2
i

�Aj

� �
. Therefore, the relevant Ai- (or

Aj-)equation contains terms that are pure in Aj (or Ai) and which prevent the occurrence of

monomodal solutions. However, if one or both of these terms have a zero coefficient, one or

both monomodal solutions do exist (see Table 2). One remarkable mechanical system exhib-

iting such behavior is the 3D beam of a compact section in 1:1 internal resonance, which in fact

possesses two monomodal solutions, each consisting of a flexural vibration in a principal inertia

plane [3].

The external (or mixed) resonance conditions are now considered. By examining the AMEs

in Table 2 of [1], or applying the RCM, the classes of motion depicted in Table 3 are found.

Ai Ai Ai
Aj Aj Aj

L L L L

Table 2. Special cases of elementary classes of motion in the xi ¼ xj resonance
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w 0=2w i
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Table 3. Elementary classes of motion of forced systems
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These can also be obtained from Table 1 by identifying x0 with a natural frequency and

remembering that the externally resonant classes must contain A0. Therefore, in the super-

harmonic resonances xi ¼ kx0 ðk ¼ 2; 3Þ the highest frequency monomodal solution disap-

pears, while in the sub-harmonic resonances x0 ¼ kxi ðk ¼ 2; 3Þ the highest 1-class fA0g is

admitted. This describes a motion in which the i-th modal coordinate is simply forced by the

external excitation (particular solution of the differential equation) but no free oscillations of

amplitude Ai are triggered (homogeneous solution). The resonance x0 ¼ xi � xj can be for-

mally obtained from the xi ¼ xj � xk internal resonance by replacing one of the amplitudes

with A0. Among the monomodal solutions, only fA0g survives; since no bimodal solutions exist

in the unforced case, no other classes are admitted in addition to the complete one. By a similar

procedure the resonances x0 ¼ 2xj � xi and xi ¼ 2x0 � xj can be derived from the unforced

xi ¼ 2xj � xk case. Among the monomodal solutions, again only fA0g survives; moreover, the

bimodal solution of the unforced case persists only if x0 is identified as xk or xi. Finally,

the x0 ¼ xi � xj � xk case can be derived from the xi ¼ xj � xh � xk resonance. Only the

monomodal solution fA0g and all the bimodal solutions which include A0 are classes of motion;

the other bimodal solutions are destroyed instead.

2.3 Multiple classes

The general case of multiple ðS > 1Þ resonance is now analyzed. Each of the S resonance

conditions (1) entails the existence of some elementary classes of motion, according to the

results previously discussed. The question is to evaluate how these elementary classes interact,

in order to furnish new multiple classes. To solve the problem, the following strategy is

adopted. First, the interaction between two families of classes of motion, F1 and F2, asso-

ciated with s ¼ 1 and s ¼ 2; respectively, is studied and a new (multiple) family, F12, is

determined. The latter is combined with the F3-family associated with s ¼ 3 and the multiple

family is updated to F123. The process is stopped when the last family s ¼ S has been con-

sidered, namely F12...S. The task thus essentially consists in analyzing the simplest problem

S ¼ 2. Reference will be initially made to internally resonant systems; the effects of the exci-

tation will be taken into account later.

Let us consider two families FA ¼ fCA1
;CA2

; . . .g and FB ¼ fCB1
;CB2

; . . .g, each associated

with an internal resonance condition. Let A and B be the spaces of the two resonances.

Moreover, let us denote by W :¼A \B;U :¼A nW and V :¼ B nW the subsets of A [B

so that A ¼ U [W and B ¼V [W (Fig. 1a). The conditions under which CAB (Fig. 1b) is a

multiple class of the ðA;BÞ-resonances are stated by the following theorem:

Theorem 1: Given two families of unforced classes of motion, FA and FB, of spaces

A and B, respectively, a subset CAB of A [B is a class of the multiple FAB family if and only

if CAB \A is an elementary class of FA and CAB \B is an elementary class of FB.

Mathematical proof of Theorem 1 is given in Appendix A; here it is justified by invoking

mechanical concepts. Let us denote by bU;cV and cW the intersections of CAB with

U;V and W; respectively, and by U0;V0 and W0 their complements (see Fig. 1b), so that

CAB \A � bU [cW and CAB \B �cV [ cW. It can been seen that the law of assembly of the

AMEs discussed in [1] is equal to that of mechanical systems connected in series. Based on this

analogy, the system in Fig. 1a is assimilated to a structure consisting of two substructures,

whose displacements are U [W and V [W, respectively. The two substructures therefore

interact through the displacements at the interface W. Let us assume that there exist classes of
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motion in which the two isolated substructures oscillate in a smaller set of (arbitrary) dis-

placements, namely bU [cW and cV [ cW, respectively (Fig. 1b). If the two structures are con-

nected, compatibility is ensured by requiring that the (arbitrary) displacements cW be equal,

since the displacements W0 are zero. The incomplete motion thus also exists for the composed

structure. If, in contrast, the displacements bU [ cW and/orcV [cW are not a class of motion for

the isolated substructures, they also trigger the displacements U0;V0 and W0, hence CAB is not

a class of motion for the composed system.

An obvious consequence of Theorem 1 is given by the following

Corollary 1: A multiple class of motion is either an elementary class or is the union of

elementary classes.

Application of Theorem 1 to a number of frequently occurring cases enables us to state the

results collected in Table 4, commented below. Cases I–III refer to the interactions between

families not admitting incomplete motions. (I) If A and B are disjoint, then A is a multiple

class and A \B ¼ f0g 2FB, since A \A ¼A 2FA; similar arguments hold for B. Obvi-

ously, also A [B is a multiple class. (II) If A and B have a non-trivial intersection, then

neither A nor B are multiple classes, since A \B is not an elementary class of either family;

a b

W

U

A
B

VWU

CAi

CBj

CAB

U0

W0
V0

V

B
A

Fig. 1. Interaction between two families of elementary classes of motion: a dominions ðA;BÞ, sub sets

ðU;V;WÞ and elementary classes ðCAi
;CBj
Þ; b multiple class CAB
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Table 4. Examples of multiple classes
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however, A [B is a multiple class. (III) If B �A, since B \A ¼ B is not an elementary class

of FA, B is not a multiple class; in contrastA 2FAB. Cases IV–VII refer to families admitting

incomplete classes. In all cases A [B is a multiple class; in addition, the elementary class CA

(or CB) is also a multiple class if it has null intersection with B (or A) (case IV) or is contained

inA \B and is a class both forFA andFB (case VII). In contrast, CA (or CB) is not a multiple

class if it has non-null intersection with B (or A) (case V) or is contained in A \B but is an

elementary class for only one of the two families (case VI). Finally, cases VIII and IX refer to

intersections A \B which are themselves elementary classes for one of the two families, or for

both of them. In both cases A [B is a multiple class. If CA 2FA (case VIII), CA is not a

multiple class, similar to case VI; analogously, since A \B ¼ CA =2FB, A is not a multiple

class; in contrast, since B \A ¼ CA 2FA, B is a multiple class. Similar arguments applied to

the case IX lead to the result in which CAB, A and B are all multiple classes.

When an external excitation acts on the system, Theorem 1 must be slightly modified.

According to the results of Sect. 2.3, forced classes of motion necessarily contain the forcing

amplitude A0; therefore classes satisfying the conditions of Theorem 1 but not containing A0

are not forced multiple classes. This is stated in the following

Corollary 2: If one or both the FA and FB families of Theorem 1 are associated with an

external resonance condition, then the subset CAB is a forced multiple class if and only if the

conditions of Theorem 1 are satisfied and the excitation amplitude A0 is contained in CAB.

The procedure previously illustrated is summarized by the following

Algorithm 1: CDM (Class Diagram Method): (1) the elementary class diagrams Fi of each

resonance condition are drawn from Tables 1 and 3; (2) multiple class diagrams are built up by

composing in sequence diagrams F12;F123; . . . ;F12...S. To compose two diagrams FA and

FB, the following strategy is adopted. According to Corollary 1, (a) the individual classes are

considered and either Theorem 1 or its Corollary 2 is applied to verify whether they still survive

as multiple classes, and (b) the possible merging of some classes of FA and FB is checked by

analyzing all the combinations among the classes.

The examples of the next section illustrate the procedures.

3 Illustrative examples

Some examples are worked out to illustrate the geometrical method proposed. The concept of

hierarchic order among the amplitudes is then introduced and the existence of standard normal

form AMEs is discussed.

3.1 Class of motion diagrams

Let us consider a system in which N ¼ 5 frequencies are involved in R ¼ 3 independent internal

resonant conditions, namely [1]:

x1 ¼ 2x2; x2 ¼ x3 þ 2x5; x3 ¼ x4: ð2Þ
From Eq. (2) and Q ¼ 1a dependent condition follows up to order K ¼ 3, namely,

x2 ¼ x4 þ 2x5: ð3Þ
The spaces of the resonances (2) are S1 ¼ fA1; A2g; S2 ¼ fA2; A3; A5g, and

S4 ¼ fA3; A4g, while for the resonance (3) it is S3 ¼ fA2; A4; A5g. The Fr ðr ¼ 1; 2; 3; 4Þ
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families of elementary classes are obtained from Table 1 and are drawn in Fig. 2a in thin lines.

Initially, condition Eq. (3) is ignored. First, the interaction between the F1 and F2 families is

studied and the multiple family F12 (Fig. 2b) is built up as follows. The elementary mono-

modal solutions fA1g; fA3g and fA5g all survive to the interaction (case IV in Table 4) since

they are external to S1 \S2 ¼ fA2g; in contrast, the monomodal solution fA2g disappears

(case VIII) since it is not a class of F1. Similarly, the set fA1;A2g is a multiple class of F12

while the sets fA2;A3g as well as fA2;A3;A5g are not. To check if other classes emerge from the

interaction, combinations between the elementary classes must be considered. Thus, two new

bimodal solutions fA1;A3g and fA1;A5g, a new trimodal solution fA1;A2;A3g and, finally, a
new four-modal solution fA1;A2;A3;A5g are found to be multiple classes. They are drawn in

Fig. 2b as thicker curves. As a second step, the interaction between the F4- and F12-families is

studied and the new F124-family (Fig. 2c) is built up as follows. Among the monomodal

solutions, fA1g and fA5g survive (case IV), while fA3g disappears (case VIII). Among the

bimodal solutions, fA1;A2g; fA1;A5g and fA3;A4g still exist, while fA1;A3g is destroyed.

Similarly, fA1;A2;A3g and fA1;A2;A3;A5g disappear. New classes, however, are formed by

merging some elementary classes of F12 and F4, namely: fA1;A3;A4g; fA1;A2;A3;A4g and

fA1;A2;A3;A4;A5g, drawn in heavy type in Fig. 2c, which all satisfy Theorem 1. In contrast,

fA3;A4;A5g and fA1;A3;A4;A5g are not multiple classes, since their intersection with

S12 ¼S1 [S2, i.e., fA3;A5g and fA1;A3;A5g, are not elementary classes of F12. The last

graph thus obtained (Fig. 2c) represents all the classes of motion existing under the resonance

conditions (2). It is easy to check that the dependent condition (3) does not alter the scenario of

Fig. 2c (although this is not a general rule, as discussed in [1]); it therefore represents all the

w1 = 2w 2 w1 = 2w 5 + w 3,4 w 3 = w 4

A1

A1A1

A2

A2A2

A2

A3,4

A5

A5
A5

A4

A4

A3

A3

A3

a

b c

F1

F12 F124

F2,3
F4

Fig. 2. Class of motion diagram for a system undergoing R ¼ 3 internal resonance conditions: a

elementary families Fr r ¼ 1; 2; 3; 4ð Þ of dominions Dr; b F12 multiple family, resulting from the
interaction between F1 and F2; c overall multiple family F124
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classes of motion existing up order K ¼ 3. In summary, there are eight classes of motion: two

monomodal solutions ðfA1g and fA5gÞ, three bi-modal solutions ðfA1;A2g, fA1;A5g and

fA3;A4gÞ, one three-modal ðfA1;A3;A4gÞ, one four-modal ðfA1;A2;A3;A4gÞ and the complete

solution ðfA1;A2;A3;A4;A5gÞ, as already found in [1] by applying the RCM. It is also seen that

A1 is the most important amplitude, since it participates in six of eight classes. In contrast A5 is

a less important amplitude, since it contributes to only three classes. This circumstance suggests

introducing the concept of the participation index of a given amplitude, i.e., the ratio between

the number of classes in which the amplitude appears and the total number of classes existing.

From a geometrical point of view it is equal to the ratio between the number of closed curves

surrounding that amplitude in the family graph and the number of all the closed curves. Thus

the index of A1 is 3/4, that of A3 and A4 is 1/2, that of A2 and A5 is 3/8. The participation index

establishes a hierarchic order among the amplitudes involved in the resonant motion. The

higher the participation index, the higher the contribution of the amplitude. If the participation

index is equal to 1, the amplitude participates in all the motions.

As a second (and third) example the system considered above is taken, by adding an external

resonance to the internal resonances (2), namely,

x0 ¼ x1 or x0 ¼ 2x1 þ x5; ð4Þ

entailing the dependent conditions x0 ¼ 2x2;x2 ¼ x4 þ 2x5;x2 ¼ x1 � 2x3 � x4, respec-

tively. However, as in the previous example, it can be seen that they do not affect the classes of

motion. A new space S0 ¼ fA0;A1g or S0 ¼ fA0;A1;A5g must be added to those in Fig. 2a.

The relevant F0 elementary families drawn from Table 2 are plotted in Fig. 3a1 and 3a2. To

build up the multiple classes of motion, F0123, the interaction between the F123 (drawn in

Fig. 2c) and F0 families must be analyzed. Resonance (4.1) is first studied. Since the forcing

amplitude A0 cannot vanish, it must be contained in every multiple class (see Corollary 2); the

same property therefore holds for A1, which is connected with A0 in F0. Consequently, all the

classes of F123 not containing A1 are destroyed by the interaction with F0. The scenario in

Fig. 2c therefore simplifies in those of Fig. 3b1. It should be noted that although the classes

fA3;A4g and fA5g would satisfy the conditions of Theorem 1, they are not multiple classes

w 0 = w 1 A1
A5

A5
A5

A3A3

A4A4

A2

A0
A0

A0
A0

A1

A1A1

A2

w 0 = 2w 1 + w 5

a1 a2

b1 b2

F0
F0

F0123

F0123

Fig. 3. Class of motion diagram for a system undergoing R ¼ 4 resonance conditions, the three internal
resonances of Fig. 2 plus one external resonance of Fig. a1 or Fig. a2: a1, a2: elementary family F0 of

dominion D0; b1, b2: overall multiple family F0123, resulting from the interaction between the F123

family of Fig. 2c and the F0 family of Fig. a1 or Fig. a2, respectively
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because of Corollary 2. To sum up, in the x0 ¼ x1 case six classes still exist, since the excitation

only inhibits the bi-modal fA3;A4g and monomodal fA5g solutions of F123. The participation

index of amplitude A1 is 1, that of A2, A3 and A4 is 1=2, and that of A5 is 1=3.

Resonance (4.2) is then analyzed. The F0-family associated with Eq. (4.2) is drawn in

Fig. 3a2, as furnished by Table 3. Unlike the example in Fig. 3a1 it admits the incomplete

fA0;A5g class of motion. From Corollary 1 all the classes of F123 not containing A5 are

disrupted, so that only fA0;A5g and fA0;A1;A5g (drawn in thin lines in Fig. 3b) survive. The

possible merging among classes is then analyzed. Class fA1;A2g cannot merge with classes of

F0, since fA1;A2;A5g is not a class of F123. For similar reasons fA1;A3;A4g cannot merge.

However, fA3;A4g merges with both fA0;A5g and fA0;A1;A5g. The following classes therefore

exist in addition to the complete classes: fA0;A5g; fA0;A1;A5g; fA0;A1;A3;A4;A5g. Moreover,

A5 has a participation index of 3/5, A1; A3 and A4 have an index of 2/5 and A2 has 1/5.

3.2 Existence of standard form AMEs

The authors discussed in a previous paper [2] how more forms exist to express the complex

AMEs in real quantities, each exhibiting some peculiarities with respect to the others. In

particular, it is shown in [2] that the most convenient form of AMEs is a so-called standard

normal form, in which, by using a suitable mixed representation (i.e., polar and Cartesian) for

the complex amplitudes An and eliminating the phases from the set of the equations, a reduced

set of equations of the type y0 ¼ fðy; tÞ is obtained. The standard normal form permits analysis

of both the periodic solutions and their stability, even if the solutions are incomplete. In

contrast, the usual polar representation cannot be employed in the stability analysis of such

solutions, but Cartesian components must be used and a change of variables introduced to

render the equations autonomous. However, in order to obtain the standard form equation, it

is necessary that a fundamental hypothesis be satisfied, namely that there exists a set

L :¼ N � R of so-called principal amplitudes (in addition to A0) that are different from zero in

any class of motion admitted by the system. If this hypothesis is not satisfied, the standard

normal form equations are valid only for the particular classes of motion in which the principal

amplitudes do not vanish.

The geometrical method developed here permits us to detect the existence of standard form

AMEs before writing them. To this end, it must be checked that L amplitudes participate in all

steady motions, i.e., they have a participation index equal to 1. For example, for the system in

Fig. 2, since N ¼ 5 and R ¼ 3 it is necessary to find L ¼ 2 non-vanishing principal amplitudes.

However, no such amplitudes exist, hence, no unique standard form can be built up for that

system. However, if A1 and A3 (or A4) are taken as principal amplitudes, the relevant standard

form equations enable us to analyze the stability of five of the seven classes of motion. If the

systems in Fig. 3 are instead considered, since N ¼ 5 and R ¼ 4, it is necessary to find only

L ¼ 1 non-vanishing principal amplitudes. One such amplitude (namely A1) does exist in the

resonance x0 ¼ x1, but does not exist in the x0 ¼ 2x1 þ x5 case.

4 Classes of perturbation

The stability problem of steady (periodic or bi-periodic) solutions is addressed. The structure of

the Jacobian variational matrix is analyzed using geometrical arguments; illustrative examples

are then given.
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4.1 Jacobian variational matrix

During a periodic motion the amplitudes An vary in time as

An ¼ Ân exp ðimntÞ; ð5Þ
where Ân are constant amplitudes and mn are frequency corrections, which exactly tune the

nearly-resonant linear frequencies. Similarly, in a periodically modulated (bi-periodic) motion,

the An’s still vary as in Eq. (5), Ân now being periodic functions. By performing the change of

variable (5) in the equations of motion, it can be shown [2]–[4] that equations formally similar

to Eqs. (7) of Part I are obtained, in which the time-harmonic dependence of Lm due to the

detunings is removed. By collecting the linear terms, these equations read:

A0m � nmAm ¼ L̂m AmðAn
�AnÞ; . . . ;

Y

n2N�

Alsmn

n ; . . .

 !
; m ¼ 1; 2; . . . ; N; ð6Þ

where nm are constants, L̂m is a constant linear operator and the hat has been dropped from

the amplitudes Â to simplify the notation. By making the variation in Eqs. (6), the following

variational equations are obtained:

dA0m ¼
X

n6 0
n2N�

JmndAm; m ¼ 1; 2; . . . ; N; ð7Þ

with Jmn ¼ nm þ @L̂mðS0Þ=@An evaluated at the steady solution S0. Equations (7) are

amenable to analyze the stability of periodic (or bi-periodic) solutions, since they are a set of

linear equations with constant (or periodic) coefficients.

The geometrical theory previously developed permits us to gain insight into the structure of

the Jacobian matrix J ¼ ½Jmn�, by simply examining the diagram of the classes of motion. To

this end, let us denote by X ¼ fXig;Y ¼ fYjg and Z ¼ fZkg three subsets of the state-space

S ¼ fAng ¼ fX;Y;Zg, having the following properties: X is the set of the (active) amplitudes

participating in the steady motion S0 :¼ fX0;0;0g, whose stability is under analysis; Y is the

set of (passive resonant) amplitudes present in all the elementary spaces Ss which contain at

least one amplitude Xi; Z is the set of all the (passive non-resonant) remaining amplitudes. The

following Theorem, proved in Appendix B, holds:

Theorem 2: The variational equation (7) based on the steady solution S0 ¼ fX0;0;0g is

uncoupled in the variables dX, dY and dZ, namely,

dX0 ¼ JXdX; dY0 ¼ JYdY; dZ0 ¼ JZdZ; ð8Þ

with JZ diagonal.

Equations (8) have the following mechanical interpretation. There exist three different classes

of perturbation, each of which is independent and which possibly lead S0 to become unstable,

namely: X-perturbations, or in-class perturbations; Y-perturbations, or out-of-class resonant

perturbations; Z-perturbations, or out-of-class non-resonant perturbations. The three perturba-

tions describe different forms of instability. If JX has at least one unstable eigenvalue (or

Floquet multiplier), the perturbed motion evolves (at least initially) in the same class

fX 6¼ 0;Y ¼ Z ¼ 0g. If JY is instead unstable, the perturbed motion leaves the class, since the

amplitudes Y, directly involved in the resonances with X, are triggered. Finally, if the eigen-

values of JZ are unstable, the non-resonant perturbations Z grow in time. This last mechanism

of instability is due to a combined effect of the eigenvalues nk (governing the stability of the

trivial solution) and of the improper resonant terms [2] which couple the X- and Z-amplitudes,

as explained in Appendix B.
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A deeper analysis of the structure of the variational equations reveals some additional

interesting aspects. It has been observed in the literature [5] that often the Jacobian matrix JY is

composed of diagonal blocks, i.e., there exists some uncoupling among the out-of-class reso-

nant perturbations dY. General rules about such uncouplings are drawn directly by the geo-

metrical method illustrated, according to the following Theorem, proven in Appendix B. The

Theorem refers to the generic case in which all terms in the equations are assumed not to be

zero. If some terms vanish, further uncouplings can be present.

Theorem 3: Given two subsets Y1 and Y2 of Y, such that Y ¼ fY1;Y2g, the perturbations dY1

and dY2 are uncoupled in the variational equation (8.2) if and only if there exists a multiple

class C� containing all the amplitudes X and the subset Y1.

Theorem 3 has the following consequence: if the smallest class C� that contains X and at least

one amplitude Yj also contains all the amplitudes Y, then the Jacobian matrix JY is full. In

contrast, if such a class contains only some of the Y, then the matrix JY is block-diagonal. The

examples in Fig. 4 illustrate four typical cases. In case (a) the Jacobian matrix is full, since no

class exists containing X and a sub-set of Y. In case (b), by applying Theorem 3 to class C�1, it

turns out that JY contains a block JY1
associated with the variables dY1; the remaining variables

are coupled (among them), so that JY is composed of two blocks. In case (c), Theorem 3 can be

applied to both classes C�1 and C�2, and again two blocks are found. Case (d) is less straight-

forward. By applying Theorem 3 to class C�1 it follows that the variables dY3 are uncoupled

from fdY1; dY2g; however, by applying Theorem 3 to class C�2 it follows that dY1 are uncoupled

from fdY2; dY3g. Consequently fdY1g; fdY2g and fdY3g are uncoupled from one another, and

the Jacobian matrix JY is composed of three blocks. This last example suggests the following

Corollary 3 to Theorem 3:

Corollary 3: If there exist H classes C�h ðh ¼ 1; 2; . . . ;HÞ, each containing X and a distinct

sub-set Yh ðh ¼ 1; 2; . . . ;HÞ of Y, then the Jacobian matrix JY is block-diagonal,

JY ¼ diag½JY1
JY2

. . . JYB
�; ð9Þ

with the number of blocks B � H.

The examples in Fig. 4 are self-explanatory.

a b

c d

C
C

C

C
C

CC

Fig. 4. Classes of motion C�s containing X and subsets of Y; structure of the relevant Jacobian

matrix JY
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4.2. Examples

To illustrate some applications of Theorems 2 and 3 let us consider the diagram in Fig. 2c.

First, let us analyze the stability of a steady motion X ¼ fA1;A2g. From the elementary res-

onance spaces in Fig. 2a, it follows that Y ¼ fA3;A4;A5g (since A3 and A5 are in resonance with

A2 in Eq. (2.2), A4 in Eq. (3) and Z ¼ f0g. Theorem 2 states that the variational equations (7)

uncouple in the perturbations fdA1; dA2g and fdA3; dA4; dA5g. Moreover, Theorem 3 states

that, since a class C�1 exists (see Fig. 2c), containing fA1;A2g and Y1 ¼ fA3;A4g (i.e., the case of
Fig. 4b occurs), the variational equations in fdA3; dA4; dA5g are uncoupled in two blocks

fdA3; dA4g and fdA5g.
As a second example, the stability of a steady solution X ¼ fA1;A5g is analyzed. From the

elementary classes of resonance (2) and (3) it follows that Y ¼ fA2;A3g; Z ¼ f0g. Therefore,
according to Theorem 2, fdA1; dA5g and fdA2; dA3; dA4g are uncoupled in the variational

equation. Moreover, since the only class that contains fA1;A5g also contains fA2;A3;A4g, the
perturbations dA2; dA3 and dA4 are coupled in the variational equation in accordance with

Theorem 3 (i.e., the case of Fig. 4a occurs).

Finally, as a third example of Fig. 2c, if X ¼ fA3;A4g, then Y ¼ fA2;A5g;Z ¼ fA1g; since
there exists a class C�1 containing fA3;A4g and Y1 ¼ fA2g, it follows that JY uncouple in two

blocks (Theorem 3).

5 Conclusions

A geometrical approach to the problem of evaluating the classes of motion in general multi-

resonant systems has been illustrated. A method based on a set representation of the classes of

motion has been developed, consisting in the following two steps: (a) the set of the classes of

motion admitted by each individual resonance (family) is first built up (e.g., by drawing from

the tables given here); (b) the interactions among families are studied recursively in pairs, by

applying simple rules generated by a unique theorem. The method furnishes class diagrams

which efficiently synthesize the couplings existing among the amplitudes as well as their

importance in describing the motion. In particular, by using these diagrams it is possible to

ascertain in advance whether or not the Amplitude Modulation Equations (AMEs) governing

the asymptotic behavior of the system admit a standard form, according to the findings of a

previous work [2].

The structure of the variational equations governing the stability of steady (periodic or bi-

periodic) solutions has then been analyzed. Three types of perturbation have been identified: (a)

in-class perturbations, i.e., perturbations of the amplitudes participating in the motion; (b) non-

resonant, and (c) resonant out-of-class perturbations, i.e., perturbations of the amplitudes not

participating in the motion directly or not involved in resonance with the active amplitudes,

respectively. It has been proved that the Jacobian matrix is block diagonal and does not contain

coupling terms among the three classes of perturbations. Finally, based on the class diagrams, it

is also possible to gain information on possible further uncouplings of the Jacobian block

associated with the resonant out-of-class perturbations. It has been found that improper res-

onant terms which are unessential to the class evaluation do nonetheless contribute to the

stability of steady motion.
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Appendix A

Proof of Theorem 1

Using the symbols in Fig. 1, the equations governing the modulation of the amplitudes of the

space A are of the type

U0 ¼ fðU;WÞ; W0 ¼ hðU;WÞ; ðA:1Þ
and those of the space B are

V0 ¼ gðV;WÞ; W0 ¼ kðV;WÞ: ðA:2Þ
In Eqs. (A.1) and (A.2) only primary resonant terms (governing the existence of the classes)

should be retained [1]. When the two resonances act simultaneously, the equations assemble as

follows [1]:

U0 ¼ fðU;WÞ; V0 ¼ gðV;WÞ; W0 ¼ hðU;WÞ þ kðV;WÞ: ðA:3Þ

Let C ¼ fbU; bV; bWg be a set of amplitudes, with U ¼ fU0; bUg;V ¼ fV0; bVg;W ¼ fW0; bWg. After

having partitioned, Eqs. (A.3) read:

U00 ¼ f0 U0;W0; bU; bW
� �

; Û
0 ¼ f̂ U0;W0; bU; bW

� �
;

V00 ¼ g0 V0;W0; bV; bW
� �

; V̂
0 ¼ ĝ V0;W0; bV; bW

� �
;

W0
0 ¼ h0 U0;W0; bU; bW

� �
þ k0 V0;W0; bV; bW

� �
;

Ŵ
0 ¼ ĥ U0;W0; bU; bW

� �
þ k̂ V0;W0; bV; bW

� �
:

ðA:4Þ

If C is a class of motion of the multiple resonance, then f0ð0;0; bU; bWÞ ¼ 0; g0ð0;0; bV; bWÞ ¼ 0;

h0ð0;0; bU; bWÞ þ k0ð0;0; bV; bWÞ ¼ 0 8ðbU; bV; bWÞ. Since h0 and k0 depend on different variables,

h0ð	Þ ¼ 0;k0ð	Þ ¼ 0 follows. Therefore C \A ¼ 0; 0; bU; bW
n o

is a class of A and

C \B ¼ 0; 0; bV; bW
n o

is a class of B. Vice versa, if C \A and C \B are elementary classes of

A and B, respectively, then f0ð	Þ ¼ 0;h0ð	Þ ¼ 0 and g0ð	Þ ¼ 0;k0ð	Þ ¼ 0 and therefore C is a

multiple class.

Appendix B

Proofs of Theorems 2 and 3

Theorems 2 and 3 are proved here. Preliminarily, it is recalled from [1] that in the n-th AME

terms of the following forms are present: (a) improper resonant terms of the type

An Ai
�Ai

� �ki ; An Ai
�Ai

� �ki
Aj

�Aj

� �kj ; . . . ; with ki and kj integer; (b) primary proper resonant terms of

the type
QN

i 0 A
li
i

�A l i

i with
PN

i 0 li � l ið Þxi ¼ xn, i.e., terms whose frequency is resonant with

the n-th frequency; (c) secondary proper resonant terms, obtained from the proper ones by

multiplying them by Ai
�Ai

� �ki; Ai
�Ai

� �ki
Aj

�Aj

� �kj . The following notation is adopted here: given a

set X ¼ fXigi 2 I of amplitudes, the homogeneous polynomial of degree l in the variables Xi

and �Xi is denoted by Xl, i.e.,

Xl :¼
Y

i2I
X

li
i

�Xl i

i ; 8li
X

i2I
li þ l i ¼ l

�����

( )
: ðB:1Þ
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The following Lemma holds:

Lemma 1: If X ¼ fXig is a multiple class of motion, then Eqs. (6) governing the evolution of

X do not contain terms that are linear in the amplitudes Y ¼ fYjg and Z ¼ fZkg not belonging
to the class.

Proof: First, it is observed that improper resonant terms as well as secondary resonant terms

[1] are quadratic in Y and Z; therefore, only primary resonant terms must be analyzed. If a term

that is linear in Y or Z (e.g., Yq) were present in the p-th X-equation, then a resonance condition

of the following type would exist:

xXp
¼
X

i2I
KixXi

� xYq
; ðB:2Þ

in which xX and xY would be X- and Y -frequencies, respectively. Equation (B.2) would entail

the Yq-equation containing proper resonant terms that are pure in the amplitudes X; conse-

quently X 6¼ 0 and Y ¼ Z ¼ 0 would not be a class of the system, contrary to the hypothesis.

Therefore, no linear terms in Y or Z can exist in the X-equation.

Proof of Theorem 2: The equations of motion are polynomial in X;Y and Z. However, only

terms that are pure in X and linear in Y or Z contribute to the variational equation, since their

derivatives are evaluated at X 6¼ 0 and Y ¼ Z ¼ 0. Therefore the essential parts of the equa-

tions of motion read:

X0 � nX ¼ f Xl;XmY;XmZ
� �

;

Y0 � gY ¼ g Xl;XmY;XmZ
� �

;

Z0 � fZ ¼ h Xl;XmY;XmZ
� �

; l ¼ 2; 3; . . . ; m ¼ 1; 2; . . . ;

ðB:3Þ

where n, g, f are diagonal matrices. Now, by virtue of Lemma 1, XmY and XmZ cannot be

present in the X-equation; moreover, terms that are pure in X cannot exist in the Y- and Z-

equations, since X, by hypothesis, is a class of motion. Further, the terms XmZ and XmY must

vanish in the Y- and Z-equations, respectively, since (a) they are not improper resonant terms

(which would be proportional to Y and Z, respectively), and (b) they are not proper resonant

terms, given that, according to the hypothesis, X;Y and Z are never involved together in a

resonance condition. Therefore, Eqs. (B.3) further simplify as:

X0 � nX ¼ f Xl
� �

; Y0 � gY ¼ g XmYð Þ; Z0 � fZ ¼ h XmZð Þ: ðB:4Þ

Terms in the first two equations are proper as well improper resonant terms. Terms in the third

equation are only improper resonant terms, since Z is not involved in resonance with X;

therefore, the k-th Z-equation contains only the variable Zk out of the set Z. By taking the

variation of Eqs. (B.4) and evaluating it at S0 ¼ X0;0;0
� �

, it follows that:

dX0 ¼ nþ f0
X

� �
dX; dY0 ¼ gþ g0

Y

� �
dY; dZ0 ¼ fþ h0

Z

� �
dZ; ðB:5Þ

where h0
Z is a diagonal matrix. Equations (B.5) prove Theorem 2.

Proof of Theorem 3: The equations of motion (B.3.2) governing the evolution of

Y ¼ fY1;Y2gT from Eq. (B.4.2) are of the type:
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Y01 � g1Y1 ¼ g1 XmY1;X
mY2ð Þ;

Y02 � g2Y2 ¼ g2 XmY1;X
mY2ð Þ:

ðB:6Þ

Let us assume that a class C� exist, containing all the amplitudes X and the subset Y1. Then,

according to Lemma 1, XmY2 cannot be present in the first equation; moreover, since g2 must

vanish when Y2 ¼ 0, terms XmY1 cannot be present in g2. By taking the variation of Eq. (B.6)

and evaluating it at X 6¼ 0;Y1 ¼ Y2 ¼ 0ð Þ, it follows that:

dY01 ¼ g1 þ g0
1Y1

� �
dY1; dY02 ¼ g2 þ g0

2Y2

� �
dY2; ðB:7Þ

which proves Theorem 3.

Remark: Unlike JY, the Jacobian JX is generally a full matrix for the following reasons. The

variational equation in dX ¼ dX1; dX2f g is obtained by varying Eq. (B.4.1). Since X1 6¼ 0 and

X2 6¼ 0, the variational equations in dX1 and dX2 would be uncoupled if and only if the

equations themselves were uncoupled in this term. However, due to the presence of the im-

proper resonant terms this circumstance never occurs in the generic case. Therefore, improper

resonant terms, which are unessential to the class evaluation [1], in contrast affect the structure

of the variational equation.
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