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Enhanced assessment of the wound-healing process
by accurate multi-view tissue classification

Hazem Wannous, Yves Lucas, Member, IEEE, and Sylvie Treuillet

Abstract—With the widespread use of digital cameras, free-
hand wound imaging has become common practice in clinical
settings. There is however still a demand for a practical tool
for accurate wound healing assessment, combining dimensional
measurements and tissue classification in a single user-friendly
system. We achieved the first part of this objective by computing
a 3D model for wound measurements using uncalibrated vision
techniques. We focus here on tissue classification from color
and texture region descriptors computed after unsupervised
segmentation. Due to perspective distortions, uncontrolled light-
ing conditions and view points, wound assessments vary sig-
nificantly between patient examinations. The main contribution
of this paper is to overcome this drawback with a multi-
view strategy for tissue classification, relying on a 3D model
onto which tissue labels are mapped and classification results
merged. The experimental classification tests demonstrate that
enhanced repeatability and robustness are obtained and that
metric assessment is achieved through real area and volume
measurements and wound outline extraction. This innovative tool
is intended for use not only in therapeutic follow-up in hospitals
but also for telemedicine purposes and clinical research, where
repeatability and accuracy of wound assessment are critical.

Index Terms—multi-view classification, 3D modeling, wound
assessment.
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I. WOUND ASSESSMENT PRACTISE

A. Clinical practise

Monitoring the wound healing process is a tedious task
for clinicians and nurses as it is necessary to periodically
assess the wound. All types of wounds are concerned: not only
chronic wounds but also ulcers, burns, traumatic or surgical
wounds and dermatological lesions. Moreover, wound care is
expensive: according to a report published by the NIGMS in
2008 (http://www.nigms.nih.gov) in the USA, chronic wounds
cost the nation $20 billion to $25 billion and acute or traumatic
wounds add another $7 to $10 billion to the bill annually, as
the healing process can last several months;with the ageing of
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the population this cost will necessarily increase by 25% over
the next 10 years.

As health care costs need to be drastically reduced, there is
a growing demand for patients to be cared for at home;wound
monitoring could be carried out from a distance, outside a
hospital environment, in private homes properly equipped
for telemedicine practise. Pioneer experiments in this area
consisted simply in uploading images to a web site where
a physician could view the data at his convenience [30]. In
more recent studies, image processing has been added but
it provides only ulcer stage grading [26]. The quantitative
assessment of chronic wounds still relies on visual inspection
and manual techniques to describe the shape of the wound
(perimeter, surface, depth ...) and the biological nature of the
skin tissues (percentage of each class, wound severity stage,
burn degree ...) [46], [42]. Wound dimensions and shape
are currently measured with an ordinary ruler, or sometimes
through sketches on cross-ruled sheets, serum injection or
alginate moldings. Assessing the type and proportion of
tissues likewise remains highly empirical as evaluation is
performed visually and then recorded on a red-yellow-black
scale corresponding respectively to the dominant color of
the different tissues found on a wound: granulation, slough
and necrosis. Healing is a complex cascade of cellular
events operating to reconstruct damaged tissues, and also
an individual process that exhibits considerable inter-patient
variability. As the different tissues may overlap and be difficult
to distinguish, wound assessment is not straightforward. The
lack of quantitative data affects the coordination of care
staff and hinders clinical studies focused on healing. Digital
cameras, though now widespread in clinical centers, are
used only for basic patient data recording and not image
processing, as wound therapeutic follow-up is mainly carried
out by nurses.

B. Wound imaging studies

While several studies have tackled the problem of wound
assessment, these attempts have failed to provide a robust
tool for automatic tissue classification. Results remain too
dependent on image capture conditions, sample database build-
ing, region descriptor selection, tissue class learning protocol
etc..., preventing reproducible results from being obtained
within the complete image processing chain. Several features
contribute to making automatic classification difficult. First,
wound image acquisition requires technical skill, especially in
the patient room where lighting is not controlled. At close
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range, the depth of field remains always limited in macro
mode, ambient light is insufficient and may easily result in
fuzzy images. Moreover, the patient is rarely able to maintain
a convenient posture for a snapshot. After image capture
and image compression, an important requirement for data
management [44], the wound area must be extracted from
the image. Early attempts to accomplish this by using color
measurements did not completely succeed, as reported by
[23] and have been replaced by semi-automatic methods [35]
by spline fitting from a set of clicked boundary points or
snakes on a manually specified closed contour [39]. As all
the photos are taken with the same camera and lighting during
experimentation, color correction is often neglected, making it
impossible to process images from other care centers correctly.
Sometimes, a white patch is included in the field of view to
estimate the white balance [40]. More rarely a color pattern
is used for enhanced color correction, giving also access to
the scale factor for dimensional measurements [19], [35]. The
color analysis required for tissue classification over the wound
is a difficult task. As direct classification on the pixels with
simple thresholds on separate color components proved to
be inefficient due to the variability and non homogeneity of
tissues, spatial continuity has been searched for through a
segmentation process. The classification process is thus driven
by the segmentation one [10]. During the following step, a
tissue database has to be built, covering all wound grades,
locations and healing status. This recording task is performed
mainly by the care staff, under the supervision of clinicians,
as the wounds are only visible after cleaning during dressings.
In many studies, the tissue samples were manually extracted
by asking the clinician to pick square homogeneous regions of
interest inside the images [18]. Complete classification would
require that during the tests these samples be automatically
located in the image without a priori knowledge. Moreover,
using photos instead of examining the patient has an impact on
expert performance [14]. When several experts are consulted,
it appears that inter-observer variability is important, exceed-
ing intra-observer variability [5]. For classification purposes,
several region descriptors have been widely tested on wound
tissue samples. Color histograms are typical of such statistical
data gathering as tissue descriptors [40], [7], but it has been
proved that tissues could still not be classified robustly in
a large collection of images. The best results were obtained
when the classification was limited to two types of tissue [37]
or by multiplying the tissue classes using hybrid classes [51].
To improve the results, texture parameters have finally been
added [18], [13]. Several classification tools have also been
addressed and supervised ones have been shown to surpass the
others [6], [34]. In many studies, assessment of the tissue type
is not achieved (only the grade or the surface of the wound is
provided) [26], [43], [20] or only partially.

Beside the methods of tissue classification, some proto-
types based on structured light techniques [36], [27], [31] or
photogrammetry [8], [32], [40] have been presented in order
to obtain spatial measurements. The prototypes called MED-
PHOS (Medical Digital PHotogrammetric System) [32], [33]
and MAVIS (Measurement of Area and Volume Instrument
System) [40] are typical of this approach. However, these

cumbersome and complex systems are unsuited to clinical
practice which requires a low cost, handy and simple tool
operated by a nurse. Portable industrial 3D scanners have
also become available and have been experimented on wound
measurement. Examples are the Minolta V series [42], [9]
and 910 series [16] and the Fastscan Polhemus system [29],
all based on a laser stripe scanning, the latter being moreover
a hand-held system due to magnetic sensing of the system
pose. More recently, a commercial system has been proposed
by Aranz Medical company (http://www.aranzmedical.com):
the SilhouetteMobile system is based on a personal digital
assistant (PDA) equipped with a small digital camera with
embedded laser lighting. This tool is very expensive compared
to a simple digital camera and tissue classification is not
supported. Wound extraction must be done by drawing around
the wound outline using a stylus on the PDA screen.

The systems that are most closely related to our work are
MAVIS-II [24] and the Derma project [42], [9]. MAVIS-II uses
a reflex digital camera equipped with special dual lens optics
to record two half images from slightly different viewpoints.
This system competes with some 3D laser scanners, but it
suffers from several drawbacks;firstly, a costly digital reflex
camera is required to adapt the special dual lens;secondly,
the stereo lens adapter constrains both the field of view and
the focusing distance and consequently the size of imaged
wounds, as it must be located around the intersection of
a dual light point projector also required;finally, the tissue
classification problem is not addressed. In the Derma project,
wound measurements and tissue classification have both been
tackled, as it enables shape and natural texture grabbing, but
the classification process remains user-assisted as seeds need
to be manually pointed inside the wound and a similarity
measure adjusted to control the merging process. Moreover,
it is based on a very costly Minolta 3D scanner, putting it
beyond the reach of routine clinical practice. In sum, wound
assessment using imaging techniques is still mainly based on
2D data processing and no existing system combines color
tissue classification and wound 3D shape reconstruction into
a single low-cost tool for enhanced and complete wound
assessment.

C. Proposed framework

The main objective of this work is to present a complete
and user-friendly tool that can be easily implemented by care
staff, in order to automatically monitor the healing process.
Such a tool can provide efficient measurements necessary
both in clinical practice to monitor the progress of healing,
and in research to evaluate new treatment. In contrast to the
aforementioned methods dealing separately with wound shape
and tissue classification tasks, we suggest going further toward
a very low-cost and easy-to-use device using a simple standard
digital camera. This is the only way to ensure that quantitative
wound assessment will be widely practised by clinical staff,
who have to handle high rates of pressure sore prevalence in
most hospital departments. A complete wound assessment tool
has therefore been developed, combining a sharp 3D model
of the wound and a robust classification tool for color tissues
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(Fig. 1). The part concerning computation of a 3D model has
been presented in refs. [2], [3], [45], while the classification
tool has also already been described in detail in [47], [48],
[50]. Our strategy, introduced in ref. [49], involves combining
several viewpoints both to improve the classification process
itself, as tissue aspect is view-dependent, and also to compute
real surfaces by mapping the regions onto the 3D model.
In this paper, we demonstrate that the integration of these
two modules gives access to enhanced tissue classification
and measurements, as several views are combined to classify
the tissues and the results mapped directly onto the mesh
surface to obtain real tissue areas. Only a brief presentation of
the classification method and classifier design will be given
here, to focus particularly on the merging of single view
classification results, called here multi-view classification.

The paper is organized as follows: Section II details the
wound image processing chain involved in our application,
in particular, color correction and image segmentation and
labeling by experts; Section III presents the selection of tissue
descriptors and the tissue classifier design and testing;Section
IV details our multi-view strategy for enhanced classification,
in particular the mapping and merging of the classification
results on the 3D model;experimental results are presented
in Section V to address the repeatability and the robustness
of the multi-view classification, as well as access to metric
assessment with the 3D model. The last section presents our
conclusions and the main perspectives of this work.

II. WOUND IMAGE PROCESSING

A. Wound database building and color correcting

A database of several hundreds of color images (3 Mpixels,
24 bits) of chronic wounds was constituted with the help
of clinical staff in several hospitals, in order to obtain a
representative set of images for different tissue types as input
for the wound image processing chain (Fig. 1). A preliminary
requirement was to acquire good quality wound images cov-
ering all types of pathologies. A variety of chronic wounds
(sacrum and heel bed sores, leg ulcers, diabetic feet, etc.) was
collected from different care services including gerontology,
rehabilitation, diabetology and dermatology. Other types of
wound images such as traumatic, post-operative images can
be collected from surgery services, but neither these particular
types nor burn scars where included in this study. The images
were taken with different digital cameras under uncontrolled
lighting conditions, following a specific protocol that included
several viewing angles for each single wound. Special at-
tention was paid to color constancy to enable reliable tissue
classification. Practically, a standard 24 patch Macbeth color
checker pattern was introduced in the field of view, providing
also the scale factor in the different images. It addressed two
distinct tasks: firstly, obtaining a constant response from the
digital camera by identifying lighting conditions and secondly,
calibrating the digital camera color response. After correction,
colorimetric stability reaches the limit of discernibility for a
human observer, as CIE∆Eab was reduced to 3.5 ± 2.9. This
step is essential in a telecare environment involving several
care centers where the practical conditions differ widely.

B. Multi-expert image labeling

A selection of fifty typical wound images was extracted
from the database and submitted to a group of clinicians in
order to label them according to the classical color code using
our graphical interface. This interface enables the user to draw
closed boundaries using a pen tablet or a mouse and to fill in
the area with color labels. In this medical imaging application,
it provides the input data for building the absolute medical
reference by merging expert data, as the clinician tracings
are freeform. Precautions were taken concerning the lighting
conditions and the color calibration of the graphical screens to
ensure faithful rendering during the labeling sessions. Patients
corresponding to the wounds had not been previously seen by
the clinicians, in order to eliminate any external influence. In
any case, the considerable distances between care centers pre-
vent the clinicians from visiting all the patients, precluding any
merging of the deduced labels. Tissue labeling was carried out
twice, one month apart, by four clinicians, in order to measure
the accuracy during labeling. We used the normalized Overlap
Score (OS), classically used to compare a segmentation S to
a ground truth G by |S ⋂

G|/|S ⋃
G|. It was averaged over

all the tissue samples weighted by their corresponding areas.
As 0 ≤ OS ≤ 1 it can be expressed as a percentage. The
OS obtained by the same clinician labeling, one month apart,
are given in Table I. The labels of the different clinicians
were merged to obtain a single reliable medical reference
for evaluation of the algorithm. A majority vote criterion
was applied to label each pixel and only the pixels with a
confidence level greater than or equal to 75% were retained.
The OS were then computed between the clinicians’ tracings
and this medical reference (Table II).

Tissue class Expert OS (%)
1 2 3 4 Average

Granulation 73.9 65.0 55.9 66.7 65.4
Slough 77.4 73.8 55.3 71.4 69.5

Necrosis 81.4 91.4 59.5 81.9 78.6
Expert average 77.6 76.7 56.9 73.3 71.2

TABLE I
INTRA EXPERT OVERLAP SCORES.

Tissue class Expert OS (%)
1 2 3 4 Average

Granulation 73.2 72.7 39.3 71.0 64.1
Slough 58.9 76.0 42.8 70.8 62.1

Necrosis 79.3 77.1 82.6 85.6 81.2
Expert average 70.5 75.3 54.9 75.8 69.1

TABLE II
OVERLAP SCORES BETWEEN EXPERTS AND MEDICAL REFERENCE.

The results obtained call for several comments. To begin
with, the differences in Tab. I may be explained by variable
levels with respect to both computer use and wound classi-
fication. Another reason resides in variations of screen color
rendering: the screens had been calibrated but the ambient
lighting conditions and the tuning of screen brightness and
contrast may have changed between the two labeling sessions.
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Fig. 1. Complete wound assessment tool combining 3D measurement and tissue classification capabilities.

The OS between clinicians and the reference remain moderate
(55% to 76%) as the labels rely on the subjective diagnosis of
the clinician, who may not be familiar with wound assessment
on a computer, without direct patient examination. When the
patients have been seen by the clinicians, the inter-expert OS
are improved, as the clinicians can inspect the wounds from
many point of view and rely on their knowledge of the patients.
Consequently, image-based wound assessment should assist
but not replace the clinician in the decision process. To finish,
the scores obtained for the slough tissue class are the lowest,
as this type of tissue is often mixed with necrosis and because
granulation grows under slough areas; moreover, none of the
clinicians produce exactly similar labels one month later (57%
to 78%). A very practical issue of these inter- and intra-expert
OS is to provide a performance target to be reached by the
automatic classification process.

C. Automatic wound segmentation

As direct pixel classification proved to be inefficient, we
tested several advanced unsupervised segmentation algorithms
efficient on textured images, to provide an automatic de-
lineation of tissue samples and to simplify the following
classification step by extracting more robust and discrimi-
nating local attributes on tissue areas: the Color Structure
Code (CSC) [41], Efficient Graph-Based Image Segmentation
(EGBIS) [17], Mean Shift [12] and J-SEG [15]. The best
results were obtained with J-SEG (average OS of 73.1%), by
assigning to each unlabeled region the class of tissue mainly
represented in the corresponding area of the medical reference
and computing the OS between the assigned labeling and the
medical reference. The high OS confirm that segmentation
is a valuable pre-processing step before classification for an
automatic delineation of tissue areas. The power of the J-SEG
algorithm resides in the separation of the segmentation process
into two independent processing stages: color quantization and
spatial segmentation. These two steps are controlled by free
parameters which must be precisely tuned to adjust the number
of output regions: sub-segmentation leads to misclassification
of regions which include several classes of tissues, while over-

segmentation increases the subsequent processing time and
results in classification errors on tiny regions where reliable
and robust descriptors cannot be obtained without statistical
evidence.

As the OS between clinicians’ manual tracing and pre-
segmented regions are quite relevant, a second interface was
designed to allow clinicians to directly label pre-segmented
regions automatically (Fig. 2). This interface is far less de-
manding for the experts as only simple mouse clicks on the
regions are required. On the same basis as in Sec. II.B, a
practical medical reference was developed by merging the
labeling results of several experts. A total of 850 significant
tissue regions was selected among the 1200 samples extracted
from the fifty typical wound images previously submitted to
the experts. The samples selected exhibit the usual types of
tissues (48% Granulation, 38% Slough, 14% Necrosis, relative
to the number of samples), with at least 75% agreement
between the experts. We observed that the OS performance in
tissue labeling is improved when using automatic wound pre-
segmentation. This increase is artificial, because the expert
no longer controls the delineation process (he has to label
each region with a single label). One important point is that
the training of the classifier presented below is improved
when using a ground truth built on labeled regions instead of
tracings. The reason for this improvement may be that in the
first case, the classifier is trained on similar regions (obtained
with the same segmentation algorithm) during the training and
test steps.

Fig. 2. Graphical interface for the expert manual labeling.
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III. TISSUE CLASSIFICATION FROM A SINGLE VIEW

A. Feature vector generation

We focused on the color and texture descriptors already
applied in dermatological imaging systems, especially for
wound and ulcer tissues. Color is probably the most dominant
image cue as demonstrated by the red/yellow/black healing
visual assessment during clinical visits. The color descriptors
we have extracted are: the Mean Color Descriptor (MCD), the
locally adapted Dominant Color Descriptors (DCD) based on
the Mean Shift iterative color clustering algorithm [12], and
2D and 3D color histograms [7] [25] [18] tested in different
color spaces and sizes. Texture is also a relevant cue for tissue
description if it is computed in a neighborhood properly scaled
to the local structure. While clinical investigations indicate
that it is less relevant than color, it nevertheless provides
complementary data. Several well-known texture descriptors
from color components (RGB) or gray level image (GL) were
extracted from the wound tissue regions. These descriptors
are: Gabor based features (GAB) calculated on five scales,
Local Binary Pattern (LBP) histograms [25], Haralick Gray
Level Co-occurrence Matrix features (GLCM) [21] and the
normalized texture contrast and anisotropy (CA) (Tab III). The
computation time stands for a 512×384 image processed by a
PC Pentium 4 CPU 3.4 GHz. It may vary slightly, depending
on the number of regions and the actual size of the wound
inside the image. To provide more consistent evaluation and
efficiency of the image processing chain, the performance of
these descriptors was also evaluated directly at the output of
the classifier (see Sec. III.C).

Descriptor Symbol Space Size Time (sec)
Histogram h-RGB 3D-RGB 64 0.6
Histogram h-LAB 3D-Lab 218 1.56
Histogram h-HSV 2D-HS 256 1.99
Histogram h-rg 2D-rg 256 1.60

Mean-Dominant MCD-DCD Lab/RGB 8 0.41
Local Binary Pattern h-LBP GL 256 5.3
Local Binary Pattern h-LBP GL 59 1.5
Co-occurrence matrix GLCM RGB 15 0.48

Gabor filter GAB RGB 15 1.6
Contrast-Anisotropy CA GL 2 0.23

TABLE III
COLOR AND TEXTURE DESCRIPTORS.

B. SVM Classifier design

Initially designed for binary classification after supervised
learning, Support Vector Machines (SVM) are also used
for multi-class problems through one against all and one
against one strategies [22]. Non linear class separation in
low dimension space may result in smart separation in higher
dimension space, using a suitable kernel function. The key
point of the SVM classifier design remains the choice of
the kernel function, as this depends on the image database
and input descriptors [11] since no universal kernel will
fit all applications. The SVM classifier selected here is a
soft-margin algorithm (so-called C-SVM) available online at
http://www.csie.ntu.edu/ucjlin/libsvm. It has been tested by

computing ROC curves for several classical kernels: linear,
polynomial, radial basic function (RBF) and perceptron (Fig.
3). After the selection of a particular kernel, its parameters
must be tuned. In the case of the perceptron kernel finally
selected, there is only one free parameter; it controls the
penalty of the classification error and has been adjusted by
a line search technique.

Fig. 3. ROC curves obtained by four different kernels

During the classifier learning stage, the subset of 850
significant region samples labeled by the experts was divided
equally into training and test subsets, then several iterations
were applied through a k-fold cross validation with k=5 to
randomly select the training set before averaging the results.
Each feature vector was tested with different settings of the
classifier parameters during a backward and forward process.
To evaluate the quality of a diagnostic method, clinicians
usually compute predictive measures such as sensitivity (Se),
specificity (Sp), success rate (Sr) and overall accuracy (Oa),
which are reliable performance estimators [1]. These estima-
tors enabled us to compare the discriminating power of the
input descriptors (Tab. IV).

Feature Descriptor Se (%) Sp (%) Sr (%) Oa (%)
h-RGB 58 87 72 80
h-LAB 66 87 76 82

Color h-HSV 62 87 75 81
h-rgb 57 86 72 80

MCD-DCD 67 89 78 84
h-LBP 30 78 54 66
m-LBP 29 77 53 66

Texture GLCM 54 82 68 72
GAB 47 81 64 71
CA 32 79 55 68

Col.+Tex. MCD-DCD+GLCM 77 92 84 88

TABLE IV
PREDICTIVE POWER OF SEVERAL COLOR AND TEXTURE DESCRIPTORS.

The numerous tests involving several data sets show that
the best results are finally obtained by combining 22 attributes
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including MCD-DCD as color descriptor and GLCM as texture
descriptor as input of the C-SVM classifier implemented with
a perceptron kernel (parameter C = 100). To evaluate the
performance of the SVM approach more completely, we also
compared it to other strategies, with the same descriptors as
input. We selected other classical supervised methods, such
as K-NN and Fuzzy K-NN and k-Means as an unsupervised
one. As before, the same data set was randomly divided into
learning and test sets to program the classifier (Table V).

Classifier Se (%) Sp (%) Sr (%) Oa (%)
K-NN 63 86 75 80

Fuzzy K-NN 66 87 77 81
K-Means 39 77 58 68

SVM 77 92 84 88

TABLE V
COMPARISON OF SEVERAL CLASSIFIER PERFORMANCES.

It can be seen that unsupervised learning is inefficient in
classifying the tissue samples into three different classes,
whereas the supervised approach appears to be quite relevant
for this kind of problem and thanks to its generalization ability,
the discriminating power of SVM is unequalled.

C. Classifier testing

To validate this classification tool applied to chronic wound
assessment, global statistical scores are not sufficient. To
come closer to clinical measurements, two series of tests are
required.

In the first one, we examine separately the classifier per-
formance in relation to each class of tissue by counting well
classified and misclassified regions. Ten iterations were again
applied to randomly select the training set and the final results
were averaged. To evaluate the degree of agreement between
two judgments, the Kappa statistical coefficient is widely used
in the medical field, as it avoids nonsignificant high scores
when randomly voting [28]. This statistical indicator, varying
between 0 and 1, can be calculated by K = Po−Pe

1−Pe
where

Po is the relative observed agreement and Pe the hypothetical
probability of chance agreement, using the observed data to
calculate the probabilities of each observer randomly voting
for each category.

The results of Tab. VI demonstrate the efficiency of the
classifier against individual experts compared to the medical
reference. Furthermore, it produces high scores on necrotic
regions, which are critical in medical decisions, as immediate
and invasive clinical treatment may be required if such re-
gions are detected. An average Kappa coefficient of 0.81 was
obtained, which is considered as quite good agreement.

In the previous tests, the classification performance was ex-
amined globally for each type of tissue by counting the number
of well classified regions. However, in clinical applications, the
misclassification of a small area does not have the same impact
as that of a large one. A second series of tests was therefore
carried out in which the quality of assessment is measured
directly on the same set of fifty typical wounds, with area
weighted scores (Table VII).

Tissue class Experts
1 2 3 4 SVM

Granulation 0.87 0.74 0.68 0.82 0.80
Slough 0.75 0.78 0.54 0.80 0.79

Necrosis 0.65 0.87 0.44 0.79 0.85
Average 0.75 0.79 0.55 0.80 0.81

TABLE VI
KAPPA COEFFICIENT FOR TISSUE SAMPLE CLASSIFICATION.

Tissue Class Experts Algorithm
Granulation 64.1 85

Slough 62.1 70
Necrosis 81.1 83
Average 69.1 79.3

TABLE VII
AVERAGED OVERLAP SCORES OF EXPERTS AND CLASSIFIER IN (%)

COMPARED TO THE MEDICAL REFERENCE.

After averaging on the college of experts, it appears that
the classifier performs better than a single expert. This can
be attributed to the fact that the learning step relies on a
reference established from several experts, and is thus based
on stronger evidence. Fig. 4 shows the classification results
obtained on different wound images. Several features can be
pointed out. Firstly, the power of separation of tissue classes
is constant over various locations and pathologies (e.g. sacrum
pressure sore, leg ulcer and ankle wound). Secondly, it is
not affected by the skin tones of the different patients or the
lighting conditions encountered. Moreover, the classifier is not
confused by reflections on moist granulation regions.

Fig. 4. Three examples of automatic wound assessment compared to the
medical reference. (1st column) original image (2nd column) automatic
classification (3rd column) medical reference.

However, these 2D classification results obtained by single
view assessment suffer from a lack of repeatability between
the visits of patients. The reason for that is simple: during the
follow-up, pictures are taken free hand by the nurses and under
uncontrolled lighting. It has been established that a deviation
of 20◦ of the optical axis from the normal of the wound
typically leads to an underestimation of surface of around
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10% [38]. This is due to lighting variations which modify the
colors and perspective effects from distant viewpoints, induc-
ing significant bias in the classification results and preventing
real surfaces from being computed. In the following section
we present our approach to multi-view classification. It takes
advantage of the geometric correspondence of the triangular
zones of the wound in two different views provided by the 3D
model, to achieve a more robust tissue classification, referred
to as multi-view.

IV. MULTI-VIEW CLASSIFICATION

Like the clinician, who draws on many observation points
to provide a reliable diagnosis, a multi-view technique should
allow more robust results. We therefore propose to use the
dimensional information captured from a multi-view model
because reliable wound assessment must provide reproducible
results, regardless of the position and orientation of the ca-
mera. Based on the 3D reconstruction of the wound model
[45], the main idea is to combine the color information of
the regions, the calculation of points of view and the relief in
order to achieve a more robust classification and also access
to real surfaces.

A. Mapping of the classification results on the 3D wound
model

Clinicians establish their diagnosis visually on the pho-
tographed wound, with the help of a red-yellow-black scale
placed in the camera field, corresponding to the three types
of tissue. However, this diagnosis is also based on their
observations of the wound during examination of the patient.
The clinician’s assessment of tissues can thus be seen as a
combination of colorimetric information (image plane) with
shape information (through observation with the human eye).
To get closer to the process of patient examination, it was
therefore natural to take wound images from different points
of view. A selection of ten wounds imaged from at least three
different viewpoints was therefore made, in order to produce
several input data sets for the 3D reconstruction process. A
3D model was obtained from these images using uncalibrated
vision techniques completed by original refinements to obtain
semi-dense matching between widely separated views. Typi-
cally, 3000 to 4500 matches are obtained in 1024×768 image
pairs, making it possible to match homologous regions in each
view and to merge classification results [4].

We can illustrate the dependence of the classification as-
sessment on the point of view by a simple back projection
on a 3D model computed from two views of a wound. To
do this, the classification result from each of the single views
was mapped onto the 3D model separately in order to label the
triangular mesh. Each triangle is labeled according to its tissue
highest score and then the surface of each type of tissue can
be computed by summing the triangles belonging to the same
class. Fig. 5 shows the variation of the cartography mapping
on a 3D ulcer model according to the classification results
obtained with the single view approach.

The 3D model allows accurate comparison of single-view
classifications since the differences are expressed in cm2

and not in pixels. Table VIII presents the area of tissue
surfaces calculated in cm2 in each view and the corresponding
variations expressed as a percentage of the total wound area,
when mapping single view classification on the 3D models
presented in Fig. 5.

Fig. 5. Influence of the point of view on the classification results. (1st row)
deep sacrum pressure sore (2nd row) leg ulcer (3rd row) diabetic foot. The
3D model (1st column) is labeled with the the classification results from the
first view (2nd column) or the second view (3rd column).

Tissue class Example 1: deep sacrum pressure sore
view 1 (cm2) view 2 (cm2) variation (%)

Granulation 12.9 18.2 9.8
Slough 36.9 27.4 17.6

Necrosis 4.2 8.4 7.8
Example 2: leg ulcer

view 1 (cm2) view 2 (cm2) variation (%)
Granulation 39.0 42.1 6.6

Slough 6.0 4.9 2.3
Example 3: diabetic foot

view 1 (cm2) view 2 (cm2) variation (%)
Granulation 21.4 20.6 1.8

Slough 18.9 25.1 13.6

TABLE VIII
MAPPING OF SINGLE IMAGE CLASSIFICATIONS ON THE 3D WOUND MODEL

The differences obtained reflect the effect of perspective
projection in the image and the relief of skin ulcers. This ex-
periment confirms the limitations of the single-view approach
for patient follow-up and the advantage to take into account 3D
information. Therefore, the results of tissue labeling coming
from each image need to be merged on the wound 3D model
to achieve accurate and robust assessment.

B. Merging algorithm

Because of the epipolar geometry, the neighborhoods cor-
responding to a single facet of the 3D discrete model can be
linked in the images, making it possible to establish the link
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between two single view tissue labels using the 3D model of
the wound. In previous related work, the analysis was limited
to single-view (normal to the capping plane of the wound)
since a model of 3D anatomical wounds was not available.

The classification results obtained for each of two images of
the wound, taken from different viewpoints, have to be merged
based on the 3D model obtained from these two views. The 3D
model, composed of a mesh of triangular facets, is projected
onto the stereo pair to provide a 2D Delaunay mesh of triangles
in each image. Due to the point correspondences between the
two images, each triangle in the left image has a homologous
one in the right image. As they cover the same portion of the
wound but do not belong necessarily to the same class (Fig. 6),
it is necessary to merge the results of tissue labeling coming
from each image.

a b

c

Fig. 6. Projection of the 3D mesh on the classification results of two
views. (a-b) projected model on the classification results of the two images
(c) two homologous selected zones, illustrating the correspondence between
homologous triangles coming from the same facet of the model.

The merging strategy we have experimented is summa-
rized by the following algorithm (Fig. 7). For each facet
of the 3D model, the proportion of each type of tis-
sue is calculated in each of the homologous triangles, ac-
cording to its red/yellow/black color (standing for granula-
tion/slough/necrosis tissue). In the obvious case where the ho-
mologous triangles contain only one type of tissue identically
classified in both images, the facet of the 3D model is labeled
according to this type. Otherwise, the triangle is recursively
split along the median line of its longest side into two sub-
triangles. This splitting process is stopped when the area of
the facet reaches a minimal value (cutting threshold).

The 3D points constituting the triangular mesh result from
a matching process between the points of interest detected in
the image and are not equally distributed on the wound surface
but are highly concentrated in textured regions and reciprocally

very sparse in homogeneous regions. Consequently, the typical
size of the triangles may differ across the model surface. At
this stage, if the splitting of the triangle does not provide
homogeneous sub-triangles, three possibilities must be tested:

- the first is to apply the dominant class criterion and assign
this dominant class to the facet of the 3D model, when it is
common to both homologous triangles.

- otherwise, i.e. when the dominant classes are different in
the two images, we compute the two solid angles carried by
the facet and resulting from the optical center of the camera
in each view. If the difference between the two angles is
significant, this means that the facet is viewed diagonally
in one view and from a more frontal angle in the other. In
this case, the facet model is labeled entirely by the class
corresponding to the largest solid angle. This argument is
based on the fact that the classification process is more
efficient when the triangle is close and pointing to the camera
optical center.

- in the last case, when the difference between the solid
angles is not significant, a confidence level must be computed
to estimate in which image the classification is likely to be
the most reliable. It is based on the class probability of
belonging to a given class of the two regions containing the
homologous triangles within single-view classification. The
triangle is labeled with the label of the region classified with
the highest probability at the SVM classifier output.

Fig. 7. Merging algorithm.
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C. Statistical analysis of the merging process
When all the triangles have been scanned, the label resulting

from the fusion is mapped onto the 3D mesh and the real tissue
surfaces are computed on it. Clearly, single-view classification
could not give access to the real surfaces, as only pixel
counting on areas projected in the image plane was possible.

Obviously, the fusion of single view classification results
may be applied to the wounds labeled by the experts. To do
this, we established for each pair of images a 3D medical
reference by merging the two 2D medical references coming
from the left and right images and mapping them onto the 3D
model. The process of creating the latter relies on the same
fusion strategy presented in Algorithm 1, but without taking
into account the criterion of class probability estimates since
no classifier is used here. It could be replaced by the level
of confidence obtained from several manual expert labelings.
This 3D medical reference is used to evaluate the improvement
due to the fusion of 2D classifications.

To analyze the management of the triangle labeling process
through the fusion algorithm, we perform it on fifteen pairs
of wound images labeled by both manual labeling (expert)
and automatic classification (classifier). The histogram in Fig.
8 shows the total surfaces of the triangles and their number,
labeled at each step of the fusion algorithm applied on the 3D
models.

Fig. 8. Distribution of the labeling in the fusion algorithm.

We can derive from this histogram that for more than half
of the model surface, the classification results are strongly
dependent on the viewpoint, as only 40% of the total surface
was labeled with the same class in both views. Only a few
triangles are concerned by the splitting step; this is because of
the semi-dense 3D model in our matching process. However,
about 20% of the wound model area is labeled according
to solid angle criteria. Finally, for about 35% of the model
surface, the two criteria of dominant class and probability
estimates need to be computed. In this way, we highlighted
qualitatively the dependence of the single-view classification
and the need to combine several views to ensure successful
classification. Note that for the manual labeling, the percentage
of tissue surface labeled by the probability criterion is zero
because neither the degree of confidence of the expert labels
nor the degree of expertise for each expert were taken here
into consideration.

One important observation is the strong similarity between
the histograms corresponding to manual labeling and auto-
matic classification. It shows clearly that both the expert and
the algorithm produce view dependent results. In particular, the
common class category receives similar scores, with a slightly
higher one for the experts. This difference may be explained
by the fact that the expert knows that the different viewpoints
are concerned with the same wound and he tries naturally to
preserve as much as possible the spatial coherence between
his labelings.

V. EXPERIMENTAL RESULTS

A. Repeatability of the classification

The manual selection of picture viewpoints and the random
nature of the 3D reconstruction algorithm may impair the
repeatability of the classification results. Since the matching
strategy in the reconstruction stage is developed on the semi-
dense matching algorithm incorporating a RANSAC step.
we never obtain two strictly identical models in successive
executions of the algorithm [45]. For this reason, several ex-
periments were done to evaluate the repeatability and stability
of multi-view classification results, in relation to viewpoint
changes and 3D reconstruction differences. Practically, the
stability of the process was evaluated firstly on different
3D models calculated from the same pair but for several
reconstructions (Fig. 9).

1 2 3

4 5

Fig. 9. Stability of the process over five reconstructions of the same pair
of images. The multi-view labeling (3D) is mapped onto five 3D models
computed successively from the same pair of images.

Secondly, the repeatability of the classification was evalu-
ated on different pairs of images of the same wound. For each
wound tested (Fig. 10 - Fig. 11 and Fig. 12), three images of
the wound were taken from different viewpoints (one frontal
view and two side views), constituting two stereo pairs. A 3D
wound model was reconstructed using each stereo pair and
the multi-view classification approach was applied on it. 3D
model reconstruction was then executed five times on each
stereo pair to provide ten models of each wound onto which
the tissue labels were mapped.

It appears that the classification results are quite stable
even with the slight changes in 3D model geometry at each
new model reconstruction (Table IX). The influence of the
3D reconstruction on the repeatability is greater than that
of the view selection but the latter is easily reduced by the
simple averaging of several executions of the reconstruction
algorithm. In particular situations, this repeatability can be
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view 1 view 2 view 3

2D labeling 1 2D labeling 2 2D labeling 3

3D labeling (1-2) 3D labeling (2-3)

Fig. 10. Repeatability of the classification over five reconstructions for two
pairs of images of a wound (leg ulcer).

Fig. 11. Repeatability of the classification over five reconstructions for two
pairs of images of a wound (ankle ulcer)

degraded: this is the case when the images are captured along
an orbital path because the self-calibration algorithm becomes
inefficient;this is again the case in poor lighting conditions
resulting in a sparse 3D model with shape distortions. Such
situations are avoided by a strict procedure during snap-shots,
to be followed by the clinicians.

B. Robustness of the classification

Considering the merging algorithm, it is common sense
to consider that combining classifications from several views
should improve the results, as it enriches the knowledge
available in single-view. However, this needs to be tested
on our wound image database to assess quantitatively the
real advances in this medical application. To evaluate the
improvement due to the fusion of 2D classifications, we have

Fig. 12. Repeatability of the classification over five reconstructions for two
pairs of images of a wound (heel pressure sore)

Tissue class (in % ) Example 1:leg ulcer
1-2 2-3

Granulation 17.4±1.8 17.6±0.5
Slough 67.0±1.4 67.6±0.5

Necrosis 15.6±0.3 14.6±0.5
Example 2:ankle ulcer
1-2 2-3

Granulation 96.3±0.6 96.5±0.7
Slough 3.7±1.4 3.5±0.5

Example 3:heel pressure sore
1-2 2-3

Granulation 38.8±0.8 38.5±1.7
Slough 61.2±0.8 61.5±1.7

TABLE IX
REPEATABILITY OF THE CLASSIFICATION OVER FIVE RECONSTRUCTIONS

FOR TWO PAIRS OF IMAGES OF WOUND IMAGES

to compute the overlap scores obtained for single-view (2D)
and multi-view (3D) classifications. Finally, we compared the
scores between the 2D medical reference and 2D automatic
classification on the one hand, and the overlap scores between
the 3D medical reference and 3D classification results on
the other hand (Table X). Therefore we also calculated the
Kappa coefficient in the 2D approach (between classifier and
2D medical reference) and the 3D approach (between 3D
classification and 3D medical reference) (Table X).

Tissue class Overlap score (%) Kappa coefficient
2D 3D 2D 3D

Granulation 79.8 81.4 0.82 0.84
Slough 69.3 72.0 0.75 0.77

Necrosis 60.7 67.9 0.73 0.77
Average 69.9 73.8 0.77 0.79

TABLE X
2D/3D OVERLAP SCORES AND KAPPA COEFFICIENTS AVERAGED OVER

THE WOUND DATABASE.
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It can be seen that the agreement between medical refer-
ence and automatic classification is globally improved after
the merging step. The improved performance of multi-view
classification is visible in Fig. 13 where some areas of the
wound, which were misclassified in one of the two views, are
well classified after the merging step.

View 1 2D labeling 1 2D classif. 1

View 2 2D labeling 2 2D classif. 2

3D model 3D labeling 3D classification

Fig. 13. Robustness of multi-view classification.

These tests show that the merging of 2D classifications
enables more accurate tissue classification.

C. Wound metric assessment

Several computations are possible on the labeled 3D model
which is simply a mesh of elementary triangles.

Firstly, real tissue surfaces can be computed as the classi-
fication results are mapped onto the mesh surface of the 3D
wound model. This is a substantial improvement as 2D assess-
ment suffers from severe perspective distortions, preventing
the accurate computation of tissue proportions.

Secondly, the multi-view classification enables the wound
zone to be automatically isolated from the healthy skin, in
order to extract the 3D wound model from the 3D body model
captured (see (e) in Fig. 14). Formerly, it was impossible to
extract exactly the wound from the 3D model because only a
geometrical model and not a labeled one was available. The
wound zone was roughly outlined using the mouse to specify
the region in which points of interest where to be detected as
input for the 3D reconstruction process. Obviously, not many
of the points lay on the wound border, preventing an accurate
contouring. Now, we need only to consider the triangles
labeled as wound tissues and neighboring triangles labeled
as healthy skin tissues. Each common line of the triangles
is included in the wound outline. These lines constitute a
closed boundary, making it possible to compute the 3D wound
perimeter. Note that in the case where a triangle edge crosses
the wound border, the classification results will display healthy
and injured tissues and so the triangle will be split to fit to the
wound border.

Finally, the inner volume of a wound, an interesting clinical
index for the assessment of the healing process, can also be
computed. It is extracted from the labeled 3D model by closing
the wound surface with a reference plane. Of course, in the
case where the wound is placed on a curved part of the body,
typically on the heel, this plane should be replaced by a surface
closer to the anatomical shape. Formerly, the reference plane
was estimated from 3D points detected in a strip of healthy
skin around the tracing [45] (see (d) in Fig. 14). This plane
is now obtained by a least square minimization on the real
3D wound outline. The triangulation-based volume calculation
consists simply in summing the elementary volumes under
each prism formed by facets and their orthogonal projections
on the reference plane (see (f ) in Fig. 14). Another important
clinical index is derived by closing the wound volume, namely
the maximum depth over the wound.

a b

c d

e f

Fig. 14. Computing of real measurements by multi-view approach. (a-
b) two views of the same wound (c) the 3D model calculated from these
views (d) multi-view classification result (e) the detected zone of the wound
isolated automatically from the healthy skin (f) the inner volume of the wound
determined by closing the wound surface with a plane.

We can see in Table XI for the example given in Fig. 14 that
the different wound measurements are significantly modified
when the exact wound border is considered. 3D surface and
volumes are good indices for therapeutic follow-up and clearly,
tedious processes such as molding or serum injection will be
advantageously avoided using 3D wound imaging.

Index No detection Detection Var. (%)
3D surface (cm2) 45.09 29.28 -35.0

Volume (cm3) 13.84 9.34 -32.5
Max. depth (cm) 1.49 1.55 +4.0

TABLE XI
COMPARISON OF SEVERAL WOUND INDICES WITHOUT AND WITH WOUND

BORDER DETECTION.
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VI. CONCLUSION

Tissue classification is an essential part of wound assess-
ment. By combining color and texture descriptors as an
input vector of a SVM classifier, wound tissues have been
classified from a single view into granulation, slough and
necrotic tissues, competing with experts who had not seen the
patients. However, a lack of repeatability is observed, due to
the variations in the lighting conditions and the camera pose
from one visit to the next. By combining 3D wound surface
measurements with tissue classification in a single innovative
and user-friendly tool, enhanced wound healing assessment
has been achieved and as only a simple hand held digital
camera is necessary, its widespread use by clinical staff will
be very easy. The power of this strategy relies on the 3D
wound model onto which tissue labels are mapped and clas-
sification results are merged. Experimental tests demonstrate
that enhanced repeatability and robustness are obtained for
tissue classification and that metric assessment is achieved
through real area measurements, wound outline extraction and
inner volume computation. In telemedicine environments, such
a standardized and reproducible assessment of wounds using
a digital camera is an essential requirement. A stronger agree-
ment with the medical reference is obtained by multi-view
classification results compared to single-view results, as ob-
served on the overlap scores (73.8 against 69.9) and the Kappa
coefficients (0.79 against 0.77). Finally, as demonstrated by
the moderate inter-expert overlap scores, it should be noted
that images alone cannot provide a complete understanding of
wound healing and that the professional experience and patient
knowledge of the clinician will remain essential for therapeutic
decisions.

The extension of the current wound database is currently
under way for enhanced tissue characterization and clinical
staff education. In practical terms, a web site is dedicated to
wound image uploading by clinical staff. We also intend to
improve these results by matching regions from more than
two views and by testing color descriptors that are invariant
to viewpoint and lighting conditions. As many wounds are
more complex and need further differentiation beyond the
red/yellow/black scale, we are now investigating multispectral
imaging capabilities.

The 3D model could also help classification, as granulation
tissue is often bulb-shaped. Finally, the application of this
complete wound assessment tool is currently in progress
through clinical practise involving several care centers at the
national level.
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