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ABSTRACT
The mixing/demixing of audio signals as addressed in the signal processing literature (the “source separation”
problem) and the music production in studio remain quite separated worlds. Scientific audio scene analysis
rather focuses on “natural” mixtures and most often uses linear (convolutive) models of point sources placed
in the same acoustic space. In contrast, the sound engineer can mix musical signals of very different nature
and belonging to different acoustic spaces, and exploits many audio effects including non-linear processes.
In the present paper we discuss these differences within the strongly emerging framework of active music
listening, which is precisely at the crossroads of these two worlds: it consists in giving to the listener the
ability to manipulate the different musical sources while listening to a musical piece. We propose a model
that allows the description of a general studio mixing process as a linear stationary process of “generalized
source image signals” considered as individual tracks. Such a model can be used to allow the recovery of the
isolated tracks while preserving the professional sound quality of the mixture. A simple addition of these
recovered tracks enables the end-user to recover the full-quality stereo mix, while these tracks can also be
used for, e.g., basic remix / karaoke / soloing and re-orchestration applications.

1. INTRODUCTION

Active listening consists in performing various op-
erations that modify the elements and structure of

the music signal during the listening of a music piece.
This process, often simplistically called remixing, in-
cludes generalized karaoke (music minus one: abil-
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ity to suppress an instrument), re-spatialization, or
application of individual audio effects (e.g., adding
some distortion to an acoustic guitar). The goal
is to enable the listener to enjoy freedom and per-
sonalization of the musical piece through various re-
orchestration techniques. Alternately, active listen-
ing solutions intrinsically provide simple frameworks
to the artists to produce different artistic versions of
a given piece of music. Moreover, it is an amazing
framework for music learning/teaching applications.

Active listening applications have received a growing
attention in the past years, as illustrated by multi-
track formats such as iKlax [5] or MXP41, musical
games such as Harmonix Rock Band2, and objects-
oriented audio standards such as MPEG-SAOC [3].
Those technologies all benefit from the prior record-
ing and processing of the separate elements. Indeed,
in order to achieve active listening, one has to control
the so-called “stems” within the mixture. A stem is
a signal that represents a track, an instrument or
a group of instruments that have to be processed
together according to some (arbitrary) artistic cri-
terion. For example, the drums, which are a com-
bination of several percussive instruments, can be
considered as a single stem if the complete drums
set is to be controlled globally, whereas it can be
decomposed into several stems, e.g., for pedagogical
applications.

In active listening, a stem plays the role of what is
referred to as “source signal” in the signal process-
ing literature. Because the stems have to be consid-
ered at both the music production level (the record-
ing and mixing studios) and at the user level (per-
sonal music player), an active listening system has
the form of a coder/decoder system, as illustrated on
Figure 1. The coding stage allows direct or indirect
transmission of the source signals and the decoding
stage allows recovery, individual manipulation, and
remixing of these source signals. The simplest case
is the multi-track format (Figure 1a): in this case,
the full original source signals are perfectly known
at the decoder. The problem here is that a very lim-
ited number of commercial songs are distributed in
this format. The size of the multi-track files and the
reluctance of the music industry to give unlimited

1http://www.mxp4.com/
2http://www.harmonixmusic.com/
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Fig. 1: Coder/Decoder schemes for active listening.

access to the separated stems are probably the most
important limitations of such distribution formats.

Most often, only the mix signal is available at the
decoder. Source separation may then be used to re-
cover the source signals (Figure 1b). Here, the term
source separation refers to the process of recovering
the source signals from the mix signal only. This
includes different approaches [8]. However, despite
of the intensive efforts of the research community in
this topic in the last decades, these “blind” source
separation approaches still do not accurately recover
the original source signals for real-world complex au-
dio mixtures. The quality of separated source signals
is thus generally not sufficient for active listening
applications. In particular, it is not guaranteed to
estimate the correct number of sources as shown on
the figure.

Recent approaches try to draw a line between multi-
track (i.e. source coding) and source separation,
merging these two aspects in a hybrid approach: In-
formed Source Separation (ISS) [4, 14, 13, 9, 6, 12]
and Audio Object Coding (AOC) [2, 3, 7] consist
in extracting a prior knowledge from the signals
at the coder stage to facilitate the separation at
the decoder stage (Figure 1c). This knowledge is
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compressed and transmitted to the decoder as side-
information, either in a separate channel, or em-
bedded within the mix signal bitstream, or hidden
within the mix signal samples by watermarking tech-
niques. The major advantages of this approach is
that the music signal is provided with a format that
is totally compliant with usual music players (mostly
PCM or compressed format), so that the default
“passive” listening can be performed on any player.
On top of that, the side-information is usually lower
than the compressed versions of the separated sig-
nals that would be transmitted with the mix.

In all cases, the quality of mix and remix is of
paramount importance in commercial music: mix-
ing is not straightforward. In a typical studio setup,
various non-linear and non-instantaneous effects are
used at different stages of the production chain. This
raises two issues for active listening applications:

1. If one can recover the separated signals, do they
take into account full or part of these mixing
effects? And thus, which part of the effects re-
mains in charge of the remix?

2. In the case where source separation is used to
provide the signals, how are these effects taken
into account in the separation process?

So far, these two issues have been poorly addressed,
if not avoided. At the end of the music produc-
tion chain, mixing and remixing are often reduced
in the audio processing literature to a simple Lin-
ear Instantaneous Stationary (LIS) process, which
does not provide the full flexibility of studio effects.
In other words, the LIS model does not apply in the
case of artistic music (re)mixing. In the case of audio
source separation, most of the literature addresses
linear, instantaneous or convolutive, mixtures but
non-linear mixture analysis remains marginal3.

As will be presented later, the studio constraints
are not appropriate for simple and efficient source
separation methods based on this linearity assump-
tion. The goal of this paper is precisely to clarify the
links between studio mixing techniques and demix-
ing/remixing models, as used in audio scene analysis

3An example of ”post non-linear” configuration can be
found in [16], but the mix process before the non-linear trans-
form is limited to instantaneous and determined, a quite un-
usual configuration in studio mixing.

and source separation techniques, within the active
listening framework. In particular, an effort is done
on the disambiguation of the terms source, track,
stem and signal in relation to the problem. This pa-
per also presents a generalized linear mixing model
that conciliates the studio production constraints
and the efficiency of some existing separation and
remixing methods based on the LIS assumption.
Note that, because ISS and AOC allow the access to
the (different steps of) source/mix processing, they
offer a privileged framework for the present study.
Some considerations may thus be specifically appli-
cable to ISS/AOC systems, but some others may
concern the whole source separation framework.

This paper is organized as follows. In Section 2
we briefly present the fundamental models of audio
source mixture and separation as generally consid-
ered in the literature. In Section 3 we present a typi-
cal studio mixing setup, as generally implemented on
Digital Audio Workstations (DAW). In Section 4, we
detail the differences between these two frameworks,
and underline the difficulties, if not impossibilities,
of directly applying usual mixture models to music
produced in studio. In Section 5 we then extend
the “studio process” to a distributed instantaneous
form applicable to existing active listening systems
in real conditions, using tools already available in
professional music production. Section 6 concludes
the paper and opens on future works.

2. A BRIEF REVIEW OF MIXTURE MODELS

As seen before, the most simple mixing model is the
LIS process, which involves only one invariant mix-
ing parameter per source per channel:

mj(n) =
∑
i

ai,jsi(n), (1)

where mj is the mixture signal on output channel
j, si are the source signals and ai,j is the mixing
coefficient of source i onto channel j. Such mixture
is very simple but has poor physical reality in the
case of sounds (a simple “pan-pot”). It is however
often chosen because of its linearity and the small
number of mixing coefficients.

More complex models involve the observation of an
acoustical scene [15] where the sources are recorded
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using multiple microphones. Often, the number of
channels J is 2 as in the case of stereophonic sounds.
This is directly linked to the fact that humans per-
ceive sounds with two ears. This model leads to
more complex mixtures such as the linear convolu-
tive model. For each source and each microphone,
an impulse response ri,j(n) that depends on their
absolute position in space, can be computed so that
the mixture can be modeled as:

mj(n) =
∑
i

∞∑
l=0

ri,j(l)si(n− l). (2)

The linear instantaneous model and, more impor-
tantly, the linear convolutive model are the basis for
a large amount of work in source separation of “real-
life” audio scene (see a review in, e.g., [10]). How-
ever, these models are very limiting in regards to
the various possibilities of professional music mixing
(and also demixing as long as active listening from
the mix signal is involved) because they only con-
sider linear processing of point sources all placed in
the same acoustical space. However, these models
have the advantage of being very simple and tightly
linked to the way the human brain listens to music.
These models also offer a privileged framework in
the case of videoconference and robot audition be-
cause of the unique and well defined acoustic space
of such applications.

3. A TYPICAL DAW MIXING SETUP

Let us consider a typical DAW mixing desk used for
the production of professional-quality music from in-
dividually recorded tracks, with arbitrary audio ef-
fects. Note that the notion of source is irrelevant
here: tracks are the elements that are processed dur-
ing mixing. One can classify effects in three cate-
gories:

1. Linear instantaneous effects: gain and panning
(different gains for different channels)

2. Linear convolutive effects: equalization, rever-
beration, delay...

3. Non-linear effects: distortion, chorus, dynamic
processing and various complex signal process-
ing such as denoising or non-linear analog mod-
eling.

A typical DAW setup is presented on Figure 2 for
a conventional stereo 2-channel mix. Previously
recorded tracks are considered as the inputs of the
system. Note that without loss of generality, auxil-
iary mixing busses (effects send, sub-mixes) are not
presented on the figure: they are only specific cases
of this general overview. The general process can
be sequenced as follows. The listed effects are first
applied on a per-track basis, with mono or stereo
tracks, between step 1 (tracks, ti) and step 2 (tracks
with effects). The mono tracks are then panned be-
tween left and right channels with simple gains or
more sophisticated effects to obtain spatial images.
Stereo effects may be correlated from one channel to
another (last stereo channel of Figure 2). At step 3,
each track has been processed to its multi-channel
version ti,j . These multi channels versions are then
summed to provide the so-called “master” (step 4).
The master bus is then processed, with convolu-
tive and non-linear effects. Those additional effects
lead to the so called “artistic mix” or “commercial
mix” (step 5), the final product experienced by the
end-user. In summary, considering a per track mix-
ing function Ni,j [.] and a master processing function
Oj [.], the mixture m on channel j is given by:

mj = Oj

[∑
i

Ni,j(ti(n))

]
= Oj

[∑
i

ti,j(n)

]
. (3)

Note that between steps 4 and 5, only few effects
are present. Generally only equalization, dynamic
processing and sometimes reverberation are applied.
Non-linear effects other than dynamic processing on
the master track are rare, but this dynamic process-
ing is generally of great importance. For example, it
is used to modify the mixture so that it fits the distri-
bution medium (e.g., “loud” version for radio broad-
casting, see also the loudness war problem [17]).

4. LINK BETWEEN SIGNAL PROCESSING
MODELS AND STUDIO REALITY

As one can see from the two preceding sections, the
difference between classical mixture modeling and
practical mixing in music production is significant.
The present Section discusses the limitations of the
existing models with regards to the music produc-
tion practices. Different existing implementations
will also be discussed.
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Fig. 2: A classical DAW 2-channel setup with mono and stereo sources. Circles indicate arbitrary effects
processing.

4.1. Source images

Consider a set of “tracks” used for mixing. Thanks
to studio practices (e.g. close miking, acoustic barri-
ers, re-recording) separation between tracks is often
excellent. The basic idea of active listening is then
to capture the separate tracks ti (stage 1 of Figure 2)
and give the end user the ability to modify them via
a mixing desk. However, some of these tracks cap-
ture (a part of) the same instrument (e.g. drums,
piano) or the same group of instrument (e.g. : choir,
brass section). The work of a mixing engineer often
consists in assembling these tracks into consistent
stereophonic (or multichannel) submixes. Take for
instance a drums kit captured with 12 microphones,
the corresponding tracks are assembled to a consis-
tent stereophonic submix.

Actually, the mixing engineer tries to “build” an
image of each instrument. When listening to the
mix, the brain of the auditor then decomposes the
mix into these images [1], separating the different
so-called “source images” [11, 18]. Active listening
systems must then take this constraint into account:

• Give access to the separated tracks but with
a symbolic link between tracks related to the
same musical image.

• Directly give access to the source images as

composed by the engineer, rendering this sym-
bolic link implicit.

In all cases, the end user gets to modify each (or a se-
lected number of) source images composing the mix.
Note that the term “source image” is ubiquitous as
it may refer to an ensemble (e.g. choir), an instru-
ment (e.g. piano, drums) or a specific acoustically
separable part of an instrument (e.g. snare drum).
Each source image is arbitrarily defined according to
its potential use at the active listening stage. Note
that the separation quality may be impacted by the
acoustical separation of the recordings.

We then define the kth source image sk,j on chan-
nel j contained in the mixture mj . Source images
are obtained at level 3 by assembling the processed
tracks ti,j in different sets. Let us designate one set
by Ik, then each track i is contained in one and only
one set Ik, and we have:

sk,j(n) =
∑
i∈Ik

ti,j(n). (4)

Note that, as expected, source images are multi-
channel versions of the sources si, but the former
are practical representations whereas the latter are
ideal representations. We define the mix as a sum of
source images sk,j captured as a set of multichannel
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tracks from the level 3 of a DAW mixing desk :

m̃j(n) =
∑
k

sk,j(n) =
∑
k

[∑
i∈Ik

ti,j(n)

]
. (5)

If there exists a (physical) link between the channels
at the signal production level, or at the mixing level,
then there may be an identifiable relation within the
source images, i.e. between sk,1 and sk,2 for a 2-
channel mix. This relation may be exploited in the
demix/remix application [4].

4.2. Inverting the mixing effects

Simple mixing models, as presented in Equation (2),
only consider the (idealized) source si and not its
(practical) source image artistically constructed by
the sound engineer. In order to take into account the
real mixing condition, one could define a per source
mixing function βi,j that changes each ideal source
si into its image si,j on every channel (level 3 of
Figure 2) so that the raw mix m̃j is given by:

m̃j(n) =
∑
i

βi,j (si(n)) . (6)

Active listening is then done by inverting or modi-
fying βi,j , but this raises various issues:

1. Effects used during mixing are often complex
and even non linear. They are therefore difficult
to invert.

2. During the mix, some processing is done to en-
hance the coherence between tracks that will
build a common source image. Inverting such
processing would break this coherence.

3. If the instrument is large (e.g. piano, choir,
or drums) it might be intrinsically defined as
a source image (e.g. using stereo capture).

Note that the difference between Equations (6) and
(5) is based on the inversion of the mixing process.
Therefore, the channel-based approach of Equation
(5) is more general in the case of artistic mixes.
The main drawback of the channel-based approach
is that using signals that already carry their convolu-
tive term and panning effects may notably limit the
possibility of re-spatialization. But even so, it can
be reasonably argued that inversion of spatialization

is expected to be much easier on a single well sep-
arated source signal than on a complete mix signal.
In the case of ISS, a representation of this spatial-
ization function could very well be embedded within
the mix to facilitate its inversion.

4.3. Master effects

As presented before, the use of source image may be
the simplest choice for active listening. Practically
speaking, the engineer has only to “solo” the tracks
corresponding to a selected source image set Ik in
order to record it separately. However, the presence
of effects on the master may be problematic, espe-
cially if they are non linear. Such effects are modeled
by the term O of Equation (3). Take for instance
the scheme of Figure 2: the rough mix is often dy-
namically processed to make it “louder” (additional
reverberation and equalization can also be applied).
Extreme dynamic processing (also known as brick-
wall limiting) is also commonly used to cut the signal
above a certain threshold. Such highly non-linear
dynamic processing can produce additional spectral
content on the mix signal and can even change the
spatial perception of the sound. But these modifi-
cations are not present on the source images as cap-
tured at level 3 of Figure 2, since they are captured
before the summing stage. Therefore, at the decoder
of an active listening system, the summation of in-
dividual/separated source image signals, as they ap-
pear before the master processing, cannot give back
the full artistic properties of the musical piece.

4.4. Limitations of the existing techniques

The use of multi-track format (Figure 1a) taken at
stage 3 of Figure 2 is prejudicial to the global ar-
tistical quality of the reconstructed mix. Because
the end-user has not access to the processing done
on the master, some of the artistic quality of the
mixing is lost. Moreover, trying to subtract a source
image from the artistic mix might not allow full qual-
ity “music minus one” applications because of these
added master effects.

Since source separation (Figure 1b) relies on knowl-
edge of the final mixture (where the master effects
are present), reconstructed source images may con-
tain part of these effects: the main idea behind
source separation is that the error between the sum
of the estimated source images and the original mix
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is zero. Then, the spectral content added by addi-
tional processing would anyway be distributed onto
the reconstructed source images regardless of their
capture point on Figure 2. However this distribu-
tion is not well controlled. This has been observed
in SAOC [3], ISS [9] and blind separation [11].

In contrast, the use of an informed approach (Figure
1c) can allow a better control of this problem. We
focus on this point on the next section.

5. GENERAL SEPARATED MIXING MODEL

After the discussion in the previous section, it ap-
pears that the remaining important question is how
to allow the processing effects on the master be-
tween steps 4 and 5 to be distributed on each source
image. This section presents a new model that of-
fers versatile possibilities for the implementation of
source separation methods. In particular we propose
a targeted linearization of the dynamic processing
(including all kinds of compression and limiting) so
that we can reduce the artistic mix to a sum of what
will be presented as “generalized source images”.

5.1. Back to linear: Distributing the dynamic
processing effects

Let us remind that the processed track signal i at
level 3 of Figure 2 is given by ti,j(n). As mentioned
before, two kinds of effects can be applied to the
master:

• cj(n) represents a convolution process that en-
compasses all linear time-invariant processing
(equalization, reverberation) on the master.

• nj(.) is a non-linear function at the end of
the processing chain (mainly modeling dynamic
processing, see below).

The master signal on channel j is thus given by:

mj(n) = Oj

(∑
i

ti,j(n)

)
= nj

(
cj(n) ∗

∑
i

ti,j(n)

)
. (7)

This model represents then the complete mixing pro-
cess. The objective is here to transform this pro-
cess into an equivalent linear process. For this aim,

the convolutive process cj(.) can be first easily dis-
tributed to each pre-master track to provide a new
convolved track cj(n) ∗ ti,j(n). The non-linear term
nj(.) is more problematic at first sight. However, al-
though non-linear effects are various in studio, only
a few of them are actually used on busses of the mix-
ing desk. Most of the non-linear effects are dynamic
processors such as compressors or limiters. This is
especially true for the master bus: as mentioned be-
fore, in most conventional mixing, nj(.) represents
the dynamic processing only, and we focus on this
effect in the following.

Dynamic processing is composed of two chained
components, as represented on the top of Figure 3:
the dynamic detection and the gain (reduction). Dy-
namic detection consists in estimating the instan-
taneous gain gj(n) from the input mix m̂j(n) =∑

i cj(n) ∗ ti,j(n). The gain chain consists in ap-
plying this gain to the input mix signal as a simple
time-varying envelope to obtain the final mix sig-
nal mj(n) = gj(n)m̂j(n). At this point, it is of pri-
mary importance to note that dynamic processing is
a non-linear process from the “control” signal point
of view, but it is a linear (non time-invariant) pro-
cess from the “target” signal point of view, i.e. the
signal on which the dynamic compression is applied.
In other words, the gain gj(n) can be distributed on
each convolved track signal, so that:

mj(n) =
∑
i

gj(n)(cj(n) ∗ ti,j(n)).

As opposed to other non-linear effects, dynamic pro-
cessing with a side chaining input can be processed
as if it were linear. This way, we are able to compute
the spectral modification induced by the dynamic
processing on each track. We can thus redefine the
track signals at the final master level as:

t̃i,j(n) = gj(n)(cj(n) ∗ ti,j(n)),

and thus we have

mj(n) =
∑
i

t̃i,j(n).

Thanks to the linearity of Equation 4, all the previ-
ous considerations can also be applied on the source
images. Therefore we can introduce the “general-
ized” source image s̃k,j given by:

s̃k,j(n) = gj(n)(cj(n) ∗ sk,j(n)) =
∑
i∈Ik

t̃i,j(n),
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and the final master can be redefined as a linear
mixture of generalized source images:

mj(n) =
∑
k

s̃k,j(n).

Of course, in such a mixture, the relation between
the images of the same source signal within the dif-
ferent channels may not be characterized/identified
easily, depending on the nature of the processes
at the pre-mix and post-mix levels. Therefore, it
may be tricky to exploit such a relation explic-
itly/analytically within a sophisticated demix/remix
application. However, in the ISS context, basic ma-
nipulations such as volume control (up to complete
suppression or soloing) or respatialization based on
repanning or inversion of the convolutive term, can
be implemented since the ISS coder has access to
these “generalized source image signals”. For exam-
ple, this can be done by using Wiener filters built
from the source image spectrograms, in the same
way as what has been done before on uncompressed
mix signals [9].

Although basic, these manipulations are of primary
importance for many active listening applications,
e.g. gaming or music learning applications. Because
a simple addition of all the generalized source images
s̃k,j allows the exact recovery of the mixture mj (up
to machine precision), then it can be assumed that a
linear remix made with reasonably modified source
images will also be of good artistic quality. In par-
ticular, the complete muting of a given source for
karaoke applications should not affect the quality of
the resulting “N-1” mix.

As noted before, in ISS the convolutive term cj(n)
and even the track level processing, can be computed
and encoded with the representation of the source
image to allow further re-spatialization as in Equa-
tion (6).

5.2. Practical implementation

In practice, the distribution of the gain gj(n) on the
source image signals can be done in different ways,
within or outside of the DAW. Two ways are pre-
sented here, that may involve little change of the
production setup in order to allow posterior separa-
tion of the source images.

5.2.1. Side-chaining

First, it can be done with the use of side chaining.

Typical dynamic processing

Dynamic

detection

Mix Gain Compressed

Mix

Proposed modification

Mix
Dynamic

detection

Source
image Gain Compressed

source image

Fig. 3: Dynamic processing. Up: usual implemen-
tation; down: use of side chain.

The corresponding configuration of the dynamic pro-
cessing unit is shown on the bottom of Figure 3. In
two passes, the engineer can first record m̂j , which is
the mixture without dynamic processing, and then
inject it into the dynamic processor side input so
that when soloing a set Ik of tracks, it can still record
the corresponding generalized source image with the
full effect of the master processors.

Such distribution of the dynamic processing can be
done on-line if two mixing busses are used: one con-
taining m̂j that feeds the side-chain input, and one
containing only s̃k,j .

5.2.2. Estimation of the gain reduction

If the mix is already produced, then distribution of
the gain reduction may not be available. The re-
maining option is to pose an inverse problem and to
estimate the gain reduction gj . Then, it would be
possible to apply it on the source image signals a
posteriori. Therefore, the simplest way to do so is
to have the final mix mj and compare it to the raw
mix, i.e. the sum of the pre-mix source image signals
m̂j(n) =

∑
i s̃k,j(n) (for simplicity of notations, let

us consider here the monophonic case of this prob-
lem, and omit the channel index j from now on).
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Obviously, trying to estimate g(n) by computing

ĝ(n) =
m(n)

m̂(n)

would lead to numerical problems when m̂(n) → 0.
Amongst the various available possibilities, one can
choose to compute time-envelopes using the Hilbert
transform H:

e(n) =
√
m(n)2 +H(m(n))2, (8)

ê(n) =
√
m̂(n)2 +H(m̂(n))2. (9)

We can estimate g(n) from the envelopes ratio:

ĝ(n) =
e(n)

ê(n)
. (10)

Prior smoothing of the envelopes or posterior
smoothing of this ratio may be applied to further
“regularize” ĝ(n), e.g. using a zero phase averag-
ing or median filter. Experimental results are pre-
sented on Figure 4. This is a proof of concept on
a music mixture of 6 instruments at 44.1kHz sam-
pling rate (Shannon Hurley - Sunrise, Creative Com-
mons). The unprocessed mixture m̂ is obtained at
level 4 of Figure 2. The mixture m̂ is dynami-
cally processed with a professional compressor plug-
in (Waves RComp) set at 5ms attack, 200ms release,
8:1 compression ratio and a threshold of -10dB. The
gain g is estimated using Equation (10) with a 0.5ms
median post-filtering. The average signal to predic-
tion error ratio is -37dB.

6. CONCLUSION

In this paper we discussed the links and discrepan-
cies between mixing/demixing models in the signal
processing literature and the professional music pro-
duction world. We proposed a “unified” or “gen-
eralized” model allowing basic active listening in a
linear framework while preserving maximum qual-
ity of the artistic mix. This is done by integrating
all the linear and most of the non-linear stages of
mix processing within the “generalized source im-
age signals”: summing these signals leads to exactly
recover the artistic mix (up to machine precision).

At the end of the remix chain (i.e. at the general
public user level) this technique restitutes the maxi-
mum auditory quality while keeping a low complex-
ity, which is a crucial issue for the implementation
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Fig. 4: Estimation of the gain envelope on a mix.

of active listening systems on mobile platforms, e.g.
multimedia players, smartphones or tablets. For
instance, such generalized linear framework allows
the improvement of the ISS stereo to stereo remix-
ing systems of [9, 4], with no additional complexity
at the decoder. As discussed in Section 5, such a
system enables basic but important source images
manipulation such as volume control and basic re-
spatialization. In the present framework, a musical
source can be totally muted without affecting the
quality of the resulting music-minus-one mix. At
the music production level, the corresponding setup
is easily implementable in a classical DAW provided
that the dynamic processor on the master track has a
side chain input. It can also be implemented a poste-
riori with little impact on quality, provided that the
source image signals before final dynamic processor
are available at the active listening encoder.

The tradeoff however, is the increased difficulty at
the decoder in accurate respatialization of the so-
called generalized source images, that are in fact
stereo images already placed in an acoustic space.
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Therefore, the proposed model provides a complete
separation framework but does not solve the inverse
problem of finding back the (ideal) sources compos-
ing the mixture. Future work should then focus on a
practical implementation of an ISS coding/decoding
framework using this model, and on the inversion of
the mixing effects present on the estimated signals.
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