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1. Introduction

Galloping is a typical phenomenon of aerodynamic instability of slender structures having non-
circular sections. It manifests itself with large amplitude oscillations, mainly in the crosswind
direction. Tall buildings and high-rise structures, isolated structural elements, lighting pole and
cables subjected to icing conditions are typical examples of structures susceptible to galloping
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when the wind velocity exceeds certain critical values. From a technical point of view, in order to
avoid possible crisis conditions, the knowledge of the critical conditions seems particularly
important even if the structural behavior could be compatible with nonlinear post-critical
oscillations such as in the case of cables.
In 1932 Den Hartog introduced the first criterion concerning the critical condition for the one

degree-of-freedom (dof) vertical galloping, specifying the aerodynamic loading conditions under
which a horizontal conductor can gallop; the theory was developed concerning a sectional model
in the quasi-static regime, which is satisfied when the characteristic fluid-dynamic time scale of the
velocity fluctuations in the wake of the cylinder is much faster than the characteristic time scale of
the cylinder oscillation.
The requirement of generalized critical conditions arises from the proposal of sectional models

having a higher number (in general, three) of coupled dof (e.g. [1,2]). But, owing to the
impossibility to obtain analytical solutions for the whole coupled model, the literature proposes
results concerning two dof reduced models, as the vertical-torsion coupled galloping [3] and the
coupled translational galloping [4]. It should be noted that this kind of reduced models is realistic
only when the neglected mode admits a frequency far from those of the two modes taken into
account. Whereas in the vertical-torsion galloping an attempt of investigating the instability
trends of the dynamic behavior of a single iced conductor was proposed [5], a lack exists in the
study of mechanisms governing coupled translational galloping. In this field a new criterion
(called generalized Den Hartog criterion) was proposed [4] and a formula defining the onset wind
velocity for the bi-dimensional coupled galloping oscillations of tower buildings was presented [6].
Both these analyses, however, are performed by supposing that the fundamental natural
frequencies in the two directions are perfectly coincident. This last assumption permits simple
closed-form solutions to the fourth-order characteristic equation governing the problem to be
obtained. In contrast, if this hypothesis is removed, numerical methods must be employed;
consequently only specific problems can be studied while an exhaustive description of all the
possible critical conditions for varying system parameters is quite difficult to obtain. For this
reason, the proposal of an approximate analytical method seems to be very important in order to
discuss the qualitative aspects of the problem of coupled translational galloping.
In this paper a perturbation method to analytically evaluate the eigensolutions of a two dof

coupled translational galloping for any frequency ratio is developed. Preliminary results were
obtained in Ref. [7]. By introducing the invariants (i.e. the trace and the determinant) of the total
and aerodynamic damping matrices, the eigenvalues are obtained in an expressive simple form. In
particular, the conditions of incipient instability are analyzed in the plane of the aerodynamic
damping matrix invariants, where each point is representative of a family of cross-sections
with given aerodynamic characteristics. Unlike the literature, where single cases are analyzed,
the complete scenario of all the possible bifurcation mechanisms is given in the invariants
plane. Moreover, the transition from the resonant and non-resonant cases is pointed out through



quasi-resonant conditions. The numerical applications related to examples of iced-cable sections
already treated in the literature, highlight the practical interest of domains identified in the plane
and permit verification of the reliability of the proposed method.

2. Problem formulation
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Let us consider a spring-mounted damped rigid cylinder of indefinite length (i.e. a sectional
model), with two translational dof, subjected to a bi-dimensional turbulent flow of horizontal
uniform velocity U (Fig. 1). This model is a particular case of a three dof nonlinear model

developed in Refs. [1,2,8]. In these references, the alongwind and crosswind components of

turbulence have been explicitly considered originating a random excitation problem. Here,
instead, the influence of turbulence is restricted to a suitable modification of the values of drag
and lift aerodynamic coefficients (e.g. see Ref. [9]), so that they present numerical values different
from the laminar ones. In this classic approach a deterministic problem is treated and the
turbulent terms did not appear explicitly in the loading terms. In the quasi-static regime (i.e. at
much lower oscillation frequencies than the vortex-shedding frequency), the non-dimensional
linearized equations of motion have the well-known expression (e.g. [4]):

M€qðtÞ þD_qðtÞ þ KqðtÞ ¼ 0,

M ¼
1 0

0 1

" #
; D ¼

d11 d12

d21 d22

" #
; K ¼

o2 0

0 1

" #
; qðtÞ ¼

q1ðtÞ

q2ðtÞ

( )
, ð1Þ

where M�I, D, K are, respectively, the mass, damping and stiffness matrices, q(t) is the
Lagrangian displacement vector with q1(t) alongwind (horizontal) and q2(t) crosswind (vertical)
displacements; dots denote dimensionless time derivatives. Constant forces, driven by the mean
wind speed, are neglected as in Ref. [4], since they do not affect the oscillatory behavior of a linear
system. The coefficient matrices and the dimensionless quantities involved in Eq. (1) assume the
following expression:

d11 ¼ 2oxs þ 2mcd ; d12 ¼ mðc0d � clÞ; d21 ¼ 2mcl ; d22 ¼ 2xs þ mðcd þ c0lÞ,

~qi ¼
qi

b
; ~t ¼ o2t; m ¼

rbU

2mo2
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o2
, ð2Þ
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Fig. 1. Elastically supported two dof model (q1, q2 Lagrangian displacements; ga instantaneous angle of attack;

V wind relative velocity; FD drag force; FL lift force).



where r is the fluid density, b is a suitable reference length of the cylinder cross-section, m is the
cylinder mass per unit length, o is the ratio between the alongwind (o1) and crosswind ðo2Þ

dimensional natural frequencies, xs is the mechanical damping ratio (assumed equal in the two
directions), c0j ð j ¼ d; lÞ are the first derivatives of drag (cd) and lift (cl) coefficients with respect to
the fluctuating angle of attack, m is the dimensionless wind velocity and t is the time; finally, the
tilde has been omitted in Eq. (1).
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In Eqs. (2), the aeroelastic effects are accounted for by the total damping matrix D:

D ¼
2oxs 0

0 2xs

" #
þ m

c11 c12

c21 c22

" #
¼ Cs þ mCa, (3)

where Cs and Ca are the mechanical and aerodynamic damping matrices. Since D is generally full,
it is responsible for the coupling between the two dof.
In order to evaluate the conditions of incipient instability, an eigenvalue problem has to be

studied. The solutions to Eq. (1) are of the type qðtÞ ¼ w expðltÞ; from which a homogeneous
algebraic system follows:

l2Mþ lDþ K
� �

w ¼ 0. (4)

By setting the determinant of the matrix in Eq. (4) to zero, a fourth-order characteristic
(or secular) polynomial equation, f ðl; mÞ ¼ 0, is obtained in the unknown l ¼ lðmÞ. When D is
full, analytical solutions of this equation can be drawn only in particular cases, e.g. when o ¼ 1
(see Refs. [4,6]). Other significant particular conditions are the following. If a symmetric cross-
section is stressed by the mean wind speed along the symmetry axis, D is diagonal (d12 ¼ d21 ¼ 0)
and the two dof are decoupled; therefore, only a single vertical galloping can occur, since
the drag coefficient cd and, therefore, the total alongwind damping d11, is positive for any
cross-section shape. A similar situation occurs when d12 or d21 vanishes; in these cases the
horizontal motion is identically zero if d12 ¼ 0 or follows the leading vertical oscillations in a
passive way if d21 ¼ 0. In all the previous particular cases the classic Den Hartog criterion,
d22 ¼ 0, holds.

3. Perturbation solution

A perturbation method is applied to obtain approximate analytical expressions for the
eigensolutions of system (1), valid for any frequency ratio o. A perturbation parameter � � 1 is
introduced in the equation through a suitable ordering of the coefficients. Namely, it is assumed

that the coefficients of the total damping matrix D are small of order �, i.e. D ¼ � ~D. This ordering

is generally well founded, since the mechanical damping is small and the control parameter m is
also small for wind velocities close to the critical values of slender structures. Omitting the tilde,
Eq. (4) reads:

Kþ l2Iþ �lD
� �

w ¼ 0. (5)

Then, the �-dependent eigensolutions are expanded in MacLaurin series of � as

lð�Þ ¼ l0 þ �l1 þ �2l2 þ 	 	 	 ; wð�Þ ¼ w0 þ �w1 þ �2w2 þ 	 	 	 . (6)



In order to solve Eq. (5) it is appropriate to distinguish two different cases, according to the
frequency ratio o: (a) non-resonant solution, o� 1j j4OðeÞ; (b) resonant and quasi-resonant
solution, o� 1j j ¼ OðeÞ.

3.1. Non-resonant solution
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By substituting Eqs. (6) in Eq. (5) and equating to zero terms with the same power of �, the
following perturbation equations are obtained up to the �-order:

�0 : Kþ l20I
� �

w0 ¼ 0,

� : Kþ l20I
� �

w1 ¼ �2l0l1w0 � l0Dw0. ð7a;bÞ

Eq. (7a) is an eigenvalue problem, from which four eigensolutions ðlðkÞ0 ;wðkÞ
0 Þ ðk ¼ 1; . . . ; 4Þ are

drawn. Eq. (7b) is a singular non-homogenous problem, since det½Kþ l20I� ¼ 0 for l0 ¼ lðkÞ0 . In

order that it admits solution, the known-term must belong to the range of the operator
(solvability, or compatibility, condition), i.e. it must be orthogonal to the null-space of the adjoint
operator. Since the operator is self-adjoint (K ¼ K

T), orthogonality to w
ðkÞ
0 must be enforced.

From this condition, the first-order eigenvalue sensitivity l1 ¼ lðkÞ1 is drawn. Then, by solving
Eq. (7b), the first-order eigenvector sensitivity w1 ¼ w

ðkÞ
1 is evaluated to within an arbitrary

constant, to be removed by a suitable normalization condition. The following solutions are
obtained (see Appendix A for the details):

lð1;2Þ ¼ 
io� 1
2
d11; wð1;2Þ ¼ 1;�

iod21

1� o2

� �T

,

lð3;4Þ ¼ 
i� 1
2
d22; wð3;4Þ ¼ �

id12

o2 � 1
; 1

� �T

, ð8a2dÞ

where i is the imaginary unity.

3.2. Resonant and quasi-resonant solution

The case of nearly coincident undamped frequencies is now considered. A small detuning
parameter s is introduced, o ¼ 1þ �s; s ¼ Oð1Þ; consequently, the stiffness matrix K and the
total damping matrix D in Eq. (5) read as

K ¼ K0 þ �K1 þ Oð�2Þ; D ¼ D0 þ Oð�Þ, (9)

where

K0 ¼ I; K1 ¼
2s 0

0 0

	 

; D0 ¼ 2xsIþ mCa. (10)

Therefore the perturbation equations (7) are modified as

�0 : Iþ l20I
� �

w0 ¼ 0,

� : Iþ l20I
� �

w1 ¼ �2l0l1w0 � K1w0 � l0D0w0. ð11a;bÞ



Eq. (11a) admits two couples of coincident eigenvalues, lð1;2Þ0 ¼ i, lð3;4Þ0 ¼ �i, whose associated
eigenvectors span a plane (the whole space in this problem). However, the indeterminacy of the
eigenvectors is solved by the compatibility conditions of the �-order perturbation equations, from
which lð1;2Þ1 and lð3;4Þ1 are also evaluated. The following results are obtained for the eigenvalues (see
Appendix A for computations): q� �
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lð1;2Þ ¼ iþ 1
4

�trD0 þ 2is
 tr2D0 � 4 det D0 � 4isðd0
11 � d0

22Þ � 4s2 ,

lð3;4Þ ¼ � iþ 1
4

�trD0 � 2is
 tr2D0 � 4 det D0 þ 4isðd0
11 � d0

22Þ � 4s2
q� �

, ð12Þ

or, equivalently:

lð1;2Þ ¼ i� xs þ
1
4 �m trCa þ 2is
 m2 tr2Ca � 4 detCa


 �
� 4isðd0

11 � d0
22Þ � 4s2

q� �
,

lð3;4Þ ¼ � i� xs þ
1
4

�m trCa � 2is
 m2 tr2Ca � 4 detCa


 �
þ 4isðd0

11 � d0
22Þ � 4s2

q� �
, ð13Þ

where the invariants of the total damping matrix D0 have been introduced:

trD0 ¼ d0
11 þ d0

22 ¼ 4xs þ m trCa;

det D0 ¼ d0
11d

0
22 � d0

12d
0
21 ¼ 4x2s þ 2mxs trCa þ m2 det Ca:

(14)

Moreover, the associated eigenvectors, corrected at the �0-order, are found to be

wð1;2Þ ¼ �
id0

12

2iðlð1;2Þ � iÞ þ 2sþ id0
11

; 1

 !T

,

wð3;4Þ ¼
id0

12

�2iðlð3;4Þ þ iÞ þ 2s� id0
11

; 1

 !T

. ð15Þ

It should be noted that two different expressions, (12) and (13), of the resonant and quasi-
resonant approximate eigensolutions can be obtained using either the matrix D0 or the
aerodynamic damping matrix Ca, which makes explicit the role of the dimensionless wind velocity
m. Eqs. (12) and (13) will be referred to as D0-representation and Ca-representation of the
eigenvalues, respectively.

4. Discussion of the critical conditions

In the previous section, approximate analytical expressions of the eigenvalues l were drawn for
any frequency ratio o as a function of the control parameter m. The stability critical conditions are

determined by requiring ReðlðmÞÞ ¼ 0: In order to discuss the results, it is advisable to distinguish
three main cases: (a) non-resonant conditions, o� 1j j4OðeÞ; (b) resonant conditions, o ¼ 1; and

(c) quasi-resonant conditions, o� 1j j ¼ OðeÞ.



4.1. Non-resonant conditions

From Eqs. (8), just one critical condition d22 ¼ 0 follows, since d1140 for any cross section.
Therefore, the critical wind velocity is

mcr � mDH ¼ �
2xs

c
, (16)
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22

which is positive if c22o0. Eq. (16) coincides with the well-known Den Hartog criterion, m ¼ mDH ;
effective for a single vertical dof. This result highlights the fact that, in non-resonant conditions,
the critical velocity is not influenced at the �-order by the modal coupling. In contrast, the
eigenvectors are affected by the coupling, as Eq. (8d) clarifies: if d12 is different from zero, the
horizontal motion (q1) is driven by the vertical unstable motion (q2).

4.2. Resonant conditions

In the case of zero detuning, s ¼ 0 (i.e. o ¼ 1), Eqs. (12) and (13) simplify remarkably, since the
radicands become real; therefore, they reduce respectively to

lð1;2Þ ¼ iþ 1
4

�trD0 
 tr2D0 � 4detD0

p� �
;

lð3;4Þ ¼ �iþ 1
4

�trD0 
 tr2D0 � 4detD0

p� � (17)

and

lð1;2Þ ¼ i� xs þ
m
4

�trCa 
 tr2Ca � 4det Ca

p� �
,

lð3;4Þ ¼ � i� xs þ
m
4

�trCa 
 tr2Ca � 4det Ca

p� �
. ð18Þ

In spite of the fact that Eqs. (17) and (18) are quite similar, they permit different representations
on the plane of the invariants, as will soon be seen.
The D0-representation is first used (Fig. 2). It consists in evaluating on the ðdet D0; trD0Þ-plane

(in short, the D0-plane) the regions in which the four eigenvalues have the same character

STABLE

trD0

H
O

P
F

detD0
DOUBLE HOPF

Fig. 2. Eigenvalue in the plane of the total damping matrix invariants. The parabola has equation tr2D0 4detD0 0.



(real, complex or purely imaginary). In the dynamical system theory, such a plot is called a linear

stability diagram. The locus of systems at incipient instability (the critical boundary), delimiting
the stable region, is found by requiring that Re l ¼ 0. From Eqs. (17) the following two conditions
are derived:

detD0 ¼ 0 8trD0;
(19)
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trD0 ¼ 0 detD040;

which represent the trD0-axis and the positive detD0-semi-axis of the D0-plane, respectively. By
discussing Eqs. (17), the scenario depicted in Fig. 2 follows. The regions are bounded by the axes
and by the parabola tr2D0-4 detD0 ¼ 0. In the first quadrant the equilibrium position is stable;
along the trD0-axis a simple Hopf bifurcation occurs and along the positive detD0-semi-axis a
double Hopf bifurcation takes place. At the origin of the plane the double Hopf bifurcation is
resonant of 1:1 type.
When m ¼ 0, the representative point has coordinates ðdetD0; trD0Þ ¼ ð4x2s ; 4xsÞ; i.e. it lies in the

first quadrant on the parabola, and the equilibrium is stable. When m increases, trD0 and detD0

vary according to Eqs. (14) and the point describes a parabola tangent to a line of angular
coefficient 1/(2xs) (Fig. 3a). If the path crosses the stability boundaries (19), then the equilibrium
becomes unstable. If the damping ratio xs is fixed, the path only depends on the invariants of the
aerodynamic damping matrix Ca. Therefore, four cases exist according to the sign of the two Ca-
invariants, all described in Fig. 3a. In case (1) (trCa40, detCao0) a simple Hopf bifurcation
occurs for a sufficiently large m; in case (2) (trCa40, detCaX0) the stability boundaries are not
crossed and the equilibrium remains stable for any m; in case (3) (trCao0, detCap0), simple Hopf
bifurcations again occur; in case (4) (trCao0, detCa40) two sub-cases are possible: for small
detCa (case 4a) two successive simple Hopf bifurcations take place, while for large detCa (case 4b)
a double Hopf bifurcation manifests itself. In Fig. 3b the eigenvalue paths corresponding to the
four cases previously described are also shown. It is seen that, since Rel is a monotonic function
of m, it is not possible for the system to regain stability once it has lost it.

detD0

trD0

detD0

trD0

(b)

(a) Reλ

Imλ

Reλ

Imλ

(a)
(1) (2)

Imλ Imλ

(1)

ReλReλ

(2)
(b)

detD

trD

(3)

detD

trD

(b)
(a)

(3)

(a)

(b)

(4)(4)

(a) (b) 

Fig. 3. (a) Invariant and (b) eigenvalue paths for increasing wind velocity; (1) trCa40; detCao0; (2)

trCa40; detCaX0; (3) trCao0; detCap0; (4) trCao0; detCa40; (2a,4a) small detCa, (2b,4b) large detCa.



The Ca-representation (18) is then illustrated (Fig. 4). Each point of the Ca-plane is
representative of a family of cross-sections with given aerodynamic characteristics. However, a
physical limit exists, due to the fact that c11 cannot assume negative or zero values; therefore
trCa4c22 is a lower bound for the plane. When m is growing and it reaches a critical value, a
specific bifurcation mechanism associated with that point manifests itself. By discussing Eqs. (18)
for m increasing from zero, the eigenvalue paths that characterize each region of the Ca-plane are

STABLE

detCa

trCa

Fig. 4. Eigenvalue paths for increasing wind velocities in the plane of the aerodynamic damping matrix invariants;

resonant case. The parabola has equation tr2Ca 4detCa 0.
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determined as illustrated in Fig. 4. It is seen that the first quadrant, including the positive semi-
axes, is stable for any m; in the second and third quadrant a simple Hopf bifurcation occurs at a
critical value; in the fourth quadrant two types of bifurcations exist: inside the parabola
tr2Ca � 4detCa ¼ 0, on which the radicand in Eqs. (18) vanishes, a double Hopf bifurcation
occurs, and outside the parabola two successive simple Hopf bifurcations take place. The
mechanisms are obviously the same illustrated in Fig. 3b. On the parabola, a double Hopf
bifurcation occurs with coincident critical eigenvalues (1:1 resonant double Hopf bifurcation).
Since the geometric multiplicity of the critical eigenvalue is less than its algebraic multiplicity, the
system is defective at the criticality. Inside the parabola, a non-resonant (non-defective) double
Hopf bifurcation manifests itself, with the possible origin of quasi-periodic solutions (like those
commented in Ref. [4]). However, a nonlinear analysis of such a bifurcation performed on
nonlinear models of single taut strings [10] proved that the steady motion in the postcritical range
is periodic.
From Eqs. (18), or equivalently from Eqs. (19), the lowest critical wind velocity is evaluated as a

function of the Ca-invariants. It is found that

m0cr ¼

4xs

�trCa þ trC2
a � 4det Ca

q if det Cao0 or tr2Ca � 4det Ca40; trCao0;

�
4xs

trCa

if trC2
a � 4det Cap0; trCao0;

8>>>><
>>>>:

(20a,b)

where the apex 0 on mcr denotes the resonant value. Therefore, Eq. (20a) is valid in the second and
third quadrant and outside the parabola in the fourth quadrant of the Ca-plane; Eq. (20b) is valid



in the fourth quadrant inside the parabola. These expressions coincide with the exact solution,
deduced in Ref. [4]. Therefore, the perturbation solution gives the exact real part of the
eigenvalues whereas it furnishes an approximate imaginary part.
It is interesting to compare the m0cr critical values (20) with the mDH Den Hartog value (16). The

case c22o0, necessary for the existence of a positive Den Hartog velocity, is considered first. By
setting m0cr ¼ mDH ; the following relationship is found:

detCa0

µ0
cr

µDH

(a)-(a) (b)-(b)

µ0
cr

detCa

µDH

0

(c)-(c)

µ0
cr

trCa

µDH

0c22

(d)-(d)
µ0

cr

trCa

µDH

0c22

tr
C

a

detCa

c22

µ0
cr<µDH

µ0
cr>µDH

(a) (a)

(c)

(c) (d)

(d)

(a) (b)

STABLE
(b) (b)

Fig. 5. Critical wind velocity in the resonant case compared with the Den Hartog value; (a) domains of the Ca plane

and selected paths, (b) m0cr vs. the invariants along the paths.
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trCa ¼
detCa

c22
þ c22 (21)

that represents a line in the (detCa, trCa)-plane (dash dotted straight line in Fig. 5a, where only
the physically meaningful part of the plane has been considered). Four significant paths were
selected in Fig. 5a and the relevant m0cr values shown in Fig. 5b. Along path a a, going from left to
right, the critical velocity is initially lower than the Den Hartog velocity; after the intersection with
the straight line (21), the velocity strongly increases until it reaches the constant value (20b) inside
the parabola. The pattern is quite similar along path b b; however, here m0cr tends to infinity when
the trace-axis is approached. Along path c c, going from the bottom upwards, the critical velocity
monotonically grows from a value lower than Den Hartog velocity. Finally, going from the
bottom upwards along path d d, the critical velocity is always greater than Den Hartog value and
it tends to infinity when trace approaches zero.
Now, it is important to analyze the case c2240. According to the Den Hartog criterion the

equilibrium is always stable. However, since trCa40, instability occurs in the second quadrant of
the Ca-plane, as a result of the coupling between horizontal and vertical displacements.

4.3. Quasi-resonant conditions

The case of non-zero detuning is now considered. By zeroing the real part of the eigen-
values (12) and performing some algebraic manipulations, the following bifurcation equation is



obtained:

trD0 detD0 þ s2
p

¼ 
 m sðc11 � c22Þ
�� �� (22)

under the condition detD0 þ s240 and where the double sign is relevant to the two couples of the
eigenvalues. As particular cases, Eqs. (19) are recovered when s-0 and the Den Hartog criterion
is obtained when s-N. It is observed that the stability of the quasi-resonant system is governed
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by four parameters: the detuning s, the difference (c11 c22) and the two invariants trD0 and
detD0. Therefore, the problem is much more complex than in the resonant case where only
the invariants are present. In particular, the D0-representation used in Figs. 2 and 3 loses its
usefulness, since the stability boundaries of the D0-plane now move with the control parameter m.
Hence, in order to investigate the bifurcation mechanisms, use is made of the Ca-representation.
Moreover, since expressions (13) of the eigenvalues are very involved, the bifurcation equation
(22) is directly discussed.
Using Eqs. (14) and defining

f ðmÞ :¼ 4xs þ mtrCa; gðmÞ :¼
m

pðmÞ
p ,

pðmÞ :¼ m2 detCa þ 2mxstrCa þ ð4x2s þ s2Þ; k :¼ sðc11 � c22Þ
�� �� ð23a2dÞ

the bifurcation equation (22) reads

f ðmÞ ¼ 
kgðmÞ. (24)

The roots m ¼ mcr of Eq. (22) are therefore the abscissas of the intersections of the graphs of the
two functions f ðmÞ and 7kg(m). The graph of f ðmÞ is a straight line, whose angular coefficient is
trCa; the graph of gðmÞ depends on both the invariants of Ca. However, it is shown in Appendix B
that gðmÞ assumes only four qualitatively different patterns, essentially depending on the roots
of the polynomial pðmÞ, each in a region of the Ca-plane. The regions are bounded by the axes and
by the parabola tr2Ca � ð4þ s2=x2s Þdet Ca ¼ 0 (see Fig. 13 in Appendix B); the corresponding
graphs of gðmÞ, together with the graphs of f ðmÞ, are plotted in Fig. 6. Cases different from those
shown cannot occur, so the figure is exhaustive.
The following conclusions are drawn from Fig. 6. In domain A (first quadrant of the Ca-plane)

two different situations exist: no bifurcation, when k is sufficiently small, or one single Hopf
bifurcation with successive stability regain (transient instability), when k is sufficiently large (the
same branch is crossed twice). It can be proved that, if c2240, no bifurcation exists in domain A.
In domain B (fourth quadrant, region internal to the parabola) two successive Hopf bifurcations
take place (two different branches are crossed). A similar circumstance is verified in domain C
(fourth quadrant, region external to the parabola) with two sequential bifurcations. Finally, in
domain D (second and third quadrants) only a single bifurcation occurs.
Fig. 7 summarizes all the possible critical conditions exhibited by the quasi-resonant system. It

is interesting to compare it with Fig. 4, which concerns the resonant case. It is seen that the first
quadrant, which is stable in the resonant case, can now become unstable if c22o0, although the
instability is of transient type. For a given point of coordinates (detCa, trCa) the stability or
instability depends on the two remaining parameters, s and (c11 c22). The curve C dividing
the first quadrant into two zones has a shape like that in Fig. 7; it has been determined, for fixed s
and (c11 c22), as locus of points (detCa, trCa) for which f ðmÞ is tangent to +kg(m) (see Fig. 6,



domain A). If detCa and trCa are slightly decreased from the value they assume on C, then f ðmÞ
crosses +kg(m) (see Fig. 6). Therefore, the bounded region of the first quadrant is unstable while
the unbounded region is stable. If jsj and |c11 c22| are increased, the unstable region also
increases. If c2240 C does not have real values and no unstable region exists in the first quadrant.
Passing to consider the other regions of the Ca-plane, the qualitative behavior of the system in the
second and third quadrant is substantially unchanged with respect to the resonant case. In
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Fig. 6. Graphic solution of the bifurcation equation (24) in the quasi resonant case. Domains A,B,C and D as in

Fig. 14 (Appendix B).
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Fig. 7. Eigenvalue paths for increasing wind velocities in the plane of the aerodynamic damping matrix invariants;

quasi resonant case. The parabola has equation tr2Ca ð4þ s2=x2s Þ detCa 0; curve C exists only if c22o0.
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contrast, in the fourth quadrant, the detuning inhibits the double Hopf bifurcation, which is
replaced by two successive bifurcations.



The influence of the detuning on the critical velocity is then analyzed. Eq. (22) cannot be solved
in a simple closed form to furnish mcr as a function of s; however it can easily be solved to obtain s
as a function of mcr. Qualitative plots of the function are represented in Fig. 8a for c22o0 and in
Fig. 8b for c2240, as regards different domains of the Ca-plane. Sections with c22o0 are first
considered. It is seen that, in all cases, mcr is above or below the Den Hartog value for any s; in
addition, when jsj ! 1, mcr ! mDH . In particular, mcr4mDH 8s in the domains A, B and C,

σ

(a)

(A)

µcr

µDH 0 σ

(B)

µcr

µDH 0 σ

(C),(D)

(D)

µcr

µDH

0 σ

(b)

(D)

µcr

0

Fig. 8. Critical wind velocity vs. detuning for the domains in Fig. 7; (a) c22o0, (b) c2240.
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whereas mcr4mDH 8s or mcromDH 8s in the domain D; in this latter case the resonant m0cr value
solves the ambiguity. As regards domain A no instability occurs when s ¼ 0, but it appears when
the detuning is sufficiently large, according to the behavior described in Fig. 7. Fig. 8a also
highlights the fact that the regain of stability is effective only if s is sufficiently small, otherwise it
occurs for very large values of the wind velocity. In domain B the graph of mcrðsÞ presents a cusp
at s ¼ 0, whereas in domains C and D it has zero slope. Therefore sensitivity of mcr at s ¼ 0 is
larger in domain B. However, except for a very small neighborhood of s ¼ 0, the patterns of all
these curves are similar. Finally, if the case c2240 is considered (Fig. 8d), instability can only
occur in domain D. The Den Hartog velocity is now negative, i.e. the system is stable far from the
resonance; consequently, when jsj ! 1 the critical velocity tends to infinity too.

5. Numerical examples

A numerical analysis is performed for sample sections having significant aerodynamic
coefficients. The critical wind velocity is first evaluated as a function of the detuning parameter;
then, some aspects of the galloping motion are studied.
5.1. Critical wind velocity

The accuracy of the perturbation solutions is checked by comparing them with the exact
(numerical) solutions of the eigenvalue problem (4). Two different families of iced cable cross-
sections, NDT and NB, already discussed in Ref. [4] with regard to the resonant case, are
examined and the results are reinterpreted in the light of the previous discussion. In each family a
section with given aerodynamic characteristics cd ; cl ; c0d and c0l is taken; then, a single parameter is
varied (cd in the NDT family and cl in the NB family). Correspondingly, the representative point



of the family’s element, describes a path in the (detCa, trCa)-plane (see Fig. 9), thus exploring the
regions characterized by different qualitative behaviors (remember Fig. 7). It should be noted
that, according to Fig. 7, the parabola on invariant plane depends on s; owing to the small value
of damping, here assumed equal to 0.7%, the parabola rapidly becomes flatter for increasing s.
The NDT family is considered first. Initially the representative point is located in domain A

(trCa40, detCa40); then it moves to domain B. For significant values of cd (points P1, P2, P3 in
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Fig. 9) the graphs of the critical velocity vs. the detuning are plotted in Fig. 10 and compared with
the exact numerical values. They are of the types illustrated in Figs. 8a (first and second graph)
and, in addition, show the transition between them. When cd ¼ 1:01 (point P1 in Fig. 9) the system
is subjected to transient instability for sufficiently large values of the detuning jsj (Fig. 10a);
therefore the unstable region U of the ðmcr;sÞ-plane has lower and upper bounds. It is seen that the
accuracy of the perturbation solution decreases with sj j with regard to the second bifurcation; this
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Fig. 9. Representative points of the NDT and NB family’s element (the line m0cr mDH refers to NB family).
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Fig. 10. Critical wind velocity vs. detuning for the NDT cross section family at points P1 P3 of Fig. 9: cl 1:01,
c0d 0, c0l 1:49; (a) cd 1:01, (b) cd c0l=3, (c) cd 0:41; U unstable regions; � numerical values.



is due to a partial ordering violation occurring at high wind velocities at which stability is
regained. When cd ¼ �c0l=3, trCa ¼ 0 and the representative point crosses the boundary between
the A- and B-domains (point P2 in Fig. 9); the associated mcr vs. s curve is shown in Fig. 10b. The
curve has two vertical asymptotes at s� ¼ 
4xs det Ca

p
=ðc112c22Þ, so that the section is stable for

sj jo sn
�� �� and unstable for sj j4 sn

�� ��, without stability regain, i.e. the unstable regions do not have
upper bounds. When cd is further decreased (cd ¼ 0:41, point P3 in Fig. 9), trCa becomes negative
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and the point enters the B-domain. The relevant mcr vs. s curve, plotted in Fig. 10c, shows that the
two unstable regions merge, so that instability occurs even at the resonance, although at a velocity
greater than the Den Hartog value.
The NB family is now considered. Initially the representative point is located in domain D

(trCa40, detCao0), in the region m0cromDH ; then it moves to domain A. The mcr vs. s curves are
plotted in Fig. 11, and are of the types shown in Figs. 8a (first and third graph). The curve
associated with the starting value cl ¼ �0:42 (point Q1 in Fig. 9) is represented in Fig. 11a. By
slightly decreasing the lift coefficient (cl ¼ �0:49) the line m0cr ¼ mDH is crossed (this situation
corresponds to the vanishing of the d0

21 coefficient, while in Ref. [4] it was reached setting cl ¼ 0,
for which d0

21 instead vanishes). For smaller cl (point Q2 in Fig. 9) the critical velocity becomes
larger than the Den Hartog value and the curve assumes the shape of Fig. 11b. By further
decreasing cl, the boundary detCa ¼ 0 is first crossed (point Q3 in Fig. 9) and then domain A is
entered (point Q4 in Fig. 9), for which the curves are shown in Fig. 11c. Also in this case the
ordering violation entails quantitative errors.
As a numerical example of the C-curves delimiting the (transient) unstable part of domain A

(see Fig. 7), the curves plotted in Fig. 12 have been determined for c11 � c22 ¼ 2:05, i.e. for the NB
family. It is seen that, due to the high value of trCa for the NB family, the section is stable even for
moderately large sj j. The higher detCa, the higher the value of |s| at which transient instability
manifests itself, according to Fig. 11c.
Concerning other cross-sections considered in the literature, most of them have trCa positive

and are sited in domains A and D. Some examples belonging to domain B also appear, as has been
seen. Cases concerning domain C instead are not very likely, also in consideration of the lower
limit of the trace, trCa4c22. For example, a classic technical case concerns the 2-D coupled
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Fig. 11. Critical wind velocity vs. detuning for the NB cross section family at points Q1 Q4 of Fig. 9: cd 0:96,
c0d 0:49, c0l 1:09; (a) cl 0:42, (b) cl 0:53, (c) cl ffi 0:6749 ðdetCa 0Þ and cl 0:75 ðdetCa40Þ;
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galloping oscillations of tower buildings. If the aerodynamic force coefficients reported in Ref. [6]
are considered for varying angle of attack, a path belonging to domain D is obtained, a small part
of which lies below the line m0cr ¼ mDH . The conclusions of Ref. [6] are thus confirmed. Changing
the expression of the lateral force coefficients in order to take into account the turbulence
influence (e.g. [11]), the path now lies in A- and D-domains.

0 2
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Fig. 12. C curves delimiting the unstable part of domain A for the NB cross section family ðc11 c22 2:05Þ.
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5.2. Galloping motion

The motion experienced by the system in conditions of incipient instability is now analyzed. The
validity of the response is obviously confined to a small interval of time, since, when the amplitude
of motion increases, the mechanical and aerodynamical nonlinearities, here neglected, decide on
the nature of motion. Therefore, a nonlinear analysis, as that developed in Ref. [10], must be
performed to investigate the system postcritical behaviour. Using the eigenvector expression (15),
the projection of the trajectories on the (q1, q2)-configuration plane is evaluated. The motion
subsequent to an initial horizontal displacement, q1 ¼ 0:01, q2 ¼ 0, for a wind velocity greater
than the critical one, is analyzed.
The RMP example [4] is first considered, for which the representative point lies in domain D in

the region m0cromDH . Figs. 13a c show the trajectories for three different values of detuning. When
s ¼ 0, since the point is outside the parabola tr2Ca � 4detCa ¼ 0 (see Fig. 4), eigenvectors (15) are
real, i.e. motions develop in invariant subspaces of dimension 1; when sa0 the eigenvectors are
complex, i.e. motions develop in invariant subspaces of dimension 2. Therefore, after an initial
transient motion, the trajectories are attracted by the divergent mode, which is an inclined line for
s ¼ 0 (real mode of dimension 1, Fig. 13a), an elliptical spiral for small sj j (complex mode of
dimension 2, Fig. 13b) and a flat nearly vertical spiral for large detuning (Fig. 13c), tending to the
behavior of the single vertical dof. The amplitude of the elliptical spirals depend on the coupling
between the horizontal and vertical motion through the term d12, which is small for the considered
case; the NB family too presents a similar behavior.
In order to obtain wider elliptical spirals, bimodal galloping cases need to be considered like

those presented by NDT family in the domain B. Figs. 13d,e show the motion of the system P3 in
Fig. 9, when s ¼ 0 and s ¼ 0:02, respectively. In resonance conditions, the corresponding



displacement time-histories presents a characteristic beat shape, called ‘‘complex galloping’’ in
Ref. [4]. However, from the previous discussion on critical conditions, it is evident that the
‘‘complex galloping’’ feature is due to the occurring of a double Hopf bifurcation.

6. Conclusions
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cd 0:41, cl 1:01, c0d 0, c0l 1:49), (d) s 0, mcr 0:1077, m 0:18, (e) s 0:02, mcr 0:0186, m 0:03.
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In this paper the bifurcation mechanisms of coupled flexural galloping, in resonant, quasi-
resonant and non-resonant conditions, have been analyzed by means of a perturbation approach,

based on the ordering of mechanical and aerodynamic damping matrices. This method presents
some differences with respect to the literature, where the exact analytical solutions are deduced in

the resonant case only. The following conclusions are drawn.

1. The eigenvalue perturbative expressions are valid both in quasi-resonant and non-
resonant regimes. Moreover, the quasi-resonant eigenvalues match excellently with the non-
resonant one.



2. From the perturbative eigenvalues, a closed-form for the critical velocity is derived. It coincides
with the exact solution in the resonant case and presents good accordance with respect to the
numerical solutions in quasi-resonant conditions.

3. The discussion of the eigenvalues in the plane of the invariants of the aerodynamic damping
matrix permits a complete discussion of all the possible bifurcation mechanisms, both in
resonant and quasi-resonant conditions.
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4.
6.

7.

8.
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In resonance and quasi-resonance conditions, Hopf bifurcations occur as (a) simple
bifurcations (monomodal galloping), (b) quasi-simultaneous bifurcations (quasi-bimodal
galloping) and (c) double bifurcations (bimodal galloping). Therefore, the true nature of the
‘‘complex galloping’’ identified in Ref. [4] is now highlighted: it occurs as a result of a double

Hopf bifurcation instead of a classic Hopf bifurcation. The existence of an entire domain where
it manifests itself is proved for resonant conditions.
The eigenvectors are real (i.e. the associated motion is mono-dimensional) if the detuning is
5.

equal to zero and the cross-section representative point is located outside the critical parabola
in the detCa � trCa plane; in any other case they are complex (i.e. the motion is bi-
dimensional). However, if the detuning is sufficiently large, the eigenvectors tend to real values
(i.e. to vertical mono-dimensional motions).
In mono-modal galloping, the (initial) trajectories on the configuration plane are elliptical

spirals, more or less flat depending on the smallness of the coupling term d12. The vertical and
horizontal amplitudes of motion are of comparable magnitude only for bimodal or quasi-
bimodal galloping.
It is proved that cross-sections which are stable ðc2240Þ or unstable ðc22o0Þ in a single vertical
dof schematization, possibly become unstable or stable, respectively, if the horizontal dof is

introduced in the model. Moreover, a section which is stable in resonance conditions may
become unstable at a sufficiently large detuning s, although it regains stability at high wind
velocity (transient instability phenomenon).
The perturbative results can easily be used for technical purposes. From the position of the
representative point in the plane it is immediately known whether the resonant critical of the

invariants velocity is above or below the Den Hartog value (Fig. 5). Then, the qualitative
pattern of the critical velocity vs. detuning curve is drawn.
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Appendix A. Perturbation analysis of the eigenvalue problem

The computational aspects of the perturbation analysis performed in Section 3 are illustrated
here. Since the original problem (5) is homogenous, a suitable normalization condition must be

forced for the eigenvector w. The condition Bw ¼ 1 is chosen, where the operator B extracts
e component of w. Consequently, Bw0 ¼ 1 and Bw1 ¼ 0 are normalization conditions for the



�0- and �-order perturbation equations (7) and (11). The non-resonant ð o� 1j j4OðeÞÞ and quasi-
resonant ð o� 1j j ¼ OðeÞÞ cases are dealt with separately.

A.1. Non-resonant case

The perturbation equations (7) must be solved. Eq. (7a) is the eigenvalue problem of the
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undamped system, whose solution reads:

�0 : lð1;2Þ0 ¼ 
io; w
ð1;2Þ
0 ¼

1

0

� �
; lð3;4Þ0 ¼ 
i; w

ð3;4Þ
0 ¼

0

1

� �
. (A.1)

By substituting these solutions in the �-order equation (7b) and requiring the right-hand member
to be orthogonal to the eigenvector w0 (solvability condition), l1 ¼ �wT

0Dw0=2 follows, i.e.:

lð1;2Þ1 ¼ �1
2
d11; lð3;4Þ1 ¼ �1

2
d22. (A.2)

By solving Eq. (7b) with the relevant normalization condition and by substituting the results
obtained in Eqs. (6), Eqs. (8) follows, where the parameter e has been reabsorbed.

A.2. Resonant and quasi-resonant cases

The relevant perturbation equations are Eqs. (11). Since lð1;2Þ0 ¼ i, lð3;4Þ0 ¼ �i are eigenvalues of
double multiplicity for Eq. (11a), the associated eigenvectors are indeterminate, namely:

w0 ¼
X2
i¼1

aiui; u1 ¼
1

0

� �
; u2 ¼

0

1

� �
, (A.3)

where ai are arbitrary constants. In order that Eq. (11b) admits solution, its right-hand term must
be orthogonal to each of ui [12], that is:

X2
i¼1

2l0l1uTj ui þ uTj K1ui þ l0uTj D0ui

� �
ai ¼ 0; j ¼ 1; 2. (A.4)

Eq. (A.4) represents a new eigenvalue problem. By setting its determinant to zero, two generally
different corrections lðkÞ1 of each eigenvalue lðkÞ0 are obtained, i.e. the �-order perturbation destroy
the degeneracy. Finally, by substituting l1 ¼ lðkÞ1 into Eqs. (A.4) and using the normalization
condition, the coefficients ai are determined. Thus, by reabsorbing the parameter �, the following
approximate eigensolutions are obtained:

lð1;2Þ ¼ i�
d0
11 þ d0

22

4
þ
is
2


1

4
ðd0

11 � d0
22Þ

2
þ 4d0

12d
0
21 � 4isðd0

11 � d0
22Þ � 4s2

q
;

lð3;4Þ ¼ �i�
d0
11 þ d0

22

4
�
is
2


1

4
ðd0

11 � d0
22Þ

2
þ 4d0

12d
0
21 þ 4isðd0

11 � d0
22Þ � 4s2

q
;

wðkÞ ¼ �
d0
12l

ðkÞ
0

2lðkÞ0 lðkÞ1 þ 2sþ lðkÞ0 d0
11

; 1

 !T

; k ¼ 1; :::; 4;

(A.5)



namely, Eqs. (12) (15). It should be noted that, due to the indeterminacy of the generating
solution (A.3), the �-order correction w1 of the eigenvector can be evaluated only at the �2-order.

Appendix B. Study of the function gðmÞ
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Fig. 14. Discussion of the roots of the polynomial pðmÞ.
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The graph of the function gðmÞ appearing in Eq. (24) is studied for mX0. It is:

1 dgðmÞ
�� 1 4x2 þ s2
gð0Þ ¼ 0; lim
m!1

gðmÞ ¼
det Ca

p ;
dm

��
m¼0

¼

4x2s þ s2
q ; m0 ¼ � s

xstrCa

, (B.1)
m0 being the point of stationariness. In order that m040, trCao0; therefore gðmÞ is monotone if
trCa is positive, whereas it has a unique steady-point if trCa is negative. Moreover, the function
gðmÞ admits vertical asymptotes at the zeros of the polynomial pðmÞ in Eq. (23c). It is easy to verify
that the roots of pðmÞ are real outside the parabola trC2

a � ð4þ s2=x2s Þ detCa ¼ 0 and complex
inside it. Moreover, only the positive roots are of interest. The results of the complete discussion
of the equation pðmÞ ¼ 0 are summarized in Fig. 14. From it, the patterns of gðmÞ represented in
Fig. 8 follow. In fact, in both domains A and B, the denominator of gðmÞ is different from zero,
thus no asymptotes exist. Moreover, in domain A, m0 is negative, so no point of stationariness
occurs; instead, in B there is one point of stationariness. With regard to the C- and D-domains,
it is possible to prove that the point of stationariness is located in the interval of non-existence
of gðmÞ.
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