N

N
N

HAL

open science

Network Structure of Social Coding in GitHub
Ferdian Thung, Tegawendé F. Bissyandé, David Lo, Lingxiao Jiang

» To cite this version:

Ferdian Thung, Tegawendé F. Bissyandé, David Lo, Lingxiao Jiang. Network Structure of Social
Coding in GitHub. 17th European Conference on Software Maintenance and Reengineering (CSMR

2013), Mar 2013, Genova, Italy. pp.1-4. hal-00790772

HAL Id: hal-00790772
https://hal.science/hal-00790772
Submitted on 21 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00790772
https://hal.archives-ouvertes.fr

Network Structure of Social Coding in GitHub

Ferdian Thung', Tegawendé F. Bissyandé?, David Lo', and Lingxiao Jiang!
LSingapore Management University, Singapore
2Laboratoire Bordelais de Recherche en Informatique, France
{ferdianthung,davidio,Ixjiang} @ smu.edu.sg, bissyand@labri.fr

Abstract—Social coding enables a different experience of
software development as the activities and interests of one
developer are easily advertized to other developers. Developers
can thus track the activities relevant to various projects in
one umbrella site. Such a major change in collaborative
software development makes an investigation of networkings
on social coding sites valuable. Furthermore, project hosting
platforms promoting this development paradigm have been
thriving, among which GitHub has arguably gained the most
momentum.

In this paper, we contribute to the body of knowledge
on social coding by investigating the network structure of
social coding in GitHub. We collect 100,000 projects and
30,000 developers from GitHub, construct developer-developer
and project-project relationship graphs, and compute various
characteristics of the graphs. We then identify influential
developers and projects on this subnetwork of GitHub by using
PageRank. Understanding how developers and projects are
actually related to each other on a social coding site is the first
step towards building tool supports to aid social programmers
in performing their tasks more efficiently.

I. INTRODUCTION

Recently, developers have witnessed the emergence of
platforms for social coding, such as GitHub' and Altassian
BitBucket?>. These platforms offer unique experiences to
developers: they can broadcast their activities and/or listen to
the activities of others; they can also investigate and leverage
activities occurring in a variety of projects in one umbrella
site.

The current momentum of social coding sites provides
an opportunity for research on the impact of programmer
networking in software projects. Recently, Dabbish et al.
have investigated, through a series of interviews, the impact
of transparency in GitHub [3]. Such studies are important
as they help us to better understand the phenomenon of
social coding. A good understanding of the characteristics
of GitHub can indeed help researchers and practitioners
to gain more of the insights that are needed to design
better tools for supporting social coders. Furthermore, a
thorough understanding of developer behaviors on GitHub
will yield new ways for inciting more collaborations among
developers.

In this study, we investigate GitHub, which is arguably
the largest social coding site, containing more than 3 million

! http://github.com 2 https://bitbucket.org

repositories. We aim to extend the limited body of knowl-
edge about social coding by constructing the network struc-
ture of projects and developers on GitHub and analyzing
various characteristics of these networks.

The contributions of this work are as follows:

1) To the best of our knowledge, we are the first to investi-

gate network structure of a social coding site (GitHub).

2) We highlight interesting network statistics of GitHub

developers and projects.

3) We automatically locate influential projects and devel-

opers on GitHub by leveraging PageRank.

The remainder of this paper is structured as follows. In
Section II, we present preliminary information on GitHub. In
Section III, we introduce the various network statistics that
we use as well as the PageRank algorithm. In Section IV,
we present our research questions and their answers. We
discuss related work in Section V. We conclude with future
work in Section VL

II. GITHUB: A SocCIAL CODING SITE

GitHub is a social coding site that uses Git® as its
distributed revision control and source code management
system. It implements a social network where developers are
enabled to broadcast their activities to others who are inter-
ested and have subscribed to them. GitHub currently hosts
over three million projects maintained by over one million
registered developers. A given developer can participate in
multiple projects and each project may have more than one
developer. The GitHub social coding site is a developer-
friendly environment integrating many functionalities, in-
cluding wiki, issue tracking, and code review.

Within GitHub, there are pages for developers and pages
for projects. An example of a GitHub page* related to the
user kemitche (Keith Mitchell).This page includes informa-
tion on kemitche’s repositories (i.e., projects) and his recent
public activities, such as committing code to a repository,
opening an issue report, etc., which are seldom easily visible
in other development environments. The page also shows
several statistics that are often used on social networking
sites, such as the number of other developers following him,
the number of projects he is watching, etc. Such transparency
is an interesting feature of GitHub and other social coding
sites.

3 http://git-scm.com/ * https://github.com/kemitche

III. METHODOLOGY

In this section we describe our methodology for con-
structing a sample network from GitHub. We also introduce
the statistics and the PageRank algorithm that we use for
analyzing the network.

A. Network Construction

We construct two kinds of networks from GitHub data: a
project-project network, and a developer-developer network.
The project-project network is a graph of projects. This
graph represents a network in which each node is a project,
and where two nodes are connected if the corresponding
projects have at least one common developer. We further-
more associate a weight to each edge of the graph; this
weight corresponds to the number of developers that work
together on both projects.

To construct this project-project network,a trivial solution
is to check one project with every other project and look for
the number of common developers. However this would be
costly. To alleviate this computation issue, we perform the
steps described in Algorithm 1. For each project, we first get
the developers that work for it, we then find all the projects
that the developers work for. This set of projects is typically
of a small size. We then just compare the input project with
all projects in the set.

Algorithm 1 Selecting Efficiently

Input: Projects // set of projects

Network < (// Project-project network
foreach project P, in Projects do
Dewvelopers < listDevelopersInvolved (P,)
foreach developer D, in Developers do
smallSetProjects < listProjects (D,)
foreach project Py, in smallSetProjects do
link < countCommonDevelopers (P, Pp)
Network < {Network, link}

return Network

In a developer-developer network, each node represents
a given developer in our dataset. The corresponding graph
contains an edge between two vertices when the correspond-
ing developers work together in at least one common project.
Similarly to the project-project graph, we associate a weight
to each edge taking into account the number of projects
where the two relevant developers work together. To build
the developer-developer network, we proceed with the same
methodology as for the project-project network.

B. Network Statistics

Various statistics can be computed to characterize a net-
work. In this study, we primarily use a common metric,
node degree, which, for a given node, considers the number
of distinct nodes that are directly connected to it. We also
rely on other common measurements, namely the network
diameter and the average shortest path. The diameter of
a network is the longest shortest path between all pairs of

nodes in a network, while the average shortest path is the
average of all shortest paths. We estimate the diameter and
the average shortest path following the sampling approach
as used by Surian et al. [9]. For our study, we sample
1000 nodes and compute the shortest paths for all possible
combinations of these nodes.

C. PageRank

Introduced by Brin and Page, the PageRank algorithm for
weighting web pages importance based on their links has
gained popularity driven by its use in the Google search
engine [2]. PageRank works in many iterations. In the initial
iteration, the algorithm assigns the same PageRank score
to all web pages. Then subsequent iterations update these
scores: the score of a page p is distributed to the pages that
p links to; each linked page receive \T1p| of the score, where
L, is the set of pages that p links to. The PageRank score
of a web page p at iteration ¢ can thus be computed by the

following equation:

PR(p,i) =

1—r PR(g,i—1)
P D
qe Ky
In this equation, r represents the probability that a web
surfer would continue to surf (a.k.a. the damping factor), T'
is the number of web pages in the database of the search
engine, K, is the set of web pages that link to p, and L, is
the set of web pages that ¢ links to.

IV. EMPIRICAL EVALUATION

In this section, we describe our dataset and a set of
research questions. Then, we present the results of our
empirical evaluation to answer the research questions.

A. Dataset and Research Questions

Our dataset is comprised of 100,000 projects collected
from GitHub using its API°. From these projects we have
sampled 30,000 developers using GitHub’s API. Using this
dataset, we intend to answer the following research ques-
tions:

How strong are the relationships among
projects?

RQ2 How strong are the relationships among the
developers?

RQ3 Which projects are the most influential?

RQ4 Which developers are the most influential?

B. Project-Project Relationship

To answer the first research question, we proceed in two
steps: first, we compute the number of edges in the project-
project graph. We have found 1,161,522 edges, meaning
that 1,161,522 pairs of projects share at least one common
developer. Second, we compute the degree of each node, i.e.,

3 http://developer.github.com

the number of edges incident to this node in the project-
project network. Figure 1 shows the degree distribution
across the 100,000 projects of our dataset. We find that
Figure 1, which shows a long tail, follows a power law
distribution as is the case in most natural processes [8].

100000
10000 \
1000 \
'

-
S
S

Frequency (log-scale)

=
S

1}
1 10 100 1000 10000
Degree (log-scale)

-

Figure 1. Project Degree Distribution: y-axis shows the number of projects
having given edge degrees.

Finally, we measure the diameter of the largest connected
component and the average shortest path between sampled
project nodes. The diameter is 9 and the average shortest
path, 3.7. These numbers are lower than the findings reported
for many real networks [6], implying that project networks
are actually more interconnected than human networks.
Project networks, as defined in Section III, indeed, only
require one common developer to establish a connection
between two projects.

Project networks are more interconnected than human
networks. Software projects can always benefit from the
expertise of different developers from different background.

C. Developer-developer Relationship

To answer the second research question, we proceed with
the same steps as in the first question. The number of edges
computed in the developer-developer network is 23,678,445,
revealing that many pairs of developers share at least one
common project. Note that this number is significantly larger
than the number of edges in the project-project graph.

Figure 2 illustrates the degree distribution in the
developer-developer network. This distribution does not
form a long tail, as some projects involve an excessively
large number of developers. Thus, each developer in such
projects will share a connection with all other developers
in the same project, resulting in both a high degree and a
high frequency. Nonetheless, we still notice that, overall,
some developers share a project with many other developers
while the majority of developers share projects with a few
developers.

The diameter of the largest connected component is 5 and
the average shortest path is 2.47. We compare these values
to findings in studies on two networks, namely Facebook
and Sourceforge. In their study on the Sourceforge project
hosting platform, Surian et al. have shown that the average
shortest-path among project developers is 6.55 [9], following
the popular assumption of “six-degree-of-separation” [11].

10000

1000

100

Frequency (log-scale)

1
1 10 100 1000 10000 100000
Degree (log-scale)

Figure 2. Developer Degree Distribution: y-axis corresponds to the number
of developers having a given degree.
The average shortest path in Github is significantly lower,

which suggests that the social coding concept actually en-
ables more collaborations among developers. A recent study
of the Facebook social graph has concluded that individuals
on Facebook have potentially tremendous reach with an
average shortest path of 4.7 [13]. The Github developer
social network allows for even better reach as developer-
developer relationships are less tight than human-human
relationships in daily life social networks. Indeed, hundreds
of developers may collaborate in a single project without
even “knowing” each other.

Social coding enables substantially more collaborations
among developers.

D. Influential Projects

To identify influential projects, we run the PageRank
algorithm described in Section III on the project-project net-
work. Asides from its established effectiveness in measuring
the importance of network nodes, as implemented in the
Google search engine, PageRank is also known to be faster
than many other importance score algorithms, including
Betweenness centrality [4]. This property is indeed essential
since the computation for thousands of nodes can be time
consuming.

Project url PageRank
https://github.com/mxcl/homebrew 0.0009862
https://github.com/rails/rails 0.0006378
https://github.com/lifo/docrails 0.0006370
https://github.com/joyent/node 0.0002161
https://github.com/rubinius/rubinius ~ 0.0001678

Table I
ToP 5 MOST INFLUENTIAL PROJECTS

We detail in Table I the top-5 PageRank scores that the
algorithm has produced after it was run for each project in
the network. These influential projects provide libraries, pro-
grammer utilities and scripts and language implementations.
The top-1 project is homebrew entitled “the missing package
manager for OS X”, which provides a package installer of
UNIX tools for Mac users. This project has 7233 developers.
It shares one or more developers with many other projects
such as rails, docrails, homebrew-php, rvm, etc.

E. Influential Developers

To identify the influential developers, we run the PageR-
ank algorithm in the developer-developer network. The

algorithm returns a score for every developer. The top-5
developers in terms of their scores are shown in Table II.

Developer PageRank
Joshua Peek josh[AT]joshpeek.com 0.00009536
Aman Gupta aman[AT]tmml.net 0.00008860
Steve Richert steve.richert[AT]gmail.com 0.00008850
Michael Klishin michaelklishin[AT]me.com 0.00008170
Josh Kalderimis josh.kalderimis[AT]gmail.com 0.00008163

Table 11
TOP 5 MOST INFLUENTIAL DEVELOPERS

The top-1 developer is Joshua Peek. This developer, who
is part the core team of rails, the second influential project,
works on 81 projects in collaboration with many others in-
cluding Aman Gupta from the top-10 influential developers
and others such as Sam Stephenson, Aaron Patterson, Mislav
Marohnic, etc.

F. Discussion

From the above findings, we note that many projects share
one or more developers with other projects. Social coding
would benefit developers working on these projects as it
provides a platform for developer activity to be transparent to
others. Still we notice that many projects are not connected
to one another and many developers do not share many
projects. Thus there is a room to increase the number of
collaborations in the network.

We also find some factors that cause developers to work
together. Developers that work on common application types
tend to work together since they have similar background.
For example, the rails and rubinius projects which are
strongly related to the adoption of Ruby share 88 common
developers. Projects such as node and symfony that are in the
list of influential projects have respectively 3820 and 1096
developers. These developers could work together on other
projects once they get to know one another.

G. Threats to Validity

In this preliminary study, we only study a sample of
projects and developers in GitHub. In our setting, analyzing
the entire dataset is by far too expensive in terms of
computing time, memory cost, and hard disk costs. This
might cause a bias in the results. Nevertheless, we believe
that this threat is limited as we consider a sizeable sample
of 100,000 projects. In the future, we plan to mitigate this
threat further by including more projects and developers.

Another threat to validity is that we consider two de-
velopers to be linked as long as they are involved in the
same project. We do not differentiate when they work on
the project, whether they work on the same code base,
and whether they actually work together. Nonetheless, our
findings offer initial interesting insights on social coding and
its impacts.

V. RELATED WORK

There have been a number of studies that analyze network
structure. Xu et al. and Surian et al. investigate the network
structure of SourceForge [14], [9]. Hong et al. investigate
network structure of developers involved in Mozilla Bug
Tracking system [5]. Different from our study, both of
these networks are not a social coding site. Other studies
analyze the relationships between social media and software
development. For example, Pagano and Maalej analyze the
use of blogs in software development [7]. Bougie et al. and
Tian et al. analyze the use of microblogs and Twitter in
software development [1], [10]. Treude et al. investigate how
developers ask and answer questions in StackOverflow [12].

VI. CONCLUSION AND FUTURE WORK

We have performed an empirical study on a a popular
social coding site: GitHub. In this study, we extract infor-
mation about 100,000 projects from GitHub and analyze
both the project-project network and the developer-developer
network. Our evaluation results show that distribution graphs
in the project-project network generally follows a power
law or long tail phenomenon while the developer-developer
network generally does not. Nevertheless, we have shown
that social coding indeed improves collaboration among
developers: this conclusion can be inferred from the small
value of the average shortest path in the largest community
of developers. In the future, we wish to allocate more
resources into extracting and computing statistics for a larger
network of millions of developers contributing to a more
extensive set of projects in GitHub.

REFERENCES

[1] G. Bougie, J. Starke, M.-A. Storey, and D. German, “Towards un-
derstanding twitter use in software engineering: Preliminary findings
ongoing challenges and future questions,” in Web2SE.

[2] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web
search engine,” in WWW, 1998.

[3] L. A. Dabbish, H. C. Stuart, J. Tsay, and J. D. Herbsleb, “Social
coding in github: transparency and collaboration in an open software
repository,” in CSCW, 2012, pp. 1277-1286.

[4] L. C. Freeman, “A Set of Measures of Centrality Based on Between-
ness,” Sociometry, vol. 40, no. 1, pp. 35-41, Mar. 1977.

[5S] Q. Hong, S. Kim, S. C. Cheung, and C. Bird, “Understanding a
developer social network and its evolution,” in /CSM, 2011, pp. 323—
332.

[6] J. Leskovec and E. Horvitz, “Planetary-scale views on a large instant-
messaging network,” in WWW, 2008, pp. 915-924.

[7] D. Pagano and W. Maalej, “How do developers blog?: an exploratory
study,” in MSR, 2011, pp. 123-132.

[8] D. Sornette, Critical Phenomena in Natural Sciences: Chaos, Frac-
tals, Selforganization and Disorder: Concepts and Tools, 2nd ed.
Springer, 2004.

[9] D. Surian, D. Lo, and E.-P. Lim, “Mining collaboration patterns from
a large developer network,” in WCRE, 2010, pp. 269-273.

[10] Y. Tian, P. Achananuparp, I. N. Lubis, D. Lo, and E.-P. Lim, “What
does software engineering community microblog about?” in MSR,
2012.

[11] J. Travers and S. Milgram, “An Experimental Study of the Small
World Problem,” Sociometry, vol. 32, no. 4, pp. 425-443, 1969.

[12] C. Treude, O. Barzilay, and M.-A. Storey, “How do programmers ask
and answer questions on the web?” in /CSE (NIER), 2011.

[13] J. Ugander, B. Karrer, L. Backstrom, and C. Marlow, “The anatomy
of the facebook social graph,” CoRR, vol. abs/1111.4503, 2011.

[14] J. Xu, Y. Gao, S. Christley, and G. R. Madey, “A topological analysis
of the open souce software development community,” in HICSS,
2005.

