Système d’Aide à la Gestion et à l’Anticipation de la Tension dans les Hôpitaux

Ines Ajmi, Nesrine Zoghlami, Yoann Benoit, Wided Chandoul, Ayda Kaddoussi, Slim Hammadi

To cite this version:
Ines Ajmi, Nesrine Zoghlami, Yoann Benoit, Wided Chandoul, Ayda Kaddoussi, et al.. Système d’Aide à la Gestion et à l’Anticipation de la Tension dans les Hôpitaux. Conférence Francophone Gestion et Ingénierie des Systèmes Hospitaliers (GISEH 2012), Aug 2012, Quebec, Canada. hal-00790759

HAL Id: hal-00790759
https://hal.science/hal-00790759
Submitted on 21 Mar 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Système d’Aide à la Gestion et à l’Anticipation de la Tension dans les Hôpitaux

Inès Ajmi 1, Nesrine Zoghli 1, Yoann Benoit 2, Wided Chandoul 1, Ayda Kaddoussi 1, Hammad Slim 1

1 Ecole Centrale de Lille, OSL Team (Optimization of Logistics Systems), LAGIS UMR CNRS 8219, France. {ines.ajmi, nesrine.zoghli, wided.chandoul, ayda.kaddouci, hammad.slim}@ec-lille.fr
2 Ecole Centrale de Lille. yoann.benoit@centrales-lille.org.

Résumé. Dans ce travail, nous proposons un système d’aide à la décision qui nous permettra de prévoir, prévenir et gérer les événements exceptionnels susceptibles de perturber le fonctionnement interne de l’hôpital. En coopération avec un partenaire hospitalier, nous avons pu prélever une liste pertinente d’indicateurs révélateurs des moments de tension au sein de l’hôpital ; c’est donc en utilisant le prototype « Aide à la Gestion et Anticipation de la Tension dans les Hôpitaux » (AGATH), que nous proposons d’analyser au mieux ces indicateurs et d’y associer un état d’alerte proche de la réalité quotidienne de l’hôpital.

Ce travail de recherche s’intègre dans le cadre d’un projet ANR HOST(ANR-11-TecSan-010) *.

Mots clés: tension, indicateur, système d’aide à la décision, logique floue.

Introduction

De nos jours, il est important d’organiser les méthodes de contrôle dans les institutions de santé publique pour maintenir le niveau voulu de la qualité des soins. Pour ce fait, la gestion de risque est définie comme un processus systématique qui permet d’identifier, d’évaluer et d’anticiper le risque potentiel et réel [Wayne et al, 1988]. À présent, en France, il existe un plan d’urgence appelé le "Plan Blanc", qui permet de faire face à une augmentation soudaine de l’activité au sein de l’hôpital. Le "Plan Blanc" est un plan spécifique d’urgence qui est activé seulement en cas de situation extrême, l’activer trop souvent le rend pas crédible; donc il est important de minimiser son utilisation en anticipant les cas de tension.

Le travail présenté dans ce papier, s’inscrit dans une volonté de gestion de ces états de tension, en se référant à un grand nombre de données, réparties sous forme d’indicateurs. Ces données sont présentes dans les bases de données des hôpitaux et ne sont malheureusement pas exploitées pourtant elles donneraient des informations essentielles sur le fonctionnement de l’hôpital, et par conséquent sur son état de tension. L’objectif d’AGATH est d’analyser ces données, afin d’anticiper un éventuel état de tension dans l’hôpital, pour ensuite fournir des protocoles d’aide à la décision.

Tout d’abord, l’accent sera porté sur la modélisation par la logique floue des indicateurs pertinents. Puis sera abordée l’anticipation en vue de réaliser un système d’aide à la décision permettant l’évitement des tensions. Les résultats et simulations seront détaillés dans la dernière partie.

1 Etat de l’art

Plusieurs travaux, parmi lesquels ceux de [Soncin et Petit, 2002], montrent l’importance accordée à la gestion de risques dans les établissements de santé. Pour ce fait plusieurs méthodes ont été appliquées, [Roussel et al, 2008] ont cité ensemble de ces méthodes comme la méthode "FMECA *" (les Modes d’Échec, les Effets et l’Analyse Criticaitly) et la méthode "PRA *" (l’Analyse de Risque Préliminaire), mais ces dernières présentent plusieurs limites dues à la spécificité du secteur hospitalier. Il est donc nécessaire d’utiliser un système d’aide à la décision pour intégrer la gestion de risque dans le milieu hospitalier. [Staccini et al, 2003] ont démontré

comment un système informatique peut contribuer à l'identification, l'analyse, et la prévention d'événements imprévus.

D'autre part, le secteur hospitalier dépend du raisonnement humain et de l'expérience humaine; les systèmes de gestion de Données ont été appliqués même au sein des salles d'opération et des services de soins intensifs [Bosman, 2009], par contre les systèmes basés sur le contrôle et la supervision des indicateurs sont moins nombreux et l'implication du facteur humain est toujours manquante. [Meyfroidt, 2009] a proposé un système qui permet aux professionnels de soins de définir des alertes médicales des données patientes et de l'environnement en utilisant des variables linguistiques floues. Dans les travaux de [Gotman et al, 1998], un système d'avertissement est proposé pour le service de soins intensifs de pédiatrie. Suite à cette étude bibliographique, notre intérêt sera porté, particulièrement sur la gestion de risques au sein de l'hôpital en utilisant la Logique floue pour tenir compte l'incertitude et la subjectivité des informations.

2 Système proposé

Nous nous sommes basés sur des données fournies par l'Hôpital du Havre afin de sélectionner un certain nombre d'indicateurs dont le comportement pourrait expliquer certaines périodes de pics d'activité rencontrées en milieu hospitalier.

Plusieurs paramètres ont été pris en considération :
- l’âge, d'une part, est très important puisque le vieillissement de la population est une cause reconnue de la saturation des hôpitaux au cours de ces 15 dernières années. Il existe 4 types de population dans un hôpital : les nourrissons (de 0 à 1an), les enfants (de 1 à 15 ans), les adultes (de 15 à 75 ans) et les personnes âgées de plus de 75 ans ;
- d'autre part, une segmentation spatiale a été effectuée pour repérer de potentiels lieux des tensions dans les hôpitaux.

2.1 Indicateurs sélectionnés

Après plusieurs visites et entretiens avec des membres du service d'urgences de l'Hôpital du Havre, nous avons sélectionné les indicateurs suivants :
Le taux d'hospitalisation en UHCD, le taux d'hospitalisation global dans l'hôpital (en UHCD et en MCO (Médecine, Chirurgie, Obstétrique et Odontologie)), la mortalité, le nombre de passages en urgences adultes, le nombre de passages en urgences adultes pour les plus de 75 ans, le nombre d'entrées en UHCD.

De cette liste et dans le cadre de cet article nous avons choisi d'étudier les 3 derniers indicateurs.

2.2 Approche proposée : Logique floue appliquée aux indicateurs

Le système proposé permet, en ayant une vue globale de la situation, de prendre des décisions avant d’être directement confronté aux risques. Nous remarquons alors, qu’il est possible de définir des indicateurs liés aux facteurs provoquant des tensions et reflétant le niveau de tension au sein de l'hôpital. Un système basé sur la logique floue consiste à étudier les trois étapes: Fuzzification, l ’Inférence, Defuzzification. Afin de concevoir notre système d’aide à la décision, nous avons réalisé une adaptation de la modélisation floue des indicateurs et du niveau de la tension.

Fuzzification

Nous avons défini les variables floues suivantes :
- les variables linguistiques : les entrées (les indicateurs) et la sortie (la décision) : leurs nombres, noms, les types et l'univers de discours.
- Les valeurs linguistiques : Cinq différentes caractéristiques des indicateurs, qui sont (Peu acceptables, Acceptable, Inquiétant, Très inquiétant, Sévèrement inhabilitable); et Trois différents niveaux de tension pour la décision (T0 : Normal, T1 : Inquiétant, T2 : élevé).
Fonctions d'appartenance

Dans notre travail, le fait de définir cinq classes pour chaque indicateur avec le maximum de précision n'est pas une tâche évidente même pour un expert. Alors, pour garantir la crédibilité de nos résultats, nous avons été inspirés par la Régulation du processus Statistique (SPC) et spécialement par les Graphes de Contrôle pour définir les frontières des différentes classes.

La courbe de Contrôle est un graphe de points représentant la valeur moyenne d'échantillons pris avec une fréquence donnée en fonction du temps (chaque heure, trois fois par jour, etc.). Dans notre cas, comme nous prenons les mesures par jour pendant toute l'année, nous avons considéré le jour comme l'intervalles régulier de mesure et donc la semaine comme un échantillon, ainsi nous avons 52 échantillons de 7 mesures pour chaque indicateur. Nos graphes de contrôle permettent ensuite de visualiser la variation de la valeur moyenne des indicateurs de la semaine.

Dans un premier temps nous calculons la moyenne de la semaine :

\[
\overline{X} = \frac{1}{m} \sum_{i=1}^{m} \overline{X_i}
\]

(1)

Avec \(\overline{X_i} \) = Moyenne pour l'échantillon i.

Et la moyenne de la mesure (correspond à la différence entre le maximum et les valeurs minimales mesurées dans la même semaine i) :

\[
\overline{R} = \frac{1}{m} \sum_{i=1}^{m} R_i
\]

(2)

Avec R = Étendue de l'échantillon

Par la suite nous calculons les limites de contrôle et de surveillance :

\[
\text{LCS} = \overline{X} + A_c \overline{R} \quad \text{(limite de contrôle supérieure)}
\]

(3)

\[
\text{LCI} = \overline{X} - A_c \overline{R} \quad \text{(limite de contrôle inférieure)}
\]

(4)

\[
\text{LSS} = \overline{X} + A_s \overline{R} \quad \text{(limite de surveillance supérieure)}
\]

(5)

\[
\text{LSI} = \overline{X} - A_s \overline{R} \quad \text{(limite de surveillance inférieure)}
\]

(6)

A_c et A_s sont déterminés à l'aide d'un abaque en fonction du nombre de valeurs que contiennent les échantillons. Nous obtenons la courbe suivante (Figure 2) :

![Figure 2. graphe de contrôle](image)

Comme les limites de surveillance dans le graphe de contrôle autorisent et attirent l'attention de l'opérateur à un problème probable dans l'avenir proche et les limites de contrôle indiquent les limites au-delà desquelles le processus est non maîtrisé. Par l'analogie, nous avons défini les frontières de nos différentes classes, en utilisant les valeurs de ces limites, après la validation de l'expert.
Inférence floue

L’inférence floue permet de calculer les sorties floues.

Pour commencer, nous définissons une base de règles floues composée d’un nombre de règles floues et utilisé pour produire la sortie précise évaluée selon les valeurs d’entrées réelles.

Les règles floues sont sous la forme si...alors, où les conditions et actions sont des variables linguistiques décrivant les valeurs des variables d’entrée sortie. Par la suite nous définissons une matrice de règles qui permet d’établir une décision en tenant compte des corrélations entre les indicateurs.

<table>
<thead>
<tr>
<th>A</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>C5</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>T0</td>
<td>T0</td>
<td>T1</td>
<td>T1</td>
<td>T2</td>
</tr>
<tr>
<td>T0</td>
<td>T0</td>
<td>T1</td>
<td>T1</td>
<td>T2</td>
<td>T2</td>
</tr>
<tr>
<td>T1</td>
<td>T1</td>
<td>T1</td>
<td>T2</td>
<td>T2</td>
<td>T2</td>
</tr>
<tr>
<td>T2</td>
<td>T2</td>
<td>T2</td>
<td>T2</td>
<td>T2</td>
<td>T2</td>
</tr>
</tbody>
</table>

Tableau 1. Règles d’inférences

Nous avons, par la suite, choisi la méthode de Mamdani pour l’inférence floue:

\[
\mu_{\text{decision}}(y) = \min(\mu_{\text{premise}}(x_0), \mu_{\text{conclusion}}(y))
\]

Défuzzification

Cette dernière étape consiste à convertir les sorties floues en des valeurs numériques bien précises. La méthode de défuzzification la plus pertinente est la méthode de centre de gravité vu que ses solutions contiennent les informations les plus subjectives.

Afin d’illustrer le concept de base de notre système floue, nous considérons cet exemple:

- **Indicateur A** : Nombre d’entrée aux urgences = 73 (figure 3);
- **Indicateur B** : Nombre d’entrées en UHCD (mesuré par heure) = 18,5 h (figure 4).

![Figure 3. Indicateur A](image)

![Figure 4. Indicateur B](image)

- Les 4 combinaisons possibles sont les suivantes:
 - A peu acceptable et B très inquiétant
 - A peu Acceptable et B Sèvèrement inacceptable
 - A Acceptable et B très inquiétant
 - A acceptable et B sèvèrement inacceptable.

- En appliquant la méthode de Mamdani ces 4 combinaisons se transforment en (figure 5):
 - \(\min(A : \text{peu Acceptable}=0.4, B: \text{très inquiétant} =0.8)=0.4 \)
 - \(\min(A : \text{peu Acceptable}=0.4, B \text{ Sèvèrement inacceptable}=0.2)=0.2; \)
 - \(\min(A : \text{Acceptable}=0.6, B: \text{très inquiétant}=0.8)=0.6; \)
 - \(\min(A : \text{Acceptable}=0.6, B: \text{Sèvèrement inacceptable}=0.2)=0.2 \)
Nous utilisons l'opérateur « Max » pour l'agrégation des règles (Figure 6).

Dernière étape, la défuzzification en utilisant la méthode du centre de gravité (Figure 7)

2.3 Anticipation de la tension
L'idée de base pour ce logiciel est de réaliser un système d'aide à la décision afin de prévenir les états de crise de l'hôpital. Pour cela, il est nécessaire de déterminer un état de tension futur, obtenu par des méthodes d'anticipation. Plusieurs méthodes sont applicables pour déterminer un état anticipé des valeurs des différents indicateurs. Le regroupement de ces différentes méthodes dans le logiciel forme alors une bibliothèque.

Lissage et saisonnalité
Les courbes représentant les indicateurs étant bruitées, il est nécessaire de les lisser par une moyenne mobile sur une période de deux semaines. On part du principe qu'une grande partie des phénomènes qui génèrent ces courbes sont annuels : par exemple, de nombreux cas grippaux en février, et une période assez calme en été. Pour ne garder que la partie variable de la courbe x, une différenciation est donc faite sur la période d'une année :

\[x'_j = x_j - x_{j-365} \]

Méthode de Winters
La méthode de Winters est une technique avancée qui permet d'étudier les courbes qui possèdent à la fois une tendance et une saisonnalité. Cette approche est parfaitement adaptée à notre problème d'anticipation, car, comme expliqué précédemment, les épisodes générateurs de tension dans l'hôpital (comme les épidémies de grippe par exemple) sont cycliques dans le temps.
La prévision à l'horizon h réalisée par la méthode de Winters se compose de trois éléments : une pente : a_t, un niveau : b_t et un terme de saisonnalité : S_{t+h}

$$Y_t(h) = a_t + b_t S_{t+h}$$ \hspace{1cm} (9)

Dans la pratique, on est obligé d'introduire 3 variables de pondération, qui sont déterminées de manière à minimiser les carrés des écarts (cet écart est calculé comme la différence entre la courbe réelle et la courbe anticipée), comme le montre la figure 8.

![Figure 8 Comparaison entre une courbe réelle et sa courbe anticipée](image)

Anticipation par reconnaissance de motifs

Une méthode de reconnaissance de motifs peut sembler également adaptée au problème. On note x le vecteur des données à anticiper, et j le jour présent. Un motif est un comportement « type » de la courbe. On en considère ici trois sortes : un pic positif, un pic négatif, et un calme plat. On les représente par des vecteurs : le calme plat est un vecteur rempli de zéros ; les pics positifs et négatifs sont générés à partir de l'expérience qu'on a de l'évolution de la courbe. On les note v_{calme}, v_{pos}, v_{neg}.

On note $v = [x_0, \ldots, x_j]$. Le principe est le suivant : pour chaque motif, on sélectionne la partie qui ressemble le plus à v. Pour l'exemple, on observe les sept derniers jours, mais cette valeur est dans l'idéal à régler par rapport à la largeur des motifs. Pour la mesure de ressemblance, on prend ici arbitrairement l'inverse de la somme des écarts aux carrés. Les ressemblances relatives aux différents motifs sont notées λ_{calme}, λ_{pos}, λ_{neg}.

$$\lambda_{motif} = \frac{1}{\sum_{k=i-j}^{i+j} (x_k - v_{motif}(k))^2}$$ \hspace{1cm} (10)

Une fois cette opération effectuée, on connaît donc les valeurs anticipées par chacun des motifs : y_{calme}, y_{pos} et y_{neg}. Reste maintenant à choisir quelle valeur on choisit pour l'anticipation : on prend la moyenne de y_{calme}, y_{pos} et y_{neg}, pondérés par λ_{calme}, λ_{pos} et λ_{neg}.

Il faut ensuite rajouter la saisonnalité pour obtenir une anticipation de la courbe de départ. Pour l'exemple (Figure 9), on montre ici en bleu la courbe des valeurs réelles, par-dessus laquelle est ajoutée sa courbe anticipée (en rouge). Pour chaque point de la courbe anticipée, on considère pour les calculs que les valeurs de la courbe réelle s’arrêtent sept jours avant.

![Figure 9. Comparaison entre une courbe réelle et sa courbe anticipée](image)

3 Simulations et résultats

Nous avons choisi de développer notre système d’aide à la décision en utilisant le langage de programmation Java pour sa robustesse, rapidité et performance.
Logique floue
Le service des urgences de l’hôpital du Havre (notre partenaire hospitalier), a connu un état de tension le 7 janvier 2009. Afin de pouvoir estimer les performances de notre système, nous avons introduit des valeurs mesurées durant cette période et enregistré les résultats et les alertes données par notre système.
Nous considérons les deux cas suivants :

1er cas : Nous considérons les valeurs moyennes des deux indicateurs, mesurées une semaine avant le 7 janvier :
- Nous aurons, pour le premier indicateur, nombre d’entrées aux urgences, la valeur de 89.5 (Figure 10).

![Figure 10. 1er cas, indicateur 1](image1)

- Pour le deuxième indicateur, Nombre d’entrées en UHCD (mesuré par heure), nous obtenons la valeur de 7.5h (figure 11).

![Figure 11. 1er cas, indicateur 2](image2)

- Affichage d’une alerte orange (le niveau de tension de l’indicatuer 1 est inquiétant et celui de l’indicatuer 2 est peu acceptable) (Figure 12).

![Figure 12. Alerte orange](image3)

2ème cas : Pour tester la fiabilité de notre système, nous mesurons les valeurs des deux indicateurs de la semaine du 7 janvier :
- Nous obtenons pour le premier indicateur 95 (Figure 13).

![Figure 13. 2ème cas, indicateur 1](image4)

- Nous obtenons pour le second 12.

![Figure 14. 2ème cas, indicateur 2](image5)

- Le système affiche une alerte rouge indiquant que le niveau de tension est élevé (Figure 15).

![Figure 15. Alerte rouge](image6)

Anticipation de la tension
A partir des données présentes dans notre base, il est possible d’identifier des périodes de forte activité et des périodes plus calmes, nous prenons l’exemple de l’indicatuer « Personnes de plus de 75 ans admises aux urgences », la période de novembre 2008 présente une forte activité due à l’épidémie de la grippe. Les simulations qui vont être faites ont pour but de vérifier que la tension de l’indicatuer est inacceptable durant cette période.
Pour ce faire, la démarche suivante est adoptée :
- On repère une période de forte activité de l’indicateur
- On se place quelques jours avant la date où la valeur de l’indicateur est à son maximum
- Pour la date considérée, on vérifie que la tension relative à l’indicateur est dans l’état « Inquiétant »
- On effectue les calculs d’anticipation de la valeur de l’indicateur considéré (Figure 16)
- On vérifie que l’état de tension de l’indicateur est passé à « Inacceptable » et que la tension globale en est affectée.

Nous pouvons constater grâce à la courbe obtenue que l’indicateur continue d’augmenter d’après les calculs d’anticipation. Ainsi, si on ne change rien à la situation, les calculs nous permettent d’affirmer qu’il est très probable que l’état de l’indicateur continue à se dégrader, affectant dans le même sens l’état de tension globale de l’hôpital.

Conclusion

Ainsi, répondant à l’absence de système de gestion efficace dans les hôpitaux, nous avons réalisé un prototype proposant un système d’aide à la décision basé sur la logique floue et une bibliothèque de méthodes d’anticipation. Il est toutefois encore nécessaire d’ajouter un ensemble de protocoles à destination du personnel médical, et adaptés aux situations actuelle et future du service hospitalier.

Références

Meyfroidt G. ,(2009)How to implement information technology in the operating room and the intensive care unit Best Practice & Research Clinical Anaesthesiology, Volume 23,Issue1, Pages1-14.

Staccini,P., J.F. Quaranta, A. Staccini-Myx , P. Veyres, P. Jambou , (2003)How the information system can contribute to the implementation of a risk management program in a hospital.