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Abstract

3D-model processing plays an important role in nu-
merous applications. In this paper, we present an
approach for 3D-model retrieval by creating index of
closed curves in <3 generated from the center of a 3D-
model, using a commute time mapping function. Our
mapping function respects important properties in or-
der to compute robust closed curves. Each curve de-
scribes a small region of the 3D-model. To describe all
the mesh, we compute a set of indexed closed curves.
These curves lead to creates an invariant descriptor to
different transformations. Then we compute the dis-
tance between models by comparing the indexed curves.
In order to evaluate our method, we used shapes from
SHREC 2012 database. The results show the robustness
of our method on various classes of 3D-models with dif-
ferent positions.

1 Introduction

In recent years, a large number of 3D graphics appli-
cations show their use in several domains (digital enter-
tainment, computer aided design, medical applications,
etc.). These applications use 3D data which grow in
numbers and detail precision. The evolution of this do-
main has created the need for 3D object search engines.
To search a database for 3D models that are visually
similar, we must create a discriminant signature. This
signature encodes the shape of 3D models and should
respect the invariance to rigid and non-rigid transforma-
tions, the insensitivity to noise, the robustness to topol-
ogy changes, and the independence on parameters.
Since a few years the creation of a such signature be-
came a challenge for researchers. Several 3D-model in-
dexing approaches and shape descriptors have been in-
troduced in the literature [13]. We focus here on meth-
ods based on the heat diffusion and curves.
Mahmoudi and Sapiro [7] compare histogram of pair-
wise using the diffusion distances between all vertices

on the mesh. Sun et al. [11] restrict their study to the
temporal domain and compute their signature by ob-
serving the evolution of the heat diffusion over time.
Rustamov [10] creates a descriptor vector from the
evaluated eigenfunctions of Laplace-Beltrami operator.
Bronstein et al. [1, 2] compute the remaining heat on
each vertex after a scale time t. For scale invariance,
they improve the heat kernel signature to scale-invariant
heat kernel signature by scaling and shifting using a log-
arithmic scale-space based on Fourier transform.
A few works based on curves are presented in the lit-
erature and none of them is very efficient. Lmaati et
al.[6] reconstruct 3D closed curves and extract feature
vector as a descriptor. This method needs to align the
model into canonical position before the construction of
the closed curves. Tabia et al.[12] detect feature points
located at the extremities of a 3D model. For each fea-
ture point, they generate a collection of closed curves
based on the geodesic distance. Each feature point and
its collection of closed curves represent a part of the
model. Finally, they use the belief functions to define
the global distance between 3D-models. This method is
very sensitive to topology and a small variation of the
feature point leads to a large variation in curves.
We propose in this paper a novel method for 3D-model
retrieval based on indexed closed curves generated from
an invariant mapping function defined on the mesh us-
ing the commute time distance. This paper is organized
as follow. In section 2 an overview of our method is
given. Section 3 presents the construction and the prop-
erties of our mapping function. Section 4 is about in-
dexed closed curves generations and analysis. Before
the conclusion in section 6, the experiments that prove
the efficiency of our approach are explored in section 5.

2 Method overview

Our method starts by detecting the feature points
(figure 1(a)) to define an appropriate scalar function
based on the commute time distance presented in fig-
ure 1(b). Then we generate and analyse indexed closed



curves raised from the center point of the 3D-model
using this function (figure 1(c)). These curves are de-
fined as level curves. All curves are indexed. We used
Joshi et al’ s method [4] to analyse and compute the
elastic metric between curves. Finally, we analyse the
3D-model by analysing the shape of their correspond-
ing level curves.

(a) Feature points

(b) Mapping function, central point(black arrow)

(c) Indexed closed curves

Figure 1. The different steps of our ap-
proach applied to a neutral pose model
and its isometric transformation, topol-
ogy change and partiality.

3 Mapping function

In order to compute robust closed curves, we need to
define an appropriate invariant mapping function. We
extract feature points located on the extremities of the
3D model. These feature points will be used as origins
to define our mapping function.

3.1 Feature point extraction

We use the diffusion distance to extract feature
points. The diffusion distance is the Euclidean distance
in the spectral embedding space. It is a metric [3] de-
fined using the heat kernels as

dS(t, x, y) = ‖K(t, x, ·)−K(t, y, ·)‖L2(S) (1)

Where K(t, x, y) is the heat kernel and x, y two points
defined on the mesh surface S. In a large time vari-
able t, global properties are detected and the farthest
two feature points are computed. In a small variable
time t, from the farthest two points, we compute the lo-
cal minimum diffusion distance (vertex that all its level-
one neighbours have a higher value) to detect the other
feature points.

3.2 Definition of our mapping function

We define our mapping function using the commute
time distance. The commute-time distance is defined
as:

dcS(x, y)2 =

∞∑
i=1

1

λi
(ψi(x)− ψi(y))2 (2)

Where ψi are the eigenfunctions that correspond to
λi eigenvalues of Laplace-Beltrami operator satisfying
∆Sψi = λiψi. This distance takes into consideration
all paths connecting a pair of vertices (x, y) on the mesh
[9], a small topology change does not affect enormously
the results. Based on this distance, we define our map-
ping function Fm as:

Fm(v) = max(dcS(v, Vi), i = 1..nbVi)) (3)

where Vi is the ith feature point, nbVi is the number of
feature points, dcS(v, Vi) is the commute time distance.
This function computes for each vertex v the distance
to the nearest feature point where the commute time
distance is the highest. In figure 1(b) red to blue col-
ors express the increasing values of the mapping func-
tion. This function is computed using the eigenfunc-
tions and eigenvalues of the Laplace-Beltrami operator.
It can be seen as a global smooth scalar function and
handles noisy data. For uniform scaling, we normalized
the spectrum (eigenvalues) of the mesh. The mapping
function is defined to be dependent only on the structure
of the mesh. This makes it robust to isometric transfor-
mations.

4 Extraction and analysis of closed curves

The farthest vertex of all feature points is detected
by the minimum of the mapping function (figure 1(b)



Figure 2. Geodesic paths between two
curves (A,B)

the black arrow points to vertex in the center of the 3D
model). From this vertex, we generate indexed closed
curves under a scale value of the mapping function.
Each curve describes a small region. Finally the set of
closed curves describes the 3D model entirely. The in-
dexing of the curves saves the spatial relation between
small regions. We analyse the 3D-model by analysing
the shape of their corresponding level curves. To define
a similarity measure between two curves, we normal-
ize them, then we adopt Joshi et al.’s method [4] which
analyses the shape of the curves such as one curve has
to (locally) stretch, compress and bend to match the
other. This is achieved by considering a large class of
parametrization and by representing the curve β by the
square root velocity function q(t) = β̇(t)√

‖β̇‖
that cap-

tures its shape. Joshi et al. define a Reimanian space
using elastic metric. Under this metric, they compute
the length of the geodesic paths between two curves is
denoted as geodesic distance between these curves. The
geodesic paths can be seen as an optimal elastic defor-
mation of curves such as shown on figure 2. As an ex-
ample, given any two curves β1 and β2, represented by
its shape q1 and q2. In order to handle variability such
as rotation and re-parametrization the authors define or-
bits as the equivalence classes of the rotation group and
the re-parametrisation group that represent the q1 and q2
by orbits [q1] and [q2]. To compute the geodesic paths
between β1 and β2 we compute the distance between
the orbits [q1] and [q2]. This task is accomplished using
a path straightening approach which was introduced by
Klassen and Srivastava [5].

5 Experimental results

5.1 Parameter setting of our approach

We numerically compute the eigenfunctions and the
eigenvalues using the discretization proposed by Meyer
et al. [8] in order to formulate the diffusion distance
and the commute-time distance. We solve the general-
ized eigenvalue problem using the Implicitly Restarted
Arnoldi Method implemented in MATLAB. We define
the basis by 50 eigenfunctions related to the 50 small-

Figure 3. Precision vs Recall plot for the
whole dataset

est eigenvalues. The diffusion distance is estimated in
a small and in a large variable time t. For small t rang-
ing in [1, 2], the diffusion is propagated significantly to
detect local properties. For a large t > 15, the diffu-
sion distance remains almost unchanged; so we fix it
to 20. Each model is described by 50 levels of closed
curves in the database. A level could contain more than
one curve. The mapping function have a slight varia-
tion between two similar models that leads to different
levels of curves as shown at the shoulder of the par-
tial 3D-model in figure1(c). To handle this variation of
levels and index the right levels of the model, we de-
scribe the query by 25 levels of closed curves. Each
level of the query is compared to three levels of a model
in the database. As an example, for a level l, this level
is compared to l − 1, l, l + 1 levels with a model from
the database. Then, we take the one with the smallest
length of their geodesic path (the most similar). Finally,
to compute the similarity measure between two mod-
els, we compute the length of the geodesic path of their
corresponding level curves.

5.2 Database and measures

The proposed approach has been tested on a part
of SHREC 2012 - Sketch-Based 3D Shape Retrieval
Dataset1. The collection we used consists of 130 3D-
models classified into 13 categories. Each category con-
tains 10 3D-models. To evaluate our approach, we used
a well-known evaluation tool: the Precision Recall plot.
We plot the Precision Recall graph for the whole dataset
(figure 3). Our method shows very good results due
to the invariant mapping function defined on the mesh.
This function describes 3D-models with different trans-
formations similarly that leads to detect small region
described by closed curves similarly. We also present
the Nearest Neighbour (NN), First Tier (FT), Second

1http://www.itl.nist.gov/iad/vug/sharp/contest/2012/SBR/data.html



Table 1. Retrieval statistics
Class NN FT ST E-Measure

All classes 0.81 0.57 0.71 0.59
Humans 0.70 0.35 0.40 0.34

Cups 0.60 0.30 0.40 0.28
Glasses 0.50 0.41 0.52 0.41
Planes 1 0.78 0.94 0.76
Ants 1 0.87 1 0.80

Chairs 0.9 0.52 0.70 0.49
Octopuses 0.5 0.39 0.56 0.38

Tables 1 0.45 0.56 0.43
Teddies 1 0.68 0.85 0.67
Hands 0.9 0.64 0.78 0.63
Pliers 1 0.99 1 0.94
Sharks 0.9 0.52 0.66 0.51
Birds 0.5 0.45 0.79 0.39

Figure 4. Example of retrieved results.

Tier (ST) and the E-measure scores in table 1. The E-
measure only considers the first 10 retrieved models for
every query and calculates the precision and recall over
those results. These scores show the excellent results of
our method for some classes like Planes, Ants, Pliers,
Hands, Teddies but limited results for shapes as Cups.
This is due to a few number of feature points detected in
objects like cups. Also, we present samples of retrieved
objects in figure 4. The human model with topology
changes used as a query and hands results show the ro-
bustness of our method toward topology change pointed
by a red arrow in figure 4.

6 Conclusion

We presented in this paper a novel approach for 3D-
model retrieval. Our approach includes a method to
extract stable feature points defined on the extremities.
We defined an invariant mapping function to detect the
center. We use the center point to generate indexed
heat curves under different scale values of this function.
Each curve describes a small region of the 3D-model.
We index all curves in order to save the spatial rela-

tionship between small region. Finally we tested our
approach and discussed the results for 3D-models re-
trieval.
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