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Abstract

The present paper deals with the efficient use of different types of monitoring information in optimiz-

ing condition-based maintenance (CBM) decision-making for a deteriorating system operating under

variable environment. The degradation phenomenon of system is the fatigue crack growth which is

modeled by a physics-based stochastic process. The environment process is assumed to be modeled by

a time-homogenous Markov chain with finite state space. We suppose that the environmental condi-

tion is observed perfectly, while the crack depth can be assessed imperfectly through a non-destructive

ultrasonic technique. As such, two kinds of indirect information are available on the system at each

inspection time: environmental covariate and diagnostic covariate. Based on this set of information,

two CBM strategies adaptive to environmental condition are developed. In the first one, the adapta-

tion scheme is time-based, while in the second, it is condition-based. These maintenance strategies are

compared one to each other and to a classical non-adaptive one to point out the performances of each

adaptation scheme and hence the appreciation of using different information sources in maintenance

decision-making.
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1. Introduction

With the development of engineering structures and systems, maintenance operations play an

important role in efforts to improve the durability, reliability and maintainability of industrial systems.

The dissemination and the expansion of instrumentation techniques and sensor technologies impulse

the integration of diversified monitoring information in describing the system behavior and providing

reliable condition-based maintenance decisions. Currently, we observe an increased interest in the

use of information on covariates, i.e., variables that are correlated to, but do not define directly

or completely the underlying system state. In practice, covariates could be categorized into two

classes: environmental covariates and diagnostic covariates [1]. Environmental covariates, including

environmental settings, stress, load, etc. may accelerate or decelerate the failure time of a system.

Whereas, diagnostic covariates, such as the vibration level of fitted rotating machinery, the level of

metal particle in oil analysis, the fatigue crack growth of steam turbine, the thickness of brake pad,

etc., are often generated by the asset failure mechanism. Furthermore, these covariates are collected

by different ways. Environmental covariates, in many practical situations, usually vary between a

finite number of states during a system operating period. This kind of data, therefore, can be directly

observable with reasonable accuracy at very low costs. On the contrary, diagnostic covariates, due

to e.g. the difficulty of placing sensors in the harsh environmental conditions in which the system

operates, are not always straightforward to defined directly, and one has to resort to indirect condition

monitoring techniques. Potential methods of such techniques include vibration based monitoring, oil

analysis, infrared thermography, acoustic emission analysis and motor current analysis [2]. In this

manner, these diagnostic covariates are usually collected at high costs and they are always affected

by noise and disturbance. Under this consideration, both type of covariates and nature of monitoring

techniques have significant impacts on the system evolution, so a good reliability model should not

ignore these aspects. However, in the literature, very few models take into full account all these

aspects. For example, many studies include both environmental and diagnostic covariates in modeling

the system degradation [3–6], but the quality of the measurement are ignored (i.e., all covariates are

assumed perfectly determined). Whereas, some authors deal with the indirect measurement nature

of diagnostic covariates [7–10], but they do not integrate the influences of environmental covariates
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in their models. In this framework, the present paper aims to build a degradation and measurement

model in which all the aforementioned aspects are taken into account. Such a model is meant to be

more realistic, and offers a good case study for discussion about the relevance of different kind of

monitoring information in maintenance decision-making.

As a test case, we consider the well-known fatigue crack growth degradation phenomenon of a single-

unit system operating under variable environment. The environmental covariate affects the speed and

the variance of the crack growth. The crack depth is unobservable directly because the inspection

method relies on classical non-destructive ultrasonic techniques [11]. Hence, modeling such a system

leads to describe the characteristics of the operating environment and the system degradation evolution,

the relation between environmental covariate, real degradation and diagnostic covariate, as well as the

direct and indirect nature of monitoring techniques. This kind of model can be built by extending

the degradation and measurement model studied in [9–12]. It is based on a Markovian stressful

environment, a non-stationary Markovian process for the degradation phenomenon, a proportional

hazard model to describe the impact of environment on the degradation, and a logit model for the

indirect monitoring.

Based on the proposed degradation and measurement model, our aim is to develop a CBM frame-

work in which the information on both diagnostic and environmental covariates is used efficiently. In

CBM area, the periodic inspection and replacement strategy, denoted as (∆T,M) strategy, is widely

used because of its simple implementation [6]. With this kind of strategy, any intervention (i.e., in-

spection, replacement, etc.) is only possible at periodic prefixed times. However, this classical strategy

seems inefficient to guarantee the system availability since at the same time it might “over inspect” or

“under inspect” failure times [13]. This leads us to introduce adaptive maintenance strategies which

allow avoiding more efficiently inopportune maintenance spending. In the literature, some adaptive

strategies are proposed [14–17], but none of them has discussed about the time-based and condition-

based nature of adaptation scheme. The present paper, therefore, adds a new dimension to the adaptive

strategies by proposing two separate maintenance decision-making approaches adaptive to the environ-

mental condition. In the first one, the adaptation relies on the inspection periods, while in the second,

it relies on the degradation-based preventive replacement thresholds of the system. The cost model of

these strategies are developed, optimized and compared with the classical (∆T,M) strategy. The com-
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parison results allow to assess the performance of each adaptation approach, and hence to make some

conclusions on the interest of the using different information sources in maintenance decision-making.

The remainder of this paper is organized as follows. Section 2 of the paper is devoted to model

the considered system. In Section 3, we present the adaptive CBM framework: the maintenance

assumptions, the proposed strategies and the criterion to evaluate their performance. Section 4 deals

with the numerical solution of the maintenance models considered in Section 3. In Section 5, we discuss

the performance and the robustness of the adaptive CBM framework by investigating its sensitivities

to different situations of intervention costs, environment characteristics and parameters estimation

errors. Finally, we conclude the paper in Section 6.

2. System modeling and condition monitoring

As a motivating exemple for the presented work, we are interested in the fatigue crack growth

degradation phenomenon of a mechanical system that operates under a variable environment. The

system fails when its crack depth exceeds a critical material thickness d. The crack depth is monitored

indirectly by a non-destructive ultrasonic inspection technique, while the environmental state is ob-

served directly. Such a system can be described by an extension of the degradation and measurement

model considered in [9–12]. Compared to the original model, the one developed in this paper adds the

impacts of environmental condition on the system degradation behavior and the different natures of

condition monitoring technique.

2.1. Degradation model without environmental impacts

Degradation modeling of a mechanical equipment usually starts with a deterministic description

of the underlying degradation phenomenon through physics or chemistry, then randomness can be

incorporated into the model to preserve the stochastic nature of a degradation process [18]. In this

work, the basis of the degradation model is the continuous time and deterministic Paris-Erdoganmodel

which reflects the physical interpretation of the phenomenon

dx

dt
= C (∆K)

n
(2.1)
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where x is the crack depth, t is the time, ∆K = ∆K (x) is the stress intensity amplitude, C and n are

constant parameters related to the component material properties [19]. The parameters of the Paris-

Erdogan model can be estimated from measured crack growth data [20]. The stress intensity factor

is computed by ∆K = β
√
x, where the parameter β is related to the applied stress and geometrical

configuration of the structure [21], and it is considered as constant when the impacts of operating

environment are not taken into account [9–12].

To preserve the intrinsic randomness of the degradation phenomenon, the aforementioned deter-

ministic Paris-Erdogan crack growth model is randomized. It has been suggested to randomize the

deterministic crack propagation by a stochastic process [22] or by a randomization of characteristic

parameters (i.e., C, n or β) of the deterministic model [23]. The randomization approach used here

is a special case of Yang’s power law model [24] where a lognormal distributed random variable is

introduced. The versatility of this randomization approach has been analyzed in [25] and justified on

the basis of empirical data in [26, 27]. Consequently, for a time step ∆t sufficiently small, one can

discretize and insert the randomness into the equation (2.1) as follows [11]

xti = xti−1 + eωtiC
(
β
√
xti−1

)n
∆t (2.2)

where ωti ∼ N
(
0, σ2

ω

)
, i = 1, 2, . . . are Gaussian random disturbances, xti is the crack depth at time

step ti = i∆t with 0 < xti−1 < xti < +∞.

2.2. Environmental modeling and degradation model with environmental impacts

The aforementioned degradation model does not consider the influences of operating environment on

the system behavior. This section, therefore, aims to incorporate this aspect into the above degradation

model. In a way similar to the works in [3, 5, 28], we model the evolution of stressful environment

according to a time-homogeneous Markov chain with a discrete and finite state space. This choice

is justified by the fact that the environmental impact on the system evolution is continuous and

its repercussions are significant when the environmental states are really different. Let us denote

Ξ = {1, 2, . . . ,m} the state space of the operating environment, and eti its state (i.e., environmental
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covariate) at time ti. The evolution of eti in the state space Ξ is expressed by the transition matrix

Tα = (τkh)1≤k≤m,1≤h≤m , (2.3)

where τkh = P
(
eti = h | eti−1 = k

)
, ∀i = 1, 2, . . ., is the transition probability of the Markov chain

{eti}ti≥0 from the state k at time ti−1 to the state h at time ti. The parameter α ∈ [0, 1] defines the

transition speed between the states of {eti}ti≥0.

When operating under variable environment, the speed and variance of the system degradation

can be accelerated or decelerated according to the environmental covariate. In order to take into

account this phenomenon, the characteristic parameters of the degradation model (2.2) are linked to

the environmental covariate eti . The parameters C and n only depend on the component material

properties, hence do not depend on eti . Since β is the parameter related to the applied stress on

the component, it is considered as a function β (eti) of environmental covariate eti . To characterize

concretely this relation, a model similar to the proportional hazards model proposed by Cox [29] is

used.

β (eti) = βb · exp
(
γ11{eti=1} + γ21{eti=2} + · · ·+ γm1{eti=m}

)
= βb · eγeti , (2.4)

where βb is the constant baseline parameter related to the normal environment (i.e., there is no

additional stress due to the severe condition of operating environment), γk ≥ 0, k = 1, 2, . . . ,m,

is the regression parameters that reflect additional impact of the stressful environment on the system

degradation behavior (γeti ∈ {γ1, γ2, . . . , γm}), and 1{·} denotes the indicator function which equals

1 if the argument is true and 0 otherwise. Consequently, from equation (2.2), the degradation model

with the impact of operating environment can be expressed as

xti = xti−1 + eωtiC
(
β (eti) ·

√
xti−1

)n
∆t, (2.5)

where the function β (eti) is given by the equation (2.4). This model allows the recursive calculation

of the crack depth xti at each time step ti given the the model parameters, the crack depth xti−1 at

time step ti−1, and the environmental covariate eti at time step ti.

The fundamental differences between the new degradation model and the original one come from
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the environment aspect, it is then interesting to study the influences of environment characteristics

on the degradation behavior. Understanding thoroughly these influences helps us propose appropriate

maintenance strategies for the considered system. We consider firstly the stress level of environment.

From equation (2.5), we can easily show that the system degradation rate ∆xti =
xti

−xti−1

∆t
follows a

lognormal distribution

∆xti ∼ logN
(
ln
(
C
(
β (eti)

√
xti−1

)n)
, σ2

ω

)
. (2.6)

Thus, the mean and variance of ∆xti are given respectively by

E [∆xti ] = C
(
β (eti)

√
xti−1

)n
e

σ
2
ω

2 and var [∆xti ] = E2 [∆xti ] ·
(
eσ

2
ω − 1

)
. (2.7)

As these quantities are increasing functions of β (eti), the higher the stress level of environment, the

more the system lifetime is shortened and variable. Consider now the influences of the transition

speed between environmental states (i.e., parameter α) illustrated through a numerical exemple. A

single-unit system operating under a 2-states Markovian environment is considered. The parameters

of the model are chosen as C = 0.015, n = 0.35, bb = 3.9, σ2
ω = 2.53, ∆t = 0.2. For the 2-state

Markovian environment (i.e., Ξ = {1, 2}, et0 = 1), eti = 1 and eti = 2 correspond respectively to the

normal condition (γ1 = 0) and the stressful condition (γ2 = 6), and the transition matrix is chosen by

Tα =




1− α α

α 1− α


 . (2.8)

According to this transition matrix, the higher the value of α, the faster the transition of environment

[5]. The critical material thickness (i.e., failure threshold) is chosen as d = 9. The numerical results

for the two cases α = 0.003 and α = 0.12 are shown in Figure 1. Sub-figures 1a and 1b illustrate the

evolution of the system degradation under the different situations of the transition speed of operating

environment. From Sub-figures 1c and 1d, we remark that the degradation process and the failure

times are more scattered when the transition speed is lower. This phenomenon is comprehensible

when considering the percentage of time intervals related to the stressful environment in a life cycle of

the system. When the environmental state varies slowly, some life cycles can be totally non-stressed,

7



0 50 100 150 200 250 300

1

2

E
nv

iro
nm

en
t s

ta
te

 

 

0 50 100 150 200 250 300
0

5

10

Working time

C
ra

ck
 g

ro
w

th

(a) System evolution - α = 0.003
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(b) System evolution - α = 0.12
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(c) Characteristic of degradation process - α = 0.003
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(d) Characteristic of degradation process - α = 0.12

Figure 1: Influence of transition speed of operating environment on the system degradation

whereas some others can be completely stressed (see Sub-figure 1a). On the contrary, when the

environmental state changes quickly, all the life cycles become more or less similar (see Sub-figure 1b).

Since the system degradation behavior is driven by these percentages, the variance of the failure time

variance is larger for the lower transition speed of environment.

2.3. Condition monitoring models

Condition monitoring provides useful information to assess the system reliability and to make a

maintenance decision. For the considered system, the environmental state and the crack depth are

under monitoring. The condition of operating environment, in many practical situations, are easy to
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identify. This is particularly true in the case of monitoring the temperature and humidity conditions,

or the rate of a production line. This is why we suppose that the environmental state eti at time ti

is directly observed without errors and with a negligible cost. Contrary to the environmental state,

the crack depth xti at time step ti is not directly observable, but can be assessed through a classical

non-destructive ultrasonic technique with a non-negligible inspection cost. In the same way as in [30],

a logit model is used to describe this inspection technique. As such, instead of the true crack depth

xti , the inspection returns the noisy measurement zti that correlates with xti through the expression

[11]

ln
zti

d− zti
= β0 + β1 ln

xti

d− xti

+ vti , (2.9)

where d is the critical material thickness of component, β0 ∈ R and β1 > 0 are parameters to be

estimated from experimental data, and vti is a white Gaussian noises such that vti ∼ N
(
0, σ2

v

)
. From

the mathematical aspect, Equation (2.9) is valid for all xti ∈ (0, d). The measurement variable zti

is thereby a random variable which is defined in the domain 0 < zti < d for all xti ∈ (0, d). From

Equation (2.9), given xti ∈ (0, d), the likelihood probability density function (pdf) of the measurement

zti is derived as [9]

f (zti | xti) =
1√
2πσ2

v

e
− 1

2σ2
v

(
ln

zti

d−zti

−β0−β1 ln
xti

d−xti

)2

d

zti (d− zti)
· 1{0<zti<d}. (2.10)

Consequently, the system condition monitoring returns two types of information at each inspection

time: environmental covariate eti and diagnostic covariate zti . In the next section, we show how to

use these covariates to make an adaptive maintenance decision.

3. Adaptive condition-based maintenance framework

We introduce in this section two CBM strategies adaptive to the environmental covariate. A so

called (∆Tk,M) strategy represents the time-based adaptation approach and a so called (∆T,Mk)

strategy represents the condition-based adaptation approach. Since the diagnostic covariates cannot

reflect precisely the degradation state of system, the decision rules of both strategies rely on the

estimated degradation level reconstructed from these noisy covariates.
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3.1. Assumptions and objective cost function

We suppose that the system degradation (i.e., the crack depth) is hidden and the system failure

is non-self-announcing. This means that the system reveals only its degradation state and its failure

through a monitoring procedure. Continuous monitoring performed at each time step ∆t is usually

very costly and sometimes impossible in practical engineering applications. In this framework, it is

more suitable to implement discrete monitoring with an inter-inspection length taken as a multiple of

∆t. An indirect non-destructive ultrasonic technique is then used to inspect the system, so the noisy

measurement (i.e., diagnostic covariate) zTi
and the working/failure state of the system are collected at

each discrete inspection time Ti with a cost Ci. These assumptions are reasonable because in practice,

for economic and safety reasons, the system is considered as “failed” as soon as a defect or an important

deterioration appears, even if it is still running, so no indicator can exhibit the degradation and failure

state of system except to do an inspection. The condition of stressful environment (i.e., environmental

covariate) is assumed to be perfectly collected with a negligible cost because it is much more easy to

detect compared to the system degradation state. Also, we assume that the inspection takes negligible

time.

Two maintenance operations are available on the system: the preventive replacement with cost

Cp > Ci and the corrective replacement with cost Cc. A replacement can be either a true physical

replacement or an overhaul or repair such that the system is as-good-as-new after the repair. Even

though both the preventive and the corrective maintenance actions put the system back in the as-

good-as-new state, they are not necessarily identical in practice because the corrective replacement

(or renewal) is unplanned and it has to be performed on a more deteriorated system, and the cost

Cc can also comprise different costs associated with failure. It is thus likely to be more complex

and more expensive (i.e., Cc > Cp). Moreover a replacement, whether preventive or corrective, can

only be instantaneously performed at predetermined inspection times. Therefore, there exists a system

inactivity after failure and an additional cost is incurred from the failure time until the next replacement

time at a cost rate Cd.

To assess the performance of a maintenance strategy, one usually uses cost-based criteria in the

literature. The maintenance cost of a maintenance strategy can be computed over a bounded or

unbounded time horizon [31]. The unbounded time horizon model seems to be more advantage in
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making repeated investment decisions, because it does not ignore the future [32]. Thus, in the aim of

long-term exploitation of a system, we focus on the widely used expected maintenance cost per unit

over an infinite time span to assess the performance of the proposed strategies. The assumption of an

as-good-as-new maintained system leads to the use of the regenerative properties of system state to

compute the cost rate [33]

C∞ = lim
t→∞

C (t)

t
=

E [C (S)]

E [S]
(3.1)

where C (t) is the cumulated maintenance cost at time t, S is the time between two successive renewals.

3.2. Motivations for an adaptive decision to environmental covariate

We are interested in the construction of dynamic CBM strategies adaptive to environmental co-

variate. The main idea is to begin with the periodic inspection and replacement (∆T,M) strategy

proposed by Huynh et al. in [6]. As mentioned in Section 1, according to this maintenance policy, any

intervention (i.e. inspection, replacement, etc.) is only possible at periodic prefixed times Ti = i ·∆T ,

i = 1, 2, . . .. At each inspection, if the estimated degradation level reconstructed from diagnostic co-

variates exceeds a threshold M and no failure occurred, a preventive replacement is carried out. But

upon inspection, if the system is detected to be in failure state, it is correctively replaced. The pe-

riodic inter-inspection interval ∆T and the preventive replacement threshold M are the two decision

variables of this maintenance strategy (i.e., we seek the optimal values (∆Topt,Mopt) which minimize

the cost criterion (3.1)). As such, decision rules of the (∆T,M) strategy are indirectly relied on the

actual value of diagnostic covariates and the average behavior of environmental covariate. In fact, this

strategy is quite efficient especially when compared with a time-based maintenance strategy [6, 34].

However, it is not yet an adequate maintenance policy strategy in some situations, because it does not

take into account the current state of environmental covariate which can also bring out much signifi-

cant information on the health state of system and its future life. So it can be interesting to propose

maintenance strategies which can incorporate both actual diagnostic and environmental covariates in

maintenance decision-making.

As shown in Section 2, for the considered system, the speed and the variance of crack growth

are increasing functions of the stress level of environment. So the maintenance decisions should be

adaptive to environmental covariate. From the (∆T,M) strategy, a natural approach is to adapt one
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or both decision parameters ∆T and M to the environmental covariate. For example, the intervention

actions should be carried out more frequently (by e.g., shortening the inter-inspection interval) and/or

the safety zone of system should be extended (by e.g., lowering the preventive replacement threshold)

for a stressful condition rather than for a non-stressful condition. As such, one can have more precise

information on the actual condition of system and its future evolution, hence can avoid more efficiently

the system failures. Thus, the optimal values of the parameters ∆T and/or M are no longer fixed

for all the system lifetime as in (∆T,M) strategy, but vary with the environmental covariate. In the

following, two adaptive CBM strategies called (∆Tk,M) and (∆T,Mk) are developed. The (∆Tk,M)

strategy where inter-inspection intervals vary according to the current environmental state represents a

time-based adaptation approach, while the (∆T,Mk) strategy where preventive replacement thresholds

vary according to the current environmental state represents a condition-based adaptation approach.

Of course, a strategy where these both parameters adaptive to the environmental condition may be

interesting and be a general policy of both (∆Tk,M) strategy and (∆T,Mk) strategy. However, such

a strategy seems redundant to the paper scope and we content ourselves with considering separately

one of the two adaptation approaches at each time.

3.3. Adaptive condition-based maintenance decision with multi-periods of inspection

In order to highlight the time-based adaptation approach to environmental covariate, we propose

here a (∆Tk,M) strategy that represents an adaptive CBM decision structure with multi-periods of

inspection. Such a strategy is similar to the (∆T,M) strategy, except that its inspection periods can

adapt to different states of the stressful environment. However, for the same stress level, e.g., eti = k,

k ∈ {1, 2, . . . ,m}, these periods remain constant and are equal to ∆Tk.

3.3.1. (∆Tk,M) strategy

The decision structure of the (∆Tk,M) strategy in a renewal cycle can be described by the following

scheme. The system is regularly inspected with a cost Ci and with a period ∆Tk according to the state

eti = k of environment. The inspection returns the actual stressful level of operating environment, the

noisy measurement of the system degradation, as well as its working/failure state. At each inspection

time Ti, i = 1, 2, . . ., if the system fails (i.e., xTi
≥ d), it is correctively replaced with a cost Cc, and its
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downtime generates an additional cost at a rate Cd. But if the system is still working (i.e., xTi
< d),

given the environmental covariate eTi
= k and the sequence of diagnostic covariates up to time Ti,

ZT0:i = {zT0 , zT1 , ..., zTi
}, the estimated degradation level x̂Ti

of the system is constructed. We make

then a maintenance decision conditional on x̂Ti
as follows

◦ If x̂Ti
≥ M , a preventive replacement is done with a cost Cp.

◦ If x̂Ti
< M , nothing is done and the decision is postponed until the next inspection time Ti+1

that depends on the stress level eTi
observed at Ti (e.g., Ti+1 = Ti +∆Tk if eTi

= k).

Under this adaptive maintenance policy, the preventive replacement threshold M and the inspection

periods ∆T1, . . . ,∆Tm are the decision variables. Figure 2 shows a schematic evolution of the main-

tained system state under the (∆Tk,M) strategy when the state space of the operating environment

is chosen by Ξ = {1, 2}. We remark that the (∆Tk,M) strategy returns to the (∆T,M) strategy when
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Figure 2: Illustration of the decision rule of (∆Tk,M) strategy

the inspection periods ∆Tk, k = 1, 2, . . . ,m are equal, the former is more general and then more prof-

itable than the latter. This reflects the benefit of the time-based adaptation approach to environmental

13



covariate.

3.3.2. Maintenance cost model

To assess the performance of the (∆Tk,M) strategy, one relies on its mathematical cost model.

Applying Equation (3.1), the long-run expected maintenance cost rate of the (∆Tk,M) strategy is

computed by

C∆Tk,M
∞ (∆T1, . . . ,∆Tm,M) =

CiE
[
N∆Tk,M

i

]
+ CpP

∆Tk,M
p + Cc

(
1− P∆Tk,M

p

)
+ CdE

[
W∆Tk,M

d

]

E [S∆Tk,M ]
,

(3.2)

where P∆Tk,M
p , N∆Tk,M

i and W∆Tk,M
d are respectively the preventive replacement probability, the

number of inspections, and the system inactivity interval in a replacement cycle S∆Tk,M under the

(∆Tk,M) strategy. Thus, the optimization of this strategy is reduced to find the optimal values of

decision variables (∆T1,opt, . . . ,∆Tm,opt,Mopt) which minimize the cost rate C∆Tk,M
∞

C∆Tk,M
∞ (∆T1,opt, . . . ,∆Tm,opt,Mopt) = min

∆T1,...,∆Tm,M

{
C∆Tk,M

∞ (∆T1, . . . ,∆Tm,M)
}
. (3.3)

The optimal solution of the (∆Tk,M) strategy is obtained if we know the mathematical formulas

of P∆Tk,M
p , E

[
N∆Tk,M

i

]
, E

[
W∆Tk,M

d

]
and E

[
S∆Tk,M

]
. However, as in [10], we can show that the

analytical formulas of these quantities are almost impossible to derive due to the complexity of the

proposed degradation and measurement model, and the adaptive maintenance decision rule based on

estimated degradation state and environmental covariate. In Section 4, we use numerical approaches

(i.e., particle filter technique for state estimation, and Monte Carlo simulation for maintenance opti-

mization) to overcome the problem.

3.4. Adaptive condition-based maintenance decision with multi-thresholds for preventive replacement

To highlight the condition-based adaptation approach to environmental covariate, we propose in

this subsection a maintenance strategy with multi-thresholds for preventive replacement (i.e., (∆T,Mk)

strategy). For such a strategy, the inspection period ∆T is always constant regardless of environmental

condition, while the preventive replacement thresholds Mk, k ∈ {1, 2, . . . ,m} can vary depending on

14



the stress level of environment. However, under the same stress level, e.g., eti = k, the threshold

remains constant is equal to Mk.

3.4.1. (∆T,Mk) strategy

The decision structure of the (∆T,Mk) strategy in a renewal cycle can be described by the following

scheme. The system is periodically inspected with a cost Ci and with a period ∆T regardless of the

environmental condition. The inspection returns the actual stressful level of operating environment, the

noisy measurement of the system degradation, as well as its working/failure state. At each inspection

time Ti = i∆T , i = 1, 2, . . ., if the system fails (i.e., xTi
≥ d), it is correctively replaced a cost Cc, and

its downtime generate an additional cost at a rate Cd. But if the system is still working (i.e., xTi
< d),

given the environmental covariate eTi
= k and the sequence of diagnostic covariates up to time Ti,

ZT0:i = {zT0 , zT1 , ..., zTi
}, the estimated degradation level x̂Ti

of the system is constructed. We make

then a maintenance decision conditional on x̂Ti
as follows

◦ If eTi
= k and x̂Ti

≥ Mk, a preventive replacement is done with a cost Cp.

◦ If eTi
= k and x̂Ti

< M , nothing is done and the decision is postponed until the next inspection

time Ti+1 = (i+ 1)∆T .

Under this adaptive maintenance policy, the preventive replacement thresholds M1, . . . ,Mm and the

inspection period ∆T are the decision variables. Figure 3 shows a schematic evolution of the maintained

system state under the (∆Tk,M) strategy when he state space of the operating environment is chosen

by Ξ = {1, 2}. It is noticed that the (∆T,Mk) strategy returns to the (∆T,M) strategy when the

inspection periods Mk, k = 1, 2, . . . ,m are equal, the former is more general and then more profitable

than the latter. This reflects the benefit of the condition-based adaptation approach to environmental

covariate.

3.4.2. Maintenance cost model

To assess the performance of the (∆T,Mk) strategy, one relies on its mathematical cost model.

Applying Equation (3.1), the long-run expected maintenance cost rate of the (∆T,Mk) strategy is
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Figure 3: Illustration of the decision rule of (∆T,Mk) strategy

expressed by

C∆T,Mk

∞ (∆T,M1, . . . ,Mm) =
CiE

[
N∆T,Mk

i

]
+ CpP

∆T,Mk

p + Cc

(
1− P∆T,Mk

p

)
+ CdE

[
W∆T,Mk

d

]

E [S∆T,Mk ]
,

(3.4)

where P∆T,Mk

p , N∆T,Mk

i and W∆T,Mk

d are respectively the preventive replacement probability, the

number of inspections, and the system inactivity interval in a replacement cycle S∆T,Mk under the

(∆T,Mk) strategy. Thus, the optimization of this strategy is reduced to find the optimal values of

decision variables (∆Topt,M1,opt, . . . ,Mm,opt) which minimize the cost rate C∆T,Mk

∞

C∆T,Mk

∞ (∆Topt,M1,opt . . . ,Mm,opt) = min
∆T,M1...,Mm

{
C∆T,Mk

∞ (∆T,M1 . . . ,Mm)
}
. (3.5)

The optimal solution of the (∆T,Mk) strategy is obtained if we know the mathematical formulas of

P∆T,Mk

p , E
[
N∆T,Mk

i

]
, E

[
W∆T,Mk

d

]
and E

[
S∆T,Mk

]
. However, in the same reason as in the above

subsection, the analytical formulas of these quantities are almost impossible to derive, and we shall
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use the particle filter technique and the Monte Carlo simulation to overcome this problem.

4. Numerical solution for adaptive condition-based maintenance models

As shown in Section 3, the analytical analysis of the proposed maintenance strategies is not trivial

due to the complexity of the degradation and measurement model, and the adaptive decision rules

based on both estimated degradation state and environmental covariate. This is why we propose in

this section numerical methods to overcome this difficulty. The particle filter approach is used for the

online state estimation, while Monte Carlo simulations procedure is used to assess the performance of

maintenance strategies.

4.1. Particle filtering state estimation

The measurements given from the ultrasonic inspection technique are a useful information for main-

tenance decision-making. However, a direct use of such information does not provide reliable results

due to the presence of measurement uncertainty. Estimating the true state of system degradation from

these noisy measurements is thereby necessary. In the literature, stochastic filtering [35], proportional

hazards modeling [36] and hidden Markov models [37] are the three common data-driven approaches

for inferring the underlying system state from noisy monitoring data. The proportional hazards model

is restricted to its proportional assumption, and the hidden Markov model is applied only for dis-

crete state variables. The stochastic filtering can overcome these drawbacks. Moreover, because the

stochastic filtering uses the full history of condition monitoring data, it outperforms the others [38].

The performance of stochastic filtering is limited with high dimensional data, however this is not the

problem in our case study because the degradation phenomenon is a single fatigue crack growth path.

Particle filtering is a numerical version of stochastic filtering. It is a Monte Carlo-based computation

tool particularly useful for optimal estimation and prediction problems in non-linear non-Gaussian

process [38]. In comparison with standard approximation methods in class of stochastic filtering, such

as the popular Extended Kalman Filter, the main advantage of particle methods is that they do not rely

on any local linearization technique or any crude functional approximation [39]. The price that must

be paid for this flexibility is computationally expensive. However, thanks to the availability of ever-

increasing computational power, these methods are already used in real-time applications appearing
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in fields as diverse as chemical engineering, computer vision, financial econometrics, target tracking

and robotics [40]. This is why we use the particle filter approach to estimate in the real-time the crack

depth of the system at discrete inspection times.

The used particle filter technique is quite simple and is similar to simulation approach of Zio et al.

in [9, 12]. Because the focus of the paper is not computation methods, we do not explain the principle

of the considered particle filter. Interested reader can refer to [9, 12] for the detail development.

Instead of this, we present explicitly the particle filter algorithm that does not be introduced in these

papers. The algorithm uses the prior distribution derived from (2.5) as the importance function,

and the deterministic re-sampling method [41] to limit the inherent degeneracy problem in the particle

filter approach. As such, the real-time state estimation procedure, given the sequence of measurements

ZT0:i = {zT0 , zT1 , . . . , zTi
}, can be resumed by Algorithm 1.

Algorithm 1 Generic particle filter for system state estimation

1. Initialization: ∀k = 1, . . . , Ns

Generate the particles x
(k)
t0

∼ f (xt0) and set corresponding weights ŵ
(k)
t0

= 1/Ns

2. Given
{
x̂
(k)
ti−1

, 1/Ns

}Ns

k=1
, at ti > 0, do

(a) Prediction step: Generate Ns particles x
(k)
ti

from Equation (2.5)

(b) If ti 6= Ti (not at inspection), set
{
x̂
(k)
ti

, ŵ
(k)
ti

}Ns

k=1
=

{
x
(k)
ti

, 1/Ns

}Ns

k=1
(c) If ti = Ti (at inspection),

i. Update step: w̃
(k)
ti

∝ f
(
zTi

| x(k)
ti

)
(see Equation (2.10)),

ii. Re-sampling step:

Deterministic re-sampling
{
x
(k)
ti

, w̃
(k)
ti

}Ns

k=1
to obtain

{
x̂
(k)
ti

, 1/Ns

}Ns

k=1

iii. Set
{
x̂
(k)
Ti

, ŵ
(k)
Ti

}Ns

k=1
=

{
x̂
(k)
ti

, 1/Ns

}Ns

k=1

3. Estimation at inspection Ti:

(a) Estimated pdf: f̂ (xTi
| ZT0:i) =

(∑Ns

k=1 δx̂(k)
Ti

(xTi
)

)
/Ns

(b) Estimated state:

x̂Ti
=

∫
xTi

f (xTi
| ZT0:i) dxTi

≃
(∑Ns

k=1

∫
xTi

δ
x̂
(k)
Ti

(xTi
) dxTi

)
/Ns =

(∑Ns

k=1 x̂
(k)
Ti

)
/Ns

To illustrate the robustness of the proposed algorithm, consider again the system defined in the

example of Section 2 with α = 0.003. The parameters of the measurement model are β0 = 0.06,

β1 = 1.25 and σv = 0.5. The samples number is Ns = 3000, and the inspection is periodic with a
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period ∆T = 2. Sub-figure 4a shows the evolution of operating environment and the relative standard

deviation of the measurement (i.e. ǫti =
‖zti−xti

‖
xti

× 100). Sub-figure 4b shows the estimated results of

degradation state at inspection times. We can remark that the error between the estimated state and
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Figure 4: State estimation by generic particle filter algorithm

the true degradation state is unavoidable because the degradation is estimated by its expected value

conditional on the sequence of noisy measurements, and the PF algorithm is just an approximation of

the optimal Bayesian estimate. However, the estimated state can still approximate the true degradation

path more closely compared to the measured data.

4.2. Monte Carlo simulation for maintenance optimization

In this subsection, the Monte Carlo simulation is used to approximate the optimal solutions of the

proposed adaptive maintenance strategies. Thus, the long run expected maintenance cost rate given

from Equation (3.1) is rewritten to

C∞ =
E [C (S)]

E [S]
= lim

N→∞

1
N

∑N
n=1 C (Sn)

1
N

∑N

n=1 Sn

≃
∑Nh

n=1 C (Sn)∑Nh

n=1 Sn

, with Nh high enough, (4.1)

where Nh is the number of simulation histories and Sn is the length of the first renewal cycle of the

n-th history. The simulation procedure to obtain the long run expected maintenance cost rate C∞

according to Equation (4.1) is given by Algorithm 2.
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Algorithm 2 Simulation algorithm to determine C∞ according to Equation (4.1)

1. Initialization: S = 0, C = 0.

2. Step 1: Generate a history (e.g. the n-th history) of environmental state, degradation and
measurements according to Equations (2.5) and (2.9).

3. Step 2: Determine the length of the first renewal cycle Sn of the n-th history and the correspond-
ing maintenance cost incurred C (Sn) (see respectively Algorithms 3 and 4 for detail simulation
procedures of (∆Tk,M) strategy and (∆T,Mk) strategy).

4. Step 3: Calculate C = C + C (Sn), S = S + Sn, C∞ = C/S and decide

◦ If C∞ converge, end of simulation algorithm,

◦ Otherwise, turn back to Step 1.

5. Output: Converged value of C∞.

For numerical illustrations in the remainder of this section, the system and the measurement model

described in the example of Subsection 4.1 is recalled. The measurement error is re-chosen by σv = 0.4

for a clearer illustration. The samples number is Ns = 3000, the number of simulated histories is

Nh = 4000 (the value of C∞ is converged when Nh = 4000). Finally, the intervention costs are chosen

by Ci = 8, Cp = 50, Cc = 100 and Cd = 25.

4.2.1. Numerical solution for (∆Tk,M) strategy

This section shows how to obtain the length of the renewal cycle S∆Tk,M
n and the maintenance cost

C∆Tk,M
(
S∆Tk,M
n

)
(i.e., step 2 of Algorithm 2) by applying the decision rule of (∆Tk,M) strategy on the

n-th history. The simulation procedure is described by Algorithm 3. Algorithms 2 and 3 provide a com-

plete numerical evaluation of the long-run expected maintenance cost rate C∆Tk,M
∞ (∆T1, . . . ,∆Tm,M)

of (∆Tk,M) strategy. With the chosen data set, the time to compute C∆Tk,M
∞ (∆T1, . . . ,∆Tm,M)

for a specific set of (∆T1, . . . ,∆Tm,M) is less than 4 minutes. Given C∆Tk,M
∞ (∆T1, . . . ,∆Tm,M),

many optimization methods can be introduced to optimize (∆Tk,M) strategy. Here, since the aim

of the paper is not to develop new methods of optimization, a classical iterative optimization method

(i.e. cyclic coordinate descent algorithm [42]) has been used. Figures 5, 6 and 7 show the cost

rate C∆Tk,M
∞ (∆T1,∆T2,M) for the selected data set when one of decision parameters is fixed at

its optimal value. The sub-figures on the left and on the right represent respectively the shape

and the iso-level cost curves of C∆Tk,M
∞ (∆T1,∆T2,M). The convexity of the cost surface indicates

the existence of an optimum setting of ∆T1, ∆T2 and M . In fact, the optimal values of decision
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Algorithm 3 Simulation algorithm to determine S∆Tk,M
n and C∆Tk,M

(
S∆Tk,M
n

)

1. Initialization: M , ∆T1, . . . ,∆Tm, Ti = 0, ZT0:i = 0, eTi
= 1.

2. Step 1: Decide at time Ti

◦ If the system fails, do corrective replacement: C∆Tk,M
(
S∆Tk,M
n

)
= iCid+Cc+Cd (Ti − Td,n)

where Td,n is the failure time of the n-th history, S∆Tk,M
n = Ti, and end of simulation

algorithm,

◦ Otherwise, go to Step 2.

3. Step 2: Inspect the system to obtain ZTi
and eTi

, estimate the true degradation level x̂Ti
of the

system according to Algorithm 1, and decide

◦ If x̂Ti
≥ M , do preventive replacement: C∆Tk,M

(
S∆Tk,M
n

)
= iCid + Cp, S

∆Tk,M
n = Ti, and

end of simulation algorithm,

◦ Otherwise, determine the new Ti (i.e., next inspection time) depending on eTi
(i.e., Ti :=

Ti +∆Tk if eTi
= k), and turn back to Step 1.

4. Output: Values of S∆Tk,M
n and C∆Tk,M

(
S∆Tk,M
n

)
.

variables are ∆T1,opt = 15, ∆T2,opt = 4 and Mopt = 5 that correspond to an optimal cost rate

C∆Tk,M
∞ (∆T1,opt,∆T2,opt,Mopt) = 5.6354.
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Figure 5: Expected maintenance cost rate C∆Tk,M
∞ (∆T1,∆T2,M) when M is fixed at Mopt = 5

4.2.2. Numerical solution for (∆T,Mk) strategy

In this section, we show how to obtain the length of the renewal cycle S∆T,Mk

n and the mainte-

nance cost C∆T,Mk

(
S∆T,Mk

n

)
(i.e., step 2 of Algorithm 2) by applying the decision rule of (∆T,Mk)

strategy on the n-th history. The simulation procedure is described by Algorithm 4. Algorithms
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2 and 4 provide a complete numerical evaluation of the long-run expected maintenance cost rate

C∆T,Mk

∞ (∆T,M1, . . . ,Mm) of (∆Tk,M) strategy. With the chosen data set, the time to compute

C∆T,Mk

∞ (∆T,M1, . . . ,Mm) for a specific set of (∆T,M1, . . . ,Mm) is about 4 minutes. As the same rea-

son mentioned in the previous section, the classical cyclic coordinate descent algorithm has been used to

optimize the (∆T,Mk) strategy. Figures 8, 9 and 10 show the cost rate C∆T,Mk

∞ (∆T,M1,M2) for the se-

lected data set when one of decision parameters is fixed at its optimal value. The sub-figures on the left

and on the right represent respectively the shape and the iso-level cost curves of C∆T,Mk

∞ (∆T,M1,M2).

The convex cost surface indicates the existence of an optimum setting of ∆T , M1 and M2. In fact, the

optimal cost rate is C∆T,Mk

∞ (∆Topt,M1,opt,M2,opt) = 5.1607 that corresponds to the following optimal
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Algorithm 4 Simulation algorithm to determine S∆T,Mk

n and C∆T,Mk

(
S∆T,Mk

n

)

1. Initialization: M1, . . . ,Mm, ∆T , Ti = 0, ZT0:i = 0, eTi
= 1.

2. Step 1: Decide at time Ti

◦ If the system fails, do corrective replacement: C∆T,Mk

(
S∆T,Mk

n

)
= iCid+Cc+Cd (Ti − Td,n)

where Td,n is the failure time of the n-th history, S∆T,Mk

n = Ti, and end of simulation
algorithm,

◦ Otherwise, go to Step 2.

3. Step 2: Inspect the system to obtain ZTi
and eTi

, estimate the true degradation level x̂Ti
of the

system according to Algorithm 1, and decide

◦ eTi
= k and x̂Ti

≥ Mk, do preventive replacement: C∆T,Mk

(
S∆T,Mk

n

)
= iCid + Cp,

S∆T,Mk

n = Ti, and end of simulation algorithm,

◦ Otherwise, set Ti := Ti +∆T , and turn back to Step 1.

4. Output: Values of S∆T,Mk

n and C∆T,Mk

(
S∆T,Mk

n

)
.

value of decision variables ∆Topt = 8, M1,opt = 7.5 et M2,opt = 1.5. This optimal expected mainte-

nance cost rate is lower than the one of (∆Tk,M) strategy (C∆T,Mk

∞ (∆Topt,M1,opt,M2,opt) = 5.1607

vs. C∆Tk,M
∞ (∆T1,opt,∆T2,opt,Mopt) = 5.6354). However, we cannot conclude that the (∆T,Mk) strat-

egy is always more profitable than the (∆Tk,M) strategy, because the cost saving depends closely on

the intervention costs, as well as on the dynamic characteristics of system. The next section deals with

this problem to point out the adequate applicable conditions of each adaptive maintenance strategy.
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∞ (∆T,M1,M2) when M2 is fixed at M2,opt = 1.5

5. Performance and robustness analysis of the adaptive maintenance strategies

The focus of this section is to study the performance and the robustness of (∆Tk,M) strategy

and (∆T,Mk) strategy by comparing one to each other and to the classical (∆T,M) strategy through

numerical examples. We shall analyze the influence of the maintenance actions costs, the character-

istics of stressful operating environment, and the impact of estimation error made on parameters of

degradation process on the optimal values of the decision variable and of the optimal expected main-

tenance cost rate of the considered strategies. Analyzing the optimal cost rate allows us to assess

the performance and the robustness of each maintenance strategy, and investigating the evolution of

optimal decision variables gives a trend to adjust the strategies towards their optimal solution.
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5.1. Sensitivity to the maintenance costs

To analyze the sensitivity of the maintenance strategies to the maintenance costs, we vary one of

intervention costs (i.e. preventive replacement cost Cp, inspection cost Ci, or the cost rate for the

system inactivity Cd), fix the other costs and investigate the evolution of the optimal values of decision

variables and of the optimal expected maintenance cost rate. The corrective replacement cost does

not cause so much difference for the relative performance of the considered strategies, so we can fix it

at Cc = 100. The study is based on the same system defined in the numerical examples of Subsection

4.2. It is noted that the 2-state Markovian environment is chosen just for the best analysis, but a more

complex environment (e.g., more than 2 states with different transition speeds) is easily obtained by

modifying the dimension of the transition matrix Tα as well as its transition probabilities (see Equation

(2.3)).

5.1.1. Sensitivity to preventive replacement cost

To have an unbiased study of the influence of preventive replacement cost on the evolution of the

optimal decision variables and of the optimal expected cost rate for considered maintenance strategies,

we choose Cc = 100, Ci = 4, Cd = 25 and we vary the preventive replacement cost Cp in a large

interval from Ci to Cc with the cost step equal to 1. The results for this case are showed as in Figure

11. Sub-figures 11a and 11b represent respectively the evolutions of the optimal decision variables

of (∆Tk,M) strategy and (∆T,Mk) strategy, and Sub-figure 11c shows the evolutions of the optimal

expected maintenance cost rate of the three considered strategies. The optimal values of inspection

periods of (∆Tk,M) strategy and (∆T,Mk) strategy are more or less constant with respect to Cp,

while the optimal values of preventive replacement threshold increase with Cp. This means that few

preventive replacements are performed when their cost is high and this also reflects the fundamental

nature of CBM strategy where the preventive replacement decision is based on the degradation level

of the system. This remark is similar to the one of (∆Tk,M) strategy studied by Huynh et al. in

[6], but extending to the maintenance strategy with multi-periods of inspection or multi-thresholds of

preventive replacement. Since the latter can adapt to the variation of operating environment to adjust

more finely the decision variables, it is always more profitable than the former (see Sub-figure 11c).

Sub-figure 11c also shows that the (∆T,Mk) strategy can lead to more saving in maintenance cost
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Figure 11: Varied preventive replacement cost

than the (∆Tk,M) strategy when the preventive replacement is not costly, because in this situation

making an adaptation decision based on the degradation level seems to be more suitable than the one

based on time. But, when the preventive replacement cost Cp is higher and comes close to the corrective

replacement cost Cc, the (∆T,Mk) strategy loses its interest and becomes less profitable. The reason

is that the strategy can accept the system failures in this case, the inspection periods become then

an important factor that keep the system downtime at a minimal value. In this consideration, the

(∆Tk,M) strategy that allows the time-based adaptation is more advantageous than the (∆T,Mk)

strategy.
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5.1.2. Sensitivity to inspection cost

To investigate the sensitivity of the optimal decision variables and the optimal expected mainte-

nance cost rate to inspection cost, we choose the set of maintenance cost as follows. The preventive

replacement cost is chosen by Cp = 75, as in Sub-figure 11c the optimal cost rates of (∆Tk,M) strategy

and (∆T,Mk) strategy are identical at this value. The corrective replacement cost and the cost rate

of system inactivity are fixed at Cc = 100, Cd = 25. Finally, we vary the inspection cost Ci from 2

to Cp with the cost step equal to 1. The evolutions of the optimal decision variables and the optimal

expected maintenance cost rate for this case study are shown respectively in Sub-figures 12a, 12b and

12c. As in the (∆T,M) strategy considered by Huynh et al. in [6], the optimal value of inspection

periods in the (∆Tk,M) strategy and the (∆T,Mk) strategy tends to increase with the increasing of

inspection cost in order to avoid more frequent inspections. However, their preventive replacement

thresholds are not always decreasing as in (∆T,M). In fact, we can see in the Sub-figures 12a and

12b that Mopt and M2,opt increase slightly when Ci is set at a high value. This can be explained by

the fact that the inspection periods are very large in this situation, the replacement (either preventive

or corrective) is almost always triggered at the first inspection time. The optimal values of Mopt and

M2,opt are then adjusted higher to limit the number of replacements. This is why the (∆Tk,M) strat-

egy and (∆T,Mk) strategy are more flexible than the (∆T,M) strategy, and not surprising, they are

always more efficient (see Sub-figure 12c).

We can also remark that the (∆Tk,M) strategy becomes more advantageous than the (∆T,Mk)

strategy when the inspection cost is high. The reason is that the (∆Tk,M) strategy can better manage

the inspection number by adapting the inspection periods to the environmental state. Furthermore,

since the system downtime is more important under this configuration, a time-based adaptation ap-

proach as in the (∆Tk,M) strategy is more relevant than a condition-based approach as in the (∆T,Mk)

strategy.

5.1.3. Sensitivity to the cost rate of system inactivity

In the same way as in previous studies, to examine the impact of the cost rate of system inactivity

Cd on the characteristics of the proposed maintenance strategies, we fix Cc = 100, Ci = 4, Cp = 75,

and we vary Cd in a large interval from 5 to 150 with the cost step equal to 1. Figure 13 reports the
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Figure 12: Varied inspection cost

results. One obtains in this case study a similar phenomenon as in the (∆T,M) strategy considered in

[6]: the optimal preventive replacement thresholds are almost constant, while the optimal inspection

periods decrease with Cd to cut short the system downtime (see Sub-figures 13a and 13b). This means

that to adapt these strategies to the variation of Cd, it suffices to adjust the inspection periods because

they are the most sensitive decision variables to this variation.

From Sub-figure 13c, one notes firstly the benefit of the adaptive decisions following the current

state of the variable environment: the (∆Tk,M) strategy and the (∆T,Mk) strategy can almost always

lead to a substantial saving in maintenance cost compared to (∆T,M) strategy. Moreover, since the
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Figure 13: Varied cost rate of system inactivity

(∆Tk,M) strategy reduces better the system downtime compared to the (∆T,Mk) strategy, it is hence

more profitable when the inactivity cost rate becomes more important.

5.2. Sensitivity to the characteristics of operating environment

The main differences among the adaptive maintenance strategies proposed in this paper and the

classical one are the abilities to adapt to the variation of operating environment. It is, therefore,

reasonable to study the sensitivity of the maintenance strategies to environment characteristics. The

studies are always based on the system defined in Subsection 5.1, however for this time, the charac-

teristics of operating environment shall be varied. The maintenance costs are chosen by Cc = 100,
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Cp = 50, Ci = 8 and Cd = 25.

5.2.1. Sensitivity to the stress level of environment

We consider a 2-state Markovian environment (i.e., Ξ = {1, 2}, et0 = 1) whose the transition

speed is defined by α = 0.003, (i.e., low speed - see Sub-figure 1a). We fix the stress level of the

normal state eti = 1 at γ1 = 0, and we vary the stress level of the stressful state eti = 2 in the

range of values γ2 = 2, 3, 4, 5, 6, 7. As such, the difference between the stress levels of these 2 states is

∆γ = γ2 − γ1 = 2, 3, 4, 5, 6, 7. We shall study here the evolutions of the optimal decision variables and

of the optimal expected maintenance cost rate of (∆Tk,M) strategy and (∆T,Mk) strategy according

to this difference. Figure 14 shows the results of the case study.

The evolutions of optimal decision variables of (∆Tk,M) strategy are showed in Sub-figure 14a. We

can note that the values of Mopt and ∆T1,opt are more or less constant, while only the value of ∆T2,opt

strictly decreases with respect to ∆γ. This is because only the stress level of the state e2 = 2 varies,

and the decreasing of ∆T2,opt aims to monitor more frequently the system health in order to limit the

failures number of system and to shorten its inactivity interval. Sub-figure 14b reports the evolutions

of optimal decision variables of (∆T,Mk) strategy. The values of ∆Topt and M2,opt decrease in order to

monitor more frequently the system health and/or to guarantee a larger safety zone for the system when

the environment becomes more and more stressful. These adjustments allows to cut short the system

downtime as well as limit the number of failures. On the contrary, the increasing of M1,opt aims to

create a trade-off between intervention actions to give best profit for the strategy. From these analyses,

it seems that the (∆T,Mk) strategy is more flexible than the (∆Tk,M) strategy when the stress level

of operating environment varies. The (∆T,Mk) strategy can hence lead to more saving than the others

(see Sub-figure 14c). In fact, both adaptive strategies are profitable than the (∆T,M) strategy, and

the gain increase with respect to the stress level. More precisely, the higher the difference of stress

levels, the more the gain of the (∆T,Mk) strategy is larger than the (∆Tk,M) strategy. This result

can be explained by the consideration that the speed and the variance of degradation process increase

with respect to the stress level, so making an adaptation decision based on the current degradation

level as in the (∆T,Mk) strategy is more efficient than an adaptation decision based on time as in the

(∆Tk,M) strategy.
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Figure 14: Sensitivity to the stress level of environment

5.2.2. Sensitivity to the transition speed of environmental states

For this case study, the stress level of the states eti = 1 et eti = 2 are fixed at γ1 = 0 and γ2 = 6

respectively. We vary the transition speed of environmental state (i.e., α = 0.003, 0.03, 0.06, 0.09, 0.12)

and we investigate the corresponding evolutions of the optimal decision variables and the optimal

expected maintenance cost rate of the considered strategies. Recall that the higher the value of α, the

more the transition of environment is quick. The results of this case study are shown in Figure 15.

We can see in Sub-figure 15c that the adaptive maintenance strategies can lead to substantial saving

in maintenance cost compared to the (∆T,M) strategy when the transition speed is low. But their
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Figure 15: Sensitivity to the transition speed of environmental states

profit decreases, and eventually the optimal cost rates of the adaptive strategies converge exactly to

the one of the (∆T,M) strategy (see also Sub-figures 15a and 15b for the evolution of the optimal

decision variables). This results is comprehensible when we observe the system behavior illustrated as

in Figure 1. When the environmental state varies slowly (see Sub-figure 1a), the adaptive strategies

can hold pace with the change of environment, and hence their current conditions are really taken into

account in maintenance decision making. Since the current states of environment obviously contain

significant information about the system health, a maintenance decision adaptive to these current states

can bring out more profit in cost saving. On the contrary, when the states of environment change too
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quickly, e.g., many times in a cycle lifetime of system (see figure 1b), the adaptive maintenance decision

cannot (even impossible) be in tune with the variation of current environmental condition. As such,

instead of relying on the current environmental state, these policies have to use its average behavior in

maintenance decisions. In other words, these adaptive strategies turn exactly to the (∆T,M) strategy,

and their optimal cost rates become identical. In fact, the environment state that changes many times

in a cycle system lifetime can make the degradation behavior of system more stable (i.e., lower variance)

than when it change more slowly (see. Sub-figures 1c and 1d). That’s why the optimal cost rate of

(∆T,M) strategy decreases with respect to the transition speed (see Sub-figure 15c). And this is also

the reason for which the (∆T,Mk) strategy is more efficient than the (∆Tk,M) strategy when the

transition speed of environment state is low enough and becomes less advantageous when this speed

increases.

5.3. Sensitivity to the estimation errors made on parameters of degradation process

The sensitivity studies in previous sections are based on the assumption of perfect estimation of the

model parameters. However, in many practical applications, the data collection can be quite difficult

due to the lack of data and the measurement variability. This can lead to the errors in parameters

estimation, and hence a loss in the performance of maintenance strategies. This section therefore aims

to analyze the impact of the estimation errors made on parameters of degradation process on the

maintenance cost of the considered strategies. This study shall help us to show the robustness of the

adaptive maintenance strategies when the estimations of the system characteristics are biased.

The same data set in Section 4 is reused: C = 0.015, n = 0.35, bb = 3.9, σ2
w = 2.53, ∆t = 0.2,

γ1 = 0, γ2 = 6, α = 0.003, β0 = 0.06, β1 = 1.25, σv = 0.4, Ns = 3000, Nh = 4000, Ci = 8, Cp = 50,

Cc = 100 and Cd = 25. We set each parameter of the degradation process (i.e., C, n, bb or σw) to

its value corresponding to a quite important relative error of −10% or +10% whilst keeping the other

parameters fixed, and we consider the cost rate of each adaptive maintenance strategies. Tables 1 and

2 represent the impact of the estimation errors on the maintenance cost of the (∆Tk,M) strategy and

the (∆T,Mk) strategy respectively. The cost rate with uncertainties in each table is the one calculated

at the optimal decision variables corresponding to the case of unbiased estimation (i.e., estimation

error = 0%). We can see clearly that the estimation error reduces the performance of the maintenance
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Table 1: Impact of the parameter estimation errors on the maintenance cost of (∆Tk,M) strategy

Parameter C n bb σw

Estimation error −10% +10% −10% +10% −10% +10% −10% +10%

C∆Tk,M
∞ (∆T1,opt,∆T2,opt,Mopt) 4.9397 5.8969 4.3341 6.7294 5.3063 5.6607 4.2442 6.7934

C∆Tk,M
∞ with uncertainties 5.0467 5.9606 4.4088 6.8270 5.3621 5.6829 4.3530 6.8287

Relative loss 2.12% 1.07% 1.69% 1.43% 1.04% 0.39% 2.50% 0.52%

Table 2: Impact of the parameter estimation errors on the maintenance cost of (∆T,Mk) strategy

Parameter C n bb σw

Estimation error −10% +10% −10% +10% −10% +10% −10% +10%

C∆T,Mk

∞ (∆Topt,M1,opt,M2,opt) 4.5096 5.4242 4.0177 6.1098 4.8337 5.2011 3.9957 6.2204

C∆T,Mk

∞ with uncertainties 4.5719 5.4309 4.2195 6.3789 4.8457 5.2035 4.1087 6.2583

Relative loss 1.36% 0.12% 4.78% 4.22% 0.25% 0.05% 2.76% 0.61%

strategies, however the loss is relatively small (less than 2.5% and 4.78% of relative loss for the (∆Tk,M)

strategy and the (∆T,Mk) strategy respectively in the worst case). The adaptive strategies seem to

be robust to uncertainties made on the parameters estimation of the system degradation process.

However, to have a more definitive conclusion on the robustness of these strategies, we compare their

cost rate with uncertainties with the optimal cost rate of (∆T,M) strategy as in Table 3.

Table 3: Robustness of the adaptive maintenance strategies

Parameter C n bb σw

Estimation error −10% +10% −10% +10% −10% +10% −10% +10%

C∆T,Mk

∞ with uncertainties 4.5719 5.4309 4.2195 6.3789 4.8457 5.2035 4.1087 6.2583

C∆Tk,M
∞ with uncertainties 5.0467 5.9606 4.4088 6.8270 5.3621 5.6829 4.3530 6.8287

C∆T,M
∞ (∆Topt,Mopt) 5.5088 6.5620 4.7795 7.4595 5.8515 6.1820 4.6002 7.4797

The result shows that with a relative error of +10% or −10% in parameters estimation, the

(∆Tk,M) strategy and the (∆T,Mk) strategy always assure a good advantage compared to the

(∆T,M) strategy. This affirms the robustness of the proposed adaptive maintenance strategies.

5.4. General discussions on the performance of the adaptive maintenance strategies

From the above numerical results as well as the structures of the considered maintenance strate-

gies, we can give some conclusions on their performance and their applicable condition as follows.
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Obviously, a maintenance strategy with multi-periods of inspection and/or with multi-thresholds for

preventive replacement is more flexible, more general and hence more profitable in most situations

when compared with the classical periodic inspection and replacement strategy. This gain comes from

the abilities to adapt to the current variation of operating environment. In fact, the environment char-

acteristics, as well as the maintenance costs, have significant impact on the effectiveness of an adaptive

maintenance decision. A time-based adaptation approach is adequate for a system that operates under

an environment with quite high speed of state transition and that requires a high cost to monitor and

preventively replace. While a condition-based adaptation approach is particularly effective when the

operating environment is more stressful, has low transition speed between the states, when the cost

of inspection and preventive replacement are not expensive, as well as when the cost rate of system

inactivity is higher. The adaptive strategies are also robust for not too high uncertainties made on

the estimation of the system characteristics. Notwithstanding the above, when the characteristic of

environment are unknown, the choice of an adaptation approach has to be cautious and should rely

on an analysis of maintenance cost saving to ensure the best profit.

6. Conclusions

The present paper builds a general degradation and measurement model that describes many

realistic aspects of single-unit systems operating under variable environment and indirect condition

monitoring. The proposed model reflects the physical nature of degradation phenomenon, the relation

among the true degradation and diagnostic and environmental covariates, as well as direct and indirect

nature of condition monitoring. The true degradation of system is hidden and is recovered in real-

time from noisy diagnostic covariates thanks to a so-called particle filter technique. We introduce two

maintenance strategies where the decision rule is based on the estimated degradation state and adapts

to the current condition or operating environment. In the first strategy, the adaption approach to

environmental states relies on the inspection period (i.e. time-based approach), while in the second, it

relies on the preventive replacement threshold (i.e. condition-based approach). These strategies reflect

an efficient exploitation of many different types of condition information in maintenance decision-

making. Since the cost models of these strategies cannot be solved analytically, we propose some

algorithms based on particle filter technique and Monte Carlo simulation to overcome the problem.
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The speed and the effectiveness of these algorithms show that the numerical method is an alternative

and useful tool to treat complex maintenance problems. The sensitivity studies in the paper allows

us to show the performance and the robustness of the proposed strategies, as well as to give a trend

to adjust the strategies towards their optimal solution when the system characteristics and/or the

operating environment change. Also, we have shown that the environment adaptive policies are more

general and more flexible than the classical periodic inspection and replacement strategy, and hence

that they always guarantee efficient maintenance cost savings. However, except for some extreme

situations, there is no obvious and general way to choose between time-based and condition-based

adaptation approaches, and thus the choice has to be cautious and should be decided through analyzing

the maintenance cost saving.

The data used in this paper are objective information collected through condition monitoring.

Besides these data, subjective information (i.e. expert knowledge, customer feedback, etc.) is also

useful. Considering all types of information in maintenance decision-making is obviously a challenge

task, but promises significant cost savings and opens perspective for further research.
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