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Abstract

This paper deals with maintenance decision-making for single-unit deteriorating systems operating

under indirect condition monitoring. Based on a degradation and measurement model of crack growth

propagation, two new maintenance policies using prognostic information are introduced. Their main-

tenance cost models are evaluated jointly by analytical and simulation approaches, and are compared

with two more classical benchmark models. Such complete models integrating degradation phenomenon,

monitoring characteristics, state estimation, prognostics, and maintenance assessment can give rise to

fruitful numerical analyses and discussions.

The main contributions of the paper are to i) analyze jointly the condition-based and dynamic

structure of the considered maintenance policies; ii) propose some effective methods to reduce the effect

of measurement uncertainty in condition-based maintenance decision-making; and iii) show the relevance

of quantification methods when deciding to resort to prognostic approaches, and to invest in condition

monitoring devices.

Index Terms - Degradation, indirect condition monitoring, maintenance policy, measurement

uncertainty, particle filter, prognostic, real-time estimation.

Acronyms

CBM condition-based maintenance

TBM time-based maintenance

BR block replacement

PIR periodic inspection and replacement

QIR quantile-based inspection and replacement

DR dynamic replacement

PF particle filter or particle filtering
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pdf probability density function

Notations

C, n, β constant parameters in the Paris-Erdogan crack growth model

β0, β1 constant parameters in measurement logit model

xti , zti true state, and measured state at time ti

ωti , vti system noise, and measurement noise at time ti

σω, σv standard derivation of system noise, and measurement noise

∆t, ∆xti discretization time step ti+1 = ti +∆t, degradation rate ∆xti =
(
xti − xti−1

)
/∆t

f (·), f (· | ·) unconditional, and conditional probability density function

d, M critical material thickness, and preventive replacement degradation threshold

Td, TM failure time, and hitting time of threshold M

Ci, Cd, Cp, Cc inspection cost, system inactivity cost rate, preventive replacement cost, and corrective

replacement cost

C (·) accumulated maintenance cost

C∞ expected maintenance cost rate

C∞
D , C∞

Q expected maintenance cost rate of DR policy, and QIR policy

S, S(n) renewal (replacement) cycle, and length of the first renewal cycle of the n-th history

S
(n)
D , S

(n)
Q length of the first renewal cycle of n-th history under DR policy, and QIR policy

Nh, Ns number of simulation histories, and number of sampled particles

T , α periodic inter-inspection interval, and quantile level

Ti, T
(i)
pred i-th inspection time, and predictive replacement time according to Ti

ZT0:i
sequence of measurements at inspection time up to Ti

x̂
(k)
ti
, x̃

(k)
ti
, w

(k)
i estimated state, predictive state, and importance weight at ti for the k-th particle

x̂ti , f̂ (· | ·) estimated state at ti, and estimated conditional probability density function

Cpred (·) cost criterion to optimize in real time the predictive replacement time in the DR policy

R (·) conditional reliability to optimize in real time the inspection time in the QIR policy

Pp,D, Pp,Q preventive replacement probability in a renewal cycle under the DR policy, and the QIR

policy

Ni,D, Ni,Q inspection number effected in a renewal cycle under the DR policy, and the QIR policy

Wd,D, Wd,Q downtime interval in a renewal cycle under the DR policy, and the QIR policy
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1. Introduction

With the dissemination of condition monitoring techniques, Condition-Based Maintenance (CBM)

is considered to be a promising approach to improve the durability, reliability, and maintainability

of industrial systems. Many CBM models [1], [2], [3], [4] have been developed. Among the existing

maintenance models, a very basic analysis might state that the “best” maintenance decision rules have

to take into account all the available online information, have to be condition-based (i.e., the decision

relies on an indicator of the system state), and dynamic (i.e., the structure of the decision rule itself

can adapt to the condition information). In this paper, we deal with a more precise analysis: even if

online condition information is available, it is not always clear whether condition-based and dynamic (or

predictive) maintenance decision rules are always relevant. The answer is obviously logically dependent

on the quality of the monitoring information, the structure of the maintenance decision rule, the dynamic

characteristic of system evolution, as well as on the maintenance costs.

In the literature, very few models take into full account all these aspects. For example, some recent

models propose to quantify the performance of dynamic maintenance rules [5], [6] based on perfect

condition information which corresponds exactly to the real system state. These considerations seem

to be less practical because the condition monitoring data, which is usually obtained through indirect

inspection techniques [7], are always affected to some degree by noise and disturbances. Dealing with

more practical approaches, some studies (e.g., as in [8], [9], and [10]) are devoted to the quality of

the condition information, and propose methods (see e.g., the review [11]) for inferring the underlying

system state from noisy monitoring data. However, the associated maintenance models in these works

are quite simple, and do not reflect the dynamic characteristic of the decision rule. Finally, the system

state evolution is often considered to be stationary with no influencing factors (e.g., the system state

evolution is modeled by a homogeneous gamma process [12], [13]). This state is not the best test case to

assess the performance of dynamic maintenance, which can adapt to an acceleration of the degradation

rate, for example. In this context, our aim is to base our work on existing degradation models and

classical simulation techniques to study jointly three main problems in maintenance decision-making:

i) the non-stationary aspect of the degradation phenomenon, ii) the imperfect nature of condition

monitoring information, and iii) the condition-based or dynamic structure of the maintenance policies.

Hence, we break out of classical assumptions of maintenance models that allow complete analytical

maintenance rule optimization.

As a test case, we focus in this paper on the fatigue crack growth degradation phenomenon. The

classical non-destructive ultrasonic techniques are used to inspect the system, so the crack depth is not
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directly observable. Hence a degradation and measurement model is necessary to describe both the

system characteristics and the indirect monitoring. Such a model is proposed in [14], and is reused here.

It is based on a non-stationary Markovian process for the degradation phenomenon, and a logit model

for the monitoring. Based on this model, two ways for integrating the online information in maintenance

decisions are introduced through a prediction of the system evolution (real-time prognostic). In one case,

the decision rule is non-condition-based and dynamic (the Dynamic Replacement (DR) policy); in the

other case, it is condition-based and dynamic (the Quantile-based Inspection and Replacement (QIR)

policy). The performance of these decision rules is assessed through the optimal expected maintenance

cost rate by comparing with two more classical maintenance policies [15]: one is only condition-based

(the Periodic Inspection and Replacement (PIR) policy), and the other one is systematic, i.e., only based

on the time (the Block Replacement (BR) policy). The cost models of these policies are developed, and

jointly evaluated by both analytical and simulation approaches.

Regarding the analytical approach, we calculate the conditional probabilities of maintenance events

for policy optimization. Even if analytical developments are not complete due to the complexity of the

degradation, monitoring, and maintenance models, we have a theoretical framework that allows us to

determine at which step we have to begin with simulation, and which quantities will be calculated by

simulation.

Regarding the simulation approach, we adapt existing simulation methods to calculate the quantities

that cannot be derived from the analytical approach. In particular, we apply particle filter techniques,

and Monte Carlo simulations (used in [16], [17], [18], [19], [20], [21], [22] for fault diagnostic and prog-

nostic purposes) in the larger framework of maintenance decision-making and performance evaluation.

The main contributions of our paper are as follows.

◦ Analyzing jointly the condition-based and dynamic structure of new maintenance decision rules

(DR policy and QIR policy). This point has not been studied before in the literature.

◦ Progressing knowledge about the impact of condition monitoring information uncertainty in main-

tenance decision-making, and showing some methods to limit the negative impact. This study

concludes the work on the performance and on the choice of a CBM policy or a Time-based Main-

tenance (TBM) policy in [23], [15] for the case of imperfect condition monitoring data. Although

the measurement uncertainty reduces the performance of the CBM policy, it is still more prof-

itable than the TBM policy for a reasonable level of condition monitoring errors. Furthermore, we

show that a dynamic maintenance structure, and a decision based on the estimated degradation

constructed from the measurement data, are the effective approaches to limit the negative impact
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of measurement uncertainty.

◦ Quantifying the value of prognostic information in maintenance decision-making, and assessing

the performance of the dynamic maintenance policy. Many authors argue that implementing

prognostics approaches in maintenance decision-making can lead to good performance, but none

of them has proposed a concrete maintenance model and indicated the appropriate configuration

for its application. Through the comparison results of four types of maintenance policies under

different configurations of intervention costs and system characteristics, we develop these points.

In fact, a dynamic maintenance policy based on prognostic information can be, but not always is,

more profitable than a static one. So, a quantification model should be used to justify a choice of

a type of maintenance policy.

The remainder of this paper is organized as follows. Section 2 of the paper is devoted to degradation

and measurement models. Section 3 deals with a detailed theoretical description of the maintenance

models including the maintenance assumptions, the criterion to evaluate the policies’ performance,

the proposed maintenance policies, as well as the condition-based aspect and dynamic aspect of each

policy. In Section 4, a Particle Filtering (PF) procedure, and a Monte Carlo simulation approach are

introduced to give the numerical solution for real-time system state estimation and prognostics from

noisy measured data, and for the maintenance models assessment. The impact of the uncertainty of

measured information, and the value of applying a real-time prognostic for maintenance decision-making,

are respectively investigated in Sections 5, and 6. The paper will be closed with some conclusions and

directions for future works.

2. Degradation and measurement model

Let us consider the well known fatigue crack growth degradation phenomenon, and the associated

degradation and measurement model proposed in [14]. The crack depth evolution is modeled by a non-

stationary Markovian process, and is assumed to be unobservable directly but can be measured through

a non-destructive ultrasonic logit model. A system failure occurs when the crack depth exceeds a critical

material thickness d.

2.1. Degradation model

Degradation modeling of mechanical equipment usually starts with a deterministic description of the

underlying degradation phenomenon through physics or chemistry, then randomness can be incorporated

into the model to preserve the stochastic nature of a degradation process. In this work, the basis of the
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degradation model is the continuous time, deterministic Paris-Erdogan model which reflects the physical

interpretation of the phenomenon

dx

dt
= C (∆K)n (1)

where x is the crack depth, t is the time, ∆K = ∆K (x) is the stress intensity amplitude, and C and

n are constant parameters related to the component material properties [24]. The parameters of the

Paris-Erdogan model can be estimated from measured crack growth data [25]. The stress intensity factor

is computed by ∆K = β
√
x, where the parameter β is related to the applied stress and geometrical

configuration of the structure [26].

To preserve the intrinsic randomness of the degradation phenomenon, the aforementioned deter-

ministic Paris-Erdogan crack growth model is randomized. It has been suggested to randomize the

deterministic crack propagation by a stochastic process [27], or by a randomization of characteristic

parameters (i.e., C, n, or β) of the deterministic model [28]. The randomization approach we use here

is a special case of Yang’s power law model [29] where a lognormal distributed random variable is in-

troduced. The versatility of this randomization approach has been analyzed in [30], and justified on

the basis of empirical data in [31], [32]. Consequently, for a time step ∆t sufficiently small, one can

discretize and insert the randomness into (1) as follows [14]

xti = xti−1
+ eωtiC

(
β
√
xti−1

)n
∆t (2)

where ωti ∼ N (0, σ2
ω) , i = 1, 2, . . . are Gaussian random disturbance, 0 < xti−1

< xti < +∞. The

discretized model allows the recursive calculation of the crack depth xti at each time step ti = i∆t given

the crack depth xti−1
at time step ti−1, and the parameters of model. Because the actual state xti depends

only on the last previous state xti−1
, (2) represents a non-linear Markov process with conditionally s-

independent but non-stationary increments whose degradation rate ∆xti =
(
xti − xti−1

)
/∆t follows a

lognormal distribution

∆xti ∼ logN
(
ln
(
C ·
(
β
√
xti−1

)n)
, σ2

ω

)
(3)

As such, the expected value, and variance of crack depth increment per unit of time are respectively

E [∆xti ] = C ·
(
β
√
xti−1

)n
e

σ2
ω
2 , and var [∆xti ] = E2 [∆xti ] ·

(
eσ

2
ω − 1

)
.

2.2. Measurement model

The crack depth xti at time step ti is not directly observable, but can be assessed via noisy measured

condition information data. We propose to use a classical non-destructive ultrasonic inspection and
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measurement technique whose associated observation zti is described by the logit model [33]

ln
zti

d− zti
= β0 + β1 ln

xti

d− xti

+ vti , (4)

where d is the critical material thickness of the component, β0 ∈ R and β1 > 0 are parameters to be

estimated from experimental data, and vti is a white Gaussian noise such that vti ∼ N (0, σ2
v). This

measurement model is valid for all xti ∈ (0, d) because, when xti ≥ d, then a failure occurs, and no

inspection action is carried out because the failure is self-announcing. The measurement variable zti is

thereby a random variable which is defined in the domain 0 < zti < d for all xti ∈ (0, d). From (4), given

xti ∈ (0, d), the likelihood pdf of the measurement zti , which is used to update the importance weights

in the PF technique, is given by [18]

f (zti | xti) =
1√
2πσ2

v

e
− 1

2σ2
v

(
ln

zti
d−zti

−β0−β1 ln
xti

d−xti

)2

d

zti (d− zti)
· 1{0<zti<d} (5)

where 1{} denotes the indicator function which equals 1 if the argument is true, and 0 otherwise.

3. Theoretical development of maintenance models

Under the framework of the degradation and measurement model considered in Section 2, we in-

troduce in this section two decision rules that incorporate the real-time prognostic information in two

different ways through a DR policy, and a QIR policy. Because the condition monitoring information

collected through indirect measurement is affected by noise and disturbances, the decision rules rely

on the estimated degradation state reconstructed from the sequence of measurements, instead of using

directly the monitoring information. To assess the performance of these new maintenance policies, the

BR policy, and the PIR policy are introduced as benchmarks [15]. Based on the considered maintenance

policies, we analyze in detail the nature of the maintenance decision rule to enhance the condition-based

and dynamic aspects. Notice that the condition-based aspect refers to decision rules based on an indi-

cator of the actual system state, while the dynamic aspect refers to decision rules where the structure

itself can adapt to the condition information. We preliminarily develop the mathematical cost models

of the DR policy, and the QIR policy; and indicate the reasons for which these cost models cannot be

completely evaluated by an analytical approach, hence numerical methods have to be used to overcome

this problem.
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3.1. Assumptions, and objective cost function

We assume that the system degradation (i.e., the crack depth) is hidden, so monitoring is then

required to reveal the degradation level. Continuous monitoring performed at each time step ∆t is

usually very costly, and sometimes impossible in practical engineering applications. In this framework,

it is more suitable to implement discrete monitoring whose length between two successive inspections

is a multiple of ∆t. An indirect non-destructive ultrasonic technique is used to inspect the system, so

the measurement ZTi
is imperfect and instantaneously collected at each discrete inspection time Ti with

a cost Ci. Moreover, because the system stops working whenever it fails, one can recognize its failure

state without any inspection (i.e., self-announcing failure).

Two maintenance operations are available on the system: a preventive replacement with cost Cp > Ci,

and a corrective replacement with cost Cc. Because maintenance operations are true physical replace-

ments such that the system is as-good-as-new, the intervention takes negligible time, and the costs

of preventive and corrective replacement are fixed for varied degradation levels of the system. Even

though both preventive and corrective maintenance actions put the system back in the as-good-as-new

state, they are not necessarily identical in any sense in practice because the corrective replacement is

unplanned, it has to be performed on a more deteriorated system, and the cost Cc can also comprise

different costs associated with failure. It is thus likely to be more complex, and more expensive (i.e.,

Cc > Cp). A replacement, whether preventive or corrective, can only be instantaneously performed at

discrete predetermined times (i.e., inspection time, or predictive replacement time). Therefore, there

exists a system inactivity after failure, and an additional cost is incurred from the failure time until the

next replacement time at a cost rate Cd.

The aforementioned assumptions are particularly suitable for systems located far from the mainte-

nance crew (e.g., “offshore” systems, hydroelectric or petroleum discharge systems, etc.). Continuous

inspection for such systems is almost impossible, and any intervention (i.e., inspection or replacement)

is planned and carried out only at discrete prefixed times. Moreover, even if the system failure is self-

announcing, we do not know immediately the failure time, and hence do not provide any intervention.

Once the maintenance crew arrives to check the system condition, if the system has already failed, the

crew fixes immediately the failure without inspection.

To assess the performance of a maintenance policy, we focus on a widely used criterion which is

the expected maintenance cost per unit over an infinite time span. The assumption of an as-good-as-

new maintained system leads to the use of the regenerative properties of a system state to compute
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analytically the cost rate [34]

C∞ = lim
t→∞

C (t)

t
=

E [C (S)]

E [S]
(6)

where C (t) is the cumulated maintenance cost at time t, and S is the time between two successive

renewals.

3.2. Dynamic Replacement model, DR

3.2.1. Decision rule

The main idea of the DR policy is to begin with a classical PIR policy [15] whose intervention (i.e.,

inspection, replacement) is only possible at periodic prefixed times Ti = iT , where i = 1, 2 . . . , and T

is called the inter-inspection time interval, which is a multiple value of ∆t. A simple way to introduce

dynamic aspects is to allow replacements between Ti and Ti+1 that can be dynamically conditioned

by the sequence of measurements up to inspection time Ti, ZT0:i
= {zT0 , zT1 , . . . , zTi

}, T0 = 0. This

predictive replacement time (noted T
(i)
pred associated with the i-th inspection) forms the dynamic aspect

of the maintenance policy. The structure of such a decision rule in a renewal cycle can be described by

the following scheme.

1. The system condition is periodically inspected at time Ti = iT (the first inspection since the last

renewal is T1 = T ).

2. If the system is failed at time Ti, then it is correctively replaced by a new one, and a new renewal

cycle starts.

3. If the system is still running at time Ti, then nothing is done at this time, and a dynamic interven-

tion date T
(i)
pred is optimized given the measurements ZT0:i

. If T
(i)
pred < Ti+1, the system is replaced

without additional inspection at time T
(i)
pred, either preventively if it is still running, or correctively

if it has already failed, and a new renewal cycle starts. Otherwise, nothing is done at T
(i)
pred, and

the decision is postponed until the next inspection planed at Ti+1 = (i+ 1)T .

Such a dynamic decision rule, which allows interventions before Ti+1 when the risk of failure is high,

leads to a more timely maintenance decision; hence, it guarantees the system availability. The predictive

replacement time T
(i)
pred, and the inter-inspection time interval T , are the two decision variables of the

DR policy. We can see in Sections 3.2.2 and 3.2.3 that T
(i)
pred is dynamically optimized in real-time at

each time Ti thanks to a cost criterion Cpred calculated over the time interval from the last renewal until

a replacement, and T is optimized with C∞ given from (6).
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3.2.2. Predictive replacement time estimation: real-time optimization of T
(i)
pred

The aim of this section is to propose a cost model to dynamically optimize the predictive replacement

time T
(i)
pred at each inspection time Ti, given ZT0:i

, and the system is still running at Ti. The basic idea

of a dynamic structure is inspired by the works of Cadini et al. in [19]; however, another cost model for

optimization of T
(i)
pred is used here to accord with the decision rule and the assumptions of the DR policy.

Under the considered policy, the inter-inspection time interval T is a decision variable to be optimized.

Obviously, the inspection cost influences the length of T , and hence the predictive replacement time

T
(i)
pred; thus, it cannot be negligible in the cost criterion to optimize T

(i)
pred. To do so, we compute the

expected maintenance cost rate to optimize T
(i)
pred over the entire renewal cycles of the system. And

because the future measurements have obviously not yet been collected from the last inspection at Ti

(the i-th inspection since the last renewal time), we use a decision rule similar to the decision of the

BR policy [15]. At time Ti + l∆t in the future, the system is replaced, either preventively if it is still

running, or correctively if it will have failed. As such, besides the preventive and corrective replacement

costs, the costs incurred for inspection from the last system renewal until the current inspection Ti have

to be included in the model. Moreover, the cost rate of the system inactivity is also taken into account

because the system is not immediately replaced after failure. Thence, the cost criterion to optimize the

dynamic time for system replacement T
(i)
pred can be expressed by

Cpred (Ti + l∆t, T,ZT0:i
) =

iCi + CpR (Ti + l∆t,ZT0:i
)

Ti + l∆t
+

Cc (1−R (Ti + l∆t,ZT0:i
)) + CdE [Wd (Ti + l∆t)]

Ti + l∆t
(7)

where l∆t, l = 1, 2, . . ., is the residual life defined from the current inspection time Ti to the predic-

tive replacement time Ti + l∆t, E [Wd (Ti + l∆t)] is expected downtime interval in the time interval

(Ti, Ti + l∆t], and R (Ti + l∆t,ZT0:i
) denotes the conditional reliability of the system at time Ti + l∆t,

l ≥ 1, given the system is still running at Ti and ZT0:i
. The relevance of the cost criterion (7) is also

strengthened by Wang [35]. E [Wd (Ti + l∆t)] can be approximated by

E [Wd (Ti + l∆t)] ≃ ∆t

(
l −

l∑

j=1

R (Ti + j∆t,ZT0:i
)

)
. (8)

The conditional reliability R (Ti + j∆t,ZT0:i
) can be expressed by

R (Ti + j∆t,ZT0:i
) = Pr {xTi+j∆t < d | xTi

< d,ZT0:i
} =

Pr {xTi+j∆t < d | ZT0:i
}

Pr {xTi
< d | ZT0:i

} . (9)
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To evaluate analytically R (Ti + j∆t,ZT0:i
), we need the mathematical formulas of distribution functions

of xTi+j∆t, and xTi
. Nevertheless, the analytical evaluation of these quantities is not trivial due to the

complexity of the considered degradation and measurement model. We will see in the following that the

PF technique is used to provide an empirical approximation of R (Ti + l∆t,ZT0:i
).

Consequently, among all future time steps Ti + l∆t, l ≥ 1, the suitable predictive replacement time

T
(i)
pred is the one which minimizes the cost criterion (7)

Cpred

(
T

(i)
pred, T,ZT0:i

)
= min

l
{Cpred (Ti + l∆t, T,ZT0:i

) , l > 0} (10)

Such a predictive replacement time T
(i)
pred depends on the predetermined inter-inspection time interval

T , and the sequence of random measurements ZT0:i
. Equation (10) means that if no more information

about the system state is available, T
(i)
pred will be the best replacement time that balances the intervention

costs incurred, and the reliability of the system in a renewal cycle.

3.2.3. Policy performance assessment: Optimization of T

To assess the performance of a maintenance policy, we have to rely on its optimal solution. Under

the DR model, assessment of its performance is relative to the optimization of the inter-inspection time

interval T according to the cost criterion (6). The expected maintenance cost rate over an infinite time

span of the DR policy can be computed by

C∞
D (T ) =

E [CD (SD)]

E [SD]
=

CpPp,D + Cc (1− Pp,D) + CiE [Ni,D] + CiE [Wd,D]

E [SD]
, (11)

where Pp,D, Ni,D, and Wd,D are respectively the preventive replacement probability, the number of

inspections, and the system inactivity interval in a replacement cycle SD under the DR policy. C∞
D (T )

does not depend on the sequence of random measurements ZT0:i
because the probability Pp,D, and the

expected values of Ni,D, Wd,D, and SD are calculated based on the probability distribution of ZT0:i
.

Let’s denote Td = inf {t | xt > d} as the random failure time of the system. Without loss of generality,

we assume that the system is replaced at Ti+1, or at T
(i)
pred. Thus, the replacement cycle SD is expressed

by

SD =

∞∑

i=0

Ti+1 · 1{Ti<Td<Ti+1<T
(i)
pred

} +

∞∑

i=0

T
(i)
pred · 1{Ti<T

(i)
pred

<Ti+1

}.

As such, its expected value is computed as

E [SD] =

∞∑

i=0

Ti+1 · Pr
{
Ti < Td < Ti+1 < T

(i)
pred

}
+

∞∑

i=0

E

[
T

(i)
pred · 1{Ti<T

(i)
pred

<Ti+1

}
]
. (12)
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The probability of preventive replacement Pp,D is given by

Pp,D =

∞∑

i=0

Pr
{
Ti < T

(i)
pred < Ti+1, Td > T

(i)
pred

}
. (13)

From the last inspection time, the DR policy allows a system replacement (preventive or corrective)

without inspection. So, the number of inspections Ni,D in a renewal cycle is expressed by

Ni,D =

∞∑

i=0

i ·
(
1{

Ti<Td<Ti+1<T
(i)
pred

} + 1{
Ti<T

(i)
pred

<Ti+1

}
)
.

Hence, its expected value is given by

E [Ni,D] =

∞∑

i=0

i ·
(
Pr
{
Ti < Td < Ti+1 < T

(i)
pred

}
+ Pr

{
Ti < T

(i)
pred < Ti+1

})
. (14)

And the length of the inactivity time interval in a replacement cycle is given as

Wd,D =

∞∑

i=0

(
T

(i)
pred − Td

)
· 1{

Ti<Td<T
(i)
pred

<Ti+1

} +

∞∑

i=0

(Ti+1 − Td) · 1{Ti<Td<Ti+1<T
(i)
pred

}.

So its expected value is calculated as

E [Wd,D] =
∞∑

i=0

E

[(
T

(i)
pred − Td

)
· 1{

Ti<Td<T
(i)
pred

<Ti+1

}
]
+

∞∑

i=0

E

[
(Ti+1 − Td) · 1{Ti<Td<Ti+1<T

(i)
pred

}
]
. (15)

Therefore, the optimal problem of the DR policy is reduced to find the value of inter-inspection time

interval Topt that minimizes the cost function C∞
D (T ) given by (11). That is,

C∞
D (Topt) = min

T
(C∞

D (T ) , T > 0) (16)

To evaluate analytically the quantities E [SD], Pp,D, E [Ni,D], and E [Wd,D], we need to know the

mathematical formulas of the marginal distribution function of s-dependent variables Td and T
(i)
pred, as

well as their joint distribution functions (see (12), (13), (14), and (15)). However, with the complexity of

the considered model, the mathematical formulas of these distribution functions are intractable. Hence,

one cannot derive completely the analytical cost model of the DR model, and a numerical approach has

to be used to find the optimal solution of (16). The Monte Carlo simulation approach will be used for

this purpose.
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3.3. Quantile-based Inspection and Replacement model, QIR

3.3.1. Decision rule

The DR policy is an effective policy to guarantee system availability, but its preventive replacements

are still time-based decisions which can be less efficient than condition-based decisions [15]. Therefore,

this section aims to develop a more sophisticated maintenance policy which can at the same time satisfy

the condition-based aspect and the dynamic aspect. A natural solution is to simply give up the periodic

inspection structure, and to apply a condition-based maintenance rule at the inspection times. The

structure of such a maintenance decision rule in a renewal cycle can be described by the following

scheme.

1. Inspect at time Ti.

2. If the system is failed, it is correctively replaced, and a new renewal cycle starts.

3. If it is still running, an estimation of degradation level at time Ti, x̂Ti
, is reconstructed from the

sequence of measurements ZT0:i
. If the estimated degradation level x̂Ti

overpasses a threshold M ,

the system is preventively replaced, and a new renewal cycle starts. Otherwise, nothing is done at

Ti, and the decision is postponed until the next inspection planed at Ti+1.

4. Using the sequence of measurements ZT0:i
given at current inspection Ti, the next inspection time

Ti+1 is dynamically optimized in real time based on a reliability criterion [36] (Section 3.3.2).

It guarantees that a given reliability level is preserved (the reliability has to be higher than a

quantile α ∈ (0, 1) over the time horizon [Ti, Ti+1]). As shown in [36], such an inspection scheme

is a non-periodic inspection scheme, and it is called the quantile-based inspection.

The inspection times Ti+1 are recalculated at each inspection Ti given the sequence of measurements

ZT0:i
, so it can guarantee the dynamic property of a maintenance model. For this maintenance policy, the

inspection time Ti+1, the preventive replacement degradation threshold M , and the quantile α are the

three decision variables. Optimization of M and α with the cost criterion C∞ given from (6) (see Section

3.3.3) provides a minimal expected maintenance cost rate to assess the performance of the policy. To

enhance the parameter α that characterizes the dynamic inspection scheme, this decision rule is referred

to in the following as QIR for quantile based inspection and replacement.

3.3.2. Predictive replacement time estimation: real-time optimization of Ti

For this inspection scheme, an inspection schedule is built dynamically using the predictive system

reliability in a way similar to the work of Cui et al. in [36], and Yang et al. in [37]. These au-

thors assume that the maintenance policy is used with perfect monitoring information, and availability
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criterion. Moreover, they do not mention the conditional aspect of the maintenance model. There-

fore, we will extend the model to the case of imperfect measurement, real-time decisions, and taking

into account the conditional aspect of the maintenance model. Given the sequence of measurements

ZT0:i
= {zT0 , zT1 , . . . , zTi

}, T0 = 0, at actual inspection Ti, the next inspection time Ti+1 is determined

by, for 0 < α < 1,

Ti+1 = sup
j

{Ti + j∆t : R (Ti + j∆t,ZT0:i
) ≥ α} , (17)

where R (Ti + j∆t,ZT0:i
) is given from (9). Such an inspection time Ti+1 is a random variable that

depends on the predetermined value of quantile α, and the sequence of random measurements ZT0:i
.

3.3.3. Policy performance assessment: Optimization of M and α

Assessment of the performance of the QIR model is relative to optimization of preventive replacement

threshold M and the quantile α in the purpose of minimizing the global expected maintenance cost rate.

Applying (6), the expected maintenance cost rate of the QIR policy is expressed by

C∞
Q (α,M) =

E [CQ (SQ)]

E [SQ]
=

CpPp,Q + Cc (1− Pp,Q) + CiE [Ni,Q] + CiE [Wd,Q]

E [SQ]
(18)

where Pp,Q, Ni,Q, and Wd,Q are respectively the preventive replacement probability, the number of

inspections, and the system inactivity interval in a replacement cycle SQ under the QIR policy. We will

see that the probability Pp,Q, and the expected values of Ni,Q, Wd,Q, and SQ are calculated based on the

probability distribution of ZT0:i
. Therefore, C∞

Q (α,M) does not depend on ZT0:i
.

Let’s denote TM = inf {t | x̂t > M} as the random time to preventive replacement of the system.

Under the QIR policy, a replacement is only possible at inspection times. So without loss of generality,

if the system is replaced at Ti+1 given from (17), its replacement cycle can be expressed by

SQ =
∞∑

i=0

Ti+1 · 1{Ti<TM<Ti+1}.

Therefore, the expected time to a system replacement is given by

E [SQ] =

∞∑

i=0

E
[
Ti+1 · 1{Ti<TM<Ti+1}

]
. (19)

The preventive replacement probability Pp,Q is calculated by

Pp,Q =

∞∑

i=0

Pr {Ti < TM < Ti+1 < Td} . (20)
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Because the system failure is assumed to be self-announcing, no additional inspection is needed before

a corrective replacement, counting from the last inspection. However, as the preventive replacement

is decided based on the estimation of the hidden degradation level, it always requires inspecting the

system condition before a replacement. Thus the number of inspections Ni,Q effected in a renewal cycle

is expressed by

Ni,Q =
∞∑

i=0

(i+ 1) · 1{Ti<TM<Ti+1<Td} + i · 1{Ti<TM<Td<Ti+1}.

Hence, the expected value is given by

E [Ni,Q] =

∞∑

i=0

(i+ 1) · Pr {Ti < TM < Ti+1 < Td}+
∞∑

i=0

i · Pr {Ti < TM < Td < Ti+1} . (21)

And the length of inactivity time interval in a replacement cycle can be expressed as

Wd,Q =

∞∑

i=0

(Ti+1 − Td) · 1{Ti<TM<Td<Ti+1}.

Therefore, the expected value is given by

E [Wd,Q] =
∞∑

i=0

E
[
(Ti+1 − Td) · 1{Ti<TM<Td<Ti+1}

]
. (22)

Consequently, the optimal problem of the QIR policy is reduced to find the optimal values Mopt and

αopt that minimize the cost function given by (18); that is,

C∞
Q (αopt,Mopt) = min

α,M

(
C∞

Q (α,M) : 0 < α < 1, 0 < M < d
)
. (23)

We can see that it is intractable to evaluate analytically the E [SQ], Pp,Q, E [Ni,Q], and E [Wd,Q]

because the mathematical functions of the marginal distribution and the joint distribution of Ti+1, TM ,

and Td (see (19), (20), (21), and (22)) are not trivial to obtain. Thus, the analytical cost model of the

QIR model is not completely derived. In the following, a Monte Carlo simulation will be used to find

the optimal solution of (23).

3.4. Benchmark maintenance models

To assess the performance of the new policies, the two more classical maintenance policies (i.e., BR

policy and PIR policy) considered by Huynh et al. in [15] are used as benchmarks.
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3.4.1. Block replacement model, BR

The BR policy represents a maintenance policy without inspection. It is a special case of the class of

classical TBM policies whose decision rule is based only on the calendar time, or the age of the system,

and on the initial knowledge of the statistical information on its lifetime. Under the BR policy, the

system is replaced at regular time intervals T , either preventively if it is still running at the end of the

replacement interval, or correctively if a failure occurred since the last replacement. The replacement

period T is the only decision variable for this policy. Because the system is periodically replaced

regardless of the system condition, the BR policy is referred to as a non-condition-based, non-dynamic

policy.

3.4.2. Periodic inspection and replacement model, PIR

Compared to the BR policy, the PIR policy is more sophisticated in the sense that the maintenance

decision is based on the condition monitoring information returned by inspections on the system. For

this policy, the system is periodically inspected with period T . At each inspection Ti = iT , if the

crack depth x̂Ti
as estimated from the sequence of measurements ZT0:i

exceeds a threshold M , then a

preventive replacement is performed; but if the system has already failed, then it is correctively replaced.

The inter-inspection interval T and the preventive threshold M are the decision variables of this policy.

Although the maintenance decision of the PIR policy is based on system conditions, and its replacement

times do not adapt to the system state, it is a maintenance policy with condition-based, non-dynamic

aspects.

3.5. Synthesis of maintenance rules characteristics

The summarized characteristics of the considered maintenance models are listed in Table I.

We can see that the fundamental difference of DR and QIR decision rules compared to the PIR and

BR ones is that the first group allows for dynamic preventive replacement with real-time optimization.

4. Numerical solution for maintenance models

The theoretical developments in Section 3 show that evaluating the maintenance cost models requires

some density functions built from the sequence of noisy measurements. Because analytical formulas of

these quantities are not trivial (often impossible), we propose in this section numerical methods to

overcome this difficulty. The PF approach is used for the real-time optimization, while a Monte Carlo

simulations approach is used to assess the performance of maintenance models.
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Table I: Summary of the considered maintenance policies

Policy
Type of preventive Replacement time

Inspection time
replacement Preventive Corrective

DR Time-based Dynamic It dependsa Non-dynamic

QIR Condition-based Dynamic Dynamic Dynamic

BR Time-based Non-dynamic Non-dynamic Ø

PIR Condition-based Non-dynamic Non-dynamic Non-dynamic

Policy
Real-time optimization Optimization

Parameters Criterions Parameters Criterions

DR T
(i)
pred Cost Cpred T Cost C∞

QIR Ti+1 Reliability over (Ti, Ti+1) α,M Cost C∞

BR Ø Ø T Cost C∞

PIR Ø Ø T,M Cost C∞

aCorrective replacement is effected sometimes at inspection time Ti, sometimes at predictive replace-

ment time T
(i)
pred

.

4.1. Particle filtering state estimation and prognostic

Stochastic filtering [38], proportional hazards modeling [39], and hidden Markov models [40] are the

three common data-driven approaches for inferring the underlying system state from noisy monitoring

data [11]. The proportional hazards model is restricted to its proportional assumption, and the hid-

den Markov model is applied only for discrete state variables. The stochastic filtering approach can

overcome these drawbacks. Moreover, because the stochastic filtering uses the full history of condition

monitoring data, it outperforms the others [11]. The performance of stochastic filtering is limited with

high dimension data. However, this limit is not the problem in our case study because the degradation

phenomenon is a single fatigue crack growth path.

PF is a numerical version of stochastic filtering. It is a Monte Carlo-based computation tool partic-

ularly useful for optimal estimation and prediction problems in non-linear, non-Gaussian processes [11].

In comparison with standard approximation methods, such as the popular Extended Kalman Filter, the

principal advantage of particle methods is that they do not rely on any local linearization technique or

any crude functional approximation [41]. The price that must be paid for this flexibility is computa-

tionally expensive. However, thanks to the availability of ever-increasing computational power, these

methods are already used in real-time applications appearing in fields as diverse as chemical engineer-

ing, computer vision, financial econometrics, target tracking, and robotics [42]. Here, we use a quite

simple PF approach to estimate in real-time the crack depth of the system, and predict the conditional

reliability R (Ti + l∆t,ZT0:i
).
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4.1.1. Particle filtering state estimation

The robustness of PF leads us to share the similar simulation approach of Zio et al. in [18], [22] to

estimate in real-time the system state at discrete inspection times. Because the paper does not focus on

computation methods, we do not explain the principle of the considered PF. Interested readers can refer

to [18], [22] for the detailed development, or to [43], [44] for other PF estimation approaches. Instead,

we present explicitly the PF algorithm that is not introduced in [18], [22].

The algorithm uses the prior distribution derived from (2) as the importance function, and the deter-

ministic re-sampling method [45] to limit the inherent degeneracy problem in the PF approach. As such,

the real-time state estimation procedure, given the sequence of measurements ZT0:i
= {zT0 , zT1 , . . . , zTi

},

can be resumed by Algorithm 1.

Algorithm 1 Generic particle filter (SIS/Re-sampling Monte Carlo filter) for system state estimation

1. Initialization: ∀k = 1, . . . , Ns

Generate x̃
(k)
t0

∼ f (xt0), and set w
(k)
t0

= 1/Ns.

2. Given
{
x̂
(k)
ti−1

, 1/Ns

}Ns

k=1
, at ti > 0, do the following.

(a) Prediction step: Generate Ns particles x̃
(k)
ti

from (2).

(b) If ti 6= Ti (not at inspection), set
{
x̂
(k)
ti
, w

(k)
ti

}Ns

k=1
=
{
x̃
(k)
ti
, 1/Ns

}Ns

k=1
(c) If ti = Ti (at inspection), do the following.

i. Update step: w
(k)
ti

∝ f
(
zTi

| x̃(k)
ti

)
.

ii. Re-sampling step: Deterministic re-sampling
{
x̃
(k)
ti
, w

(k)
ti

}Ns

k=1
to obtain

{
x̂
(k)
ti
, 1/Ns

}Ns

k=1
.

iii. Set
{
x̂
(k)
Ti
, w

(k)
Ti

}Ns

k=1
=
{
x̂
(k)
ti
, 1/Ns

}Ns

k=1
.

3. Estimation at inspection Ti:

(a) Estimated pdf: f̂ (xTi
| ZT0:i

) =

(∑Ns

k=1 δx̂(k)
Ti

(xTi
)

)
/Ns.

(b) Estimated state:

x̂Ti
=
∫
xTi

f (xTi
| ZT0:i

) dxTi
≃
(∑Ns

k=1

∫
xTi

δ
x̂
(k)
Ti

(xTi
) dxTi

)
/Ns =

(∑Ns

k=1 x̂
(k)
Ti

)
/Ns.

To illustrate the robustness of the proposed PF algorithm, we consider two deviation levels in the

measured data. One is low compared to the variance of the degradation process itself (i.e. σv = 0.5),

and one is high (σv = 1.5). The estimated states x̂Ti
at periodic inspections times Ti are compared

in both cases to the true states xTi
, and to the measurements zTi

. The numerical results presented in

Fig. 1 correspond to C = 0.015, n = 0.35, β = 3.9, σ2
ω = 2.53, ∆t = 1, β0 = 0.06, and β1 = 1.25. The

critical material thickness is d = 6, samples number is Ns = 3000, and inter-inspection time interval

is T = 10. Because the degradation is estimated by its expected value conditional on the sequence of

noisy measurements, moreover the PF algorithm is an approximation of the optimal Bayesian estimate,
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the error between estimated state and the true degradation state is unavoidable. As depicted in Fig. 1,
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(a) Standard deviation: σv = 0.5.
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(b) Standard deviation: σv = 1.5.

Figure 1: State estimation by generic particle filter algorithm.

this error increases with respect to the standard deviation of the measurement. However, the estimated

state can still approximate the true degradation path more closely compared to the measured data.

4.1.2. Particle filtering prognostic

This section aims to provide a numerical solution of the conditional reliability R (Ti + j∆t,ZT0:i
) that

is a key element in the real-time optimization procedure of the DR policy and the QIR policy. If the

measurement is perfect (i.e. ZT0:i
reflects exactly the true degradation state of system), the analytical

formulas of R (Ti + j∆t,ZT0:i
) can be derived because the probability law of the degradation increment is

known (3). In the present paper, the measurement ZT0:i
is imperfect. Hence, the analytical formulation

is intractable. However, given ZT0:i
, the system states can be reconstructed through Algorithm 1.

Moreover, because the future measurements have obviously not yet been collected, the only thing related

to the future condition of the system that is known is the dynamic model of state evolution (i.e. (2)).

Therefore, we use the estimated state at the current inspection time Ti (i.e. x̂Ti
or the set of Ns particles

x̂
(k)
Ti
), and (2) to provide an empirical approximation of R (Ti + j∆t,ZT0:i

).

The first stage regards the recursive generation of sets of Ns particles up to the time of interest

(e.g. x̃
(k)
Ti+j∆t at time Ti + j∆t) from Ns particles x̂

(k)
Ti

using (2). Then, the conditional reliability

R (Ti + j∆t,ZT0:i
) given from (9) can be approximated by

R (Ti + j∆t,ZT0:i
) =

Pr {xTi+j∆t < d | ZT0:i
}

Pr {xTi
< d | ZT0:i

} ≃

∑Ns

m=1 1
{
x̃
(m)
Ti+j∆t

<d
}

∑Ns

n=1 1
{
x̂
(n)
Ti

<d
}

. (24)

The numerator (resp. denominator) of (24) represents the number of sampled particles which are still
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running at time Ti+j∆t (resp. Ti). Knowing this approximation of R (Ti + j∆t,ZT0:i
), we can determine

in real time the predictive replacement time T
(i)
pred, and the inspection time Ti+1, at each inspection Ti,

according to (10), and (17) respectively.
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(a) Simulated crack depth evolution.
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Figure 2: Predictive replacement times in DR policy - T = 8, Cc = 100, Cp = 50, Cd = 250, Ci = 3.

0 20 40 60 80 100
0

1

2

3

4

5

6

7

Time

C
ra

c
k
 d

e
p
th

True state

Measured date

PF estimated state
at inspection time

Time to failure
T

d
= 102

(a) Simulated crack depth evolution.
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Figure 3: Predictive inspection times in QIR policy - α = 0.96.

The illustrations of real-time optimization of T
(i)
pred and Ti+1 are based on the set of parameters

C = 0.0047, n = 0.35, β = 3.9, σ2
ω = 4.8326, ∆t = 1, β0 = 0.06, β1 = 1.25, σ2

v = 0.0625, the critical

material thickness d = 6, and Ns = 3000. Figs. 2b, and 3b depict respectively the cost curves, and the

curves of conditional reliability to predict the replacement times T
(i)
pred, and the inspection times Ti+1 at

different inspection times corresponding to the single path of crack depth evolution in Figs. 2a, and 3a.

The time for each optimisation of T
(i)
pred and Ti+1 is negligible (on the order of seconds).
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4.2. Monte Carlo simulation for maintenance optimization

We have shown in Section 3 that analytical cost models of the DR policy and the QIR policy are not

trivial to obtain due to the complexity of the considered degradation and measurement model. We must

therefore resort to stochastic Monte Carlo simulation to approximate their optimal solutions. Thus, the

long run expected maintenance cost rate given from (6) is rewritten to

C∞ =
E [C (S)]

E [S]
= lim

N→∞

1
N

∑N

n=1C
(
S(n)

)

1
N

∑N

n=1 S
(n)

≃
∑Nh

n=1C
(
S(n)

)
∑Nh

n=1 S
(n)

, with Nh high enough, (25)

where Nh is the number of simulation histories, and S(n) is the length of the first renewal cycle of the

n-th history. Algorithm 2 describes the simulation procedure that represents how to obtain the long run

expected maintenance cost rate C∞ according to (25).

Algorithm 2 Simulation algorithm to determine C∞ according to (25)

1. Initialization: S = 0, C = 0.

2. Step 1: Generate a history (e.g. the n-th history) of degradation and measurements according to
(2), and (4).

3. Step 2: Determine the length of the first renewal cycle S(n) of the n-th history and the correspond-
ing maintenance cost incurred C

(
S(n)

)
(see respectively Algorithms 3 and 4 for detail simulation

procedures of DR policy and QIR policy).

4. Step 3: Calculate C = C + C
(
S(n)

)
, S = S + S(n), C∞ = C/S, and decide

(a) if C∞ converge, end of simulation algorithm;
(b) otherwise, turn back to Step 1.

5. Output: Converged value of C∞.

In the remainder of this section, we use a degradation process with a quite linear mean path for

numerical illustrations. Note that a degradation process given from the Paris-Erdogan model (1) always

has a convex mean path. The choice of a quasilinear mean degradation process path, as in this paper,

is justified by the important number of applications corresponding to this kind of trend [2], and for the

sake of clarity in the discussions. Obviously, the same kind of results can be obtained in the non-linear

case, with the same kind of discussions. Hence, the same data set in the example of Section 4.1.2 is

reused here by adding the number of simulated histories Nh = 4000 (the value of C∞ is converged when

Nh = 4000), and the intervention costs Cp = 50, Cc = 100, and Cd = 250.

4.2.1. Numerical solution for the DR model

This section shows how to obtain the length of the renewal cycle S
(n)
D , and the maintenance cost

C
(
S
(n)
D

)
(i.e., step 2 of Algorithm 2), by applying the decision rule of the DR policy on the n-th history.

The simulation procedure is described by Algorithm 3.
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Algorithm 3 Simulation algorithm to determine S
(n)
D , and C

(
S
(n)
D

)
, according to the DR policy

1. Initialization: T , Ti = 0, ZT0:i
= 0.

2. Step 1: Decide at time Ti

(a) If the system fails, do corrective replacement: C
(
S
(n)
D

)
= (i− 1)Ci + Cc + Cd

(
Ti − T

(n)
d

)

where T
(n)
d is the failure time of the n-th history, S

(n)
D = Ti, and end of simulation algorithm.

(b) Otherwise, go to Step 2.

3. Step 2: Inspect the system to obtain ZT0:i
, predict the predictive replacement time T

(i)
pred using

equations (7), (8), (24) and Algorithm 1, and decide

(a) if T
(i)
pred > Ti + T , set Ti = Ti + T , and turn back to Step 1;

(b) otherwise, go to Step 3.

4. Step 3: Decide at time T
(i)
pred

(a) if the system fails, do corrective replacement: C
(
S
(n)
D

)
= (i− 1)Ci+Cc +Cd

(
T

(i)
pred − T

(n)
d

)
,

S
(n)
D = T

(i)
pred, and end of simulation algorithm.

(b) Otherwise, do preventive replacement: C
(
S
(n)
D

)
= (i− 1)Ci + Cp, S

(n)
D = T

(i)
pred, and end of

simulation algorithm.

5. Output: Values of S
(n)
D , and C

(
S
(n)
D

)
.

Applying Algorithms 2 and 3 to the selected data set, the expected maintenance cost curves of the

DR policy corresponding to different values of the inspection cost are depicted as in Fig. 4. The time
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Figure 4: Expected maintenance cost of DR policy versus inter-inspection interval.

for optimization is around 24 hours. The figure shows clearly that one can obtain an optimal solution

under this maintenance policy. All maintenance cost curves converge to a value when an inter-inspection

interval T becomes large enough. This result can be explained by the fact that the maintenance policy

becomes almost identical to a BR policy (see Subsection 3.4.1) when the inter-inspection interval is large

enough; the first inspection T1 is performed at time T , and because T is high, the system fails with a

high probability. It is replaced by a new one, and the next inspection is performed at T2 = 2T , so the
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same situation is observed; because T is high, the system fails, and so on. Thus, the converged value is

just the optimal value of the BR policy, which has the same configuration.

4.2.2. Numerical solution for the QIR model

This section shows how to obtain the length of the renewal cycle S
(n)
Q , and the maintenance cost

C
(
S
(n)
Q

)
(i.e. step 2 of Algorithm 2) by applying the decision rule of the QIR policy on the n-th history.

The simulation procedure is described by Algorithm 4.

Algorithm 4 Simulation algorithm to determine S
(n)
Q , and C

(
S
(n)
Q

)
according to the QIR policy

1. Initialization: α, M , Ti = 0, ZT0:i
= 0.

2. Step 1: Decide at time Ti the following.

(a) If the system fails, do corrective replacement: C
(
S
(n)
Q

)
= (i− 1)Ci + Cc + Cd

(
Ti − T

(n)
d

)

where T
(n)
d is the failure time of the n-th history, S

(n)
Q = Ti, and end of simulation algorithm.

(b) Otherwise, go to Step 2.

3. Step 2: Inspect the system to obtain ZT0:i
, estimate the system degradation level x̂Ti

according
to algorithm 1, and decide the following.

(a) If x̂Ti
> M , do preventive replacement: C

(
S
(n)
Q

)
= iCi+Cp, S

(n)
Q = Ti, and end of simulation

algorithm.
(b) Otherwise, predict the next inspection time using (17), (24), and Algorithm 1; and turn back

to Step 1.

4. Output: Values of S
(n)
Q , and C

(
S
(n)
Q

)
.

Applying Algorithms 2 and 4 to the selected data set, Fig. 5 shows a numerical example of the

optimization results when Ci = 5. Fig. 5a sketches the shape of the expected maintenance cost rate of

the QIR policy when the preventive replacement threshold M and the quantile α vary. Fig. 5b shows

that one obtains the optimal value C∞
Qopt = 2.8008 at αopt = 0.9915, and Mopt = 2.5.

The examples above show the optimal solutions of the maintenance policies for a special case. To

have a thorough analysis on the effectiveness of these maintenance policies, as well as on the benefit of

applying the online prognostic information in maintenance decisions, the next two sections will make

comparisons of the expected maintenance cost among the considered maintenance models under different

possible configurations. As stated in the introduction, the aim is to investigate at the same time and

for the same case study the relevance of different maintenance rules, taking into account the monitoring

quality, the maintenance and inspection costs, and the characteristics of the degradation processes.

5. Impact of measured information uncertainty on maintenance decision-making

As mentioned in Section 4.1.1, the higher the standard deviation σv of the measured data, the more

the imprecision of the state estimation increases (see Fig. 1). Because the decision rules of the considered
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Figure 5: Expected maintenance cost curves of the QIR policy.

maintenance models implement based on the estimated states, the errors in measurement may reduce the

effectiveness of maintenance policies. Therefore, the focus of this section is the impact of the monitoring

quality. The natural questions that arise are numerous.

◦ Does a maintenance policy based on information of conditions still retain its advantage compared

to a TBM policy?

◦ Is a maintenance decision based on the reconstructed degradation state x̂Ti
more effective than a

decision directly based on the measured data zTi
?

◦ How does one limit the negative impact of uncertainty on the maintenance decision?

For our case study, these questions are closely linked to the quality of the ultrasonic measure technique,

and to the PF estimation step. To quantify the impact of measured information uncertainty on the

maintenance decision, we perform a comparison on the optimal expected maintenance cost among the

maintenance policies (BR, PIR, DR, and QIR) as a function of the standard deviation σv. To show

the relevance of a model taking into account the monitoring characteristics, we also consider the three

following situations for the maintenance decision rules:

1. The decision for the preventive replacement at time Ti is based on the true system state xTi
. This

situation is unrealistic, but is considered as a reference. It is referred in the following as the true

state-based policy case.

2. The decision for the preventive replacement at time Ti is based on the estimated state reconstructed

from measured data x̂Ti
. It corresponds to a normal use of our model. It is referred in the following

as the estimated state-based policy case.
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3. The decision for the preventive replacement at time Ti relies directly on the measured data zTi
.

This case applies when the measured data are considered to be perfect, and the monitoring char-

acteristics are neglected. It is referred as the measured state-based policy case.

The BR policy which does not depend on the inspection is used as a benchmark policy to investigate the

influence of noisy condition monitoring information, and to indicate which type of maintenance policy

should be applied according to the uncertainty of measured data.

5.1. Numerical results

Because the study focuses only on the impact of the monitoring quality on the performance of

maintenance policies, we fix the system characteristics and the maintenance costs with the data set

C = 0.015, n = 0.35, β = 3.9, σ2
ω = 2.53, ∆t = 1, β0 = 0.06, β1 = 1.25, d = 6, Ci = 5, Cp = 50,

Cc = 100, and Cd = 250. The sample number, and simulated histories number are Ns = 3000, and

Nh = 4000 respectively. Then we vary the value of the standard deviation σv from 0 to 3.5 with unit step

0.5, and observe the evolution of the optimal expected maintenance cost rate. The numerical results are

shown in fig. 6.

5.2. Analysis and discussion of the numerical results

The results show clearly that, for whatever estimated or measured state-based policies, their optimal

maintenance costs increase with respect to the increasing error in measurements. The three policies with

maintenance decisions based on the measured state can lead to substantial maintenance cost savings

compared to the BR policy, for a reasonable deviation in measured data. This benefit becomes no

longer true when the uncertainty in measurement becomes very high (remember that σv > 3.5 is a

very high variance compared to the process variance if we look at Fig. 1), because in this case the

measurement can no longer represent the true evolution of the degradation process. This inaccurate

information can cause unadapted maintenance decisions, so a BR maintenance policy that ignores the

online information will be more efficient. One can note that this phenomenon is more clearly visible in

the PIR policy than in the DR and QIR policies. Hence, dynamic maintenance policies are more robust

than periodic ones to measured noise. In other words, the dynamic aspect of the maintenance structure

can limit the negative impact of measurement uncertainty. Another way to reduce this impact is to

make maintenance decisions based on the estimated state reconstructed from the measured data. The

Fig. 6 shows that, for very high (and unrealistic) measurement noise, the three policies based on the

estimated state x̂Ti
are still more efficient than if they were based on the observed state zTi

, and they

have not yet exceeded the BR cost.
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Figure 6: Impact of the measured data uncertainty on maintenance decision-making.

This study completes the conclusions in [23], [15] on the performance, and on the choice between

CBM and TBM in the case of imperfect condition monitoring; the CBM policy is still more profitable

than the TBM policy for a reasonable level of condition monitoring errors. A dynamic maintenance

structure, and a decision based on the estimated degradation constructed from the measurement data,

seem to be the effective approaches to reduce the negative impact of measurement uncertainty.

6. Value of prognostic information in maintenance decision-making

This section concentrates on quantifying the value of prognostic information in maintenance decision-

making. The question that arises is: under which conditions can incorporating prognostic information

into a maintenance decision be an advantage over a more classical maintenance strategy? From the

structures of the considered policies, we can see that the inspection cost Ci and system inactivity cost

rate Cd are the principal elements which cause differences in the maintenance cost savings. So, to answer
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the above question, we vary Ci and Cd, and we investigate the corresponding evolution of the optimal

long-run expected maintenance cost rate of both the DR policy and the QIR policy. The comparison of

these costs to the costs incurred by the BR policy and the PIR policy assesses the benefit of the dynamic

maintenance structure, and justifies or not the choice to invest in prognostic approaches.

6.1. Numerical results

Two cases of degradation variance are considered:

1. low variance in deterioration increment with C = 0.015, n = 0.35, β = 3.9, and σ2
ω = 2.53; and

2. high variance in deterioration increment with C = 0.0047, n = 0.35, β = 3.9, and σ2
ω = 4.8326.

The average deterioration rates are the same for these cases, and the degradation variance in case 2 is

10 times greater than the one in case 1. The crack depth is revealed through ultrasonic measurement,

which is defined by the parameters β0 = 0.06, β1 = 1.25, and σ2
v = 0.0625. The other parameters are

d = 6, ∆t = 1, Ns = 3000, and Nh = 4000.

The corrective and preventive replacement costs do not have much influence on the difference between

the considered policies, so we fix the preventive replacement cost Cp = 50, and corrective replacement

cost Cc = 100. To analyze the sensitivity of the maintenance policies to the other maintenance costs,

the following cases that satisfy the practical constraint Ci < Cp < Cc are studied.

1. Variable inspection cost Ci varies from 3 to 19 with unit step 2; and fixed costs Cp = 50, Cc = 100,

and Cd = 250.

2. Variable cost rate of system inactivity Cd varies from 50 to 350 with unit step 50; and fixed costs

Ci = 7, Cp = 50, and Cc = 100.

The results of these case studies are shown in Figs. 7, and 8.

6.2. Analysis and discussion on numerical results

In comparison with the BR policy, Figs. 7 and 8 show clearly that for any value of inspection cost

and system inactivity cost rate, the DR policy can always lead to substantial savings. This result can

be explained by the fact that the DR policy can adapt its replacement time to the system state, and

that it can be regarded as a general case of the BR policy; in the case of very high inspection cost, the

BR policy becomes the same as the BR policy. If we compare now the DR policy to the PIR policy, the

conclusions are less simple. The performance of the DR policy depends on the maintenance costs, and on

the characteristics of the system degradation. When the variance in the degradation increment is quite

small, the evolution of the system degradation is more deterministic (in the sense that the evolution
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Figure 7: Varied inspection cost.
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Figure 8: Varied cost rate of system inactivity.

of the mean of the degradation is more representative of the actual one), and the inspections become

less useful, whereas the same cost Ci is incurred. This situation is adequate to perform the DR policy

because, at time T
(i)
pred, no inspection is required to trigger the maintenance (see Fig. 7a). Moreover,

because at time Ti information returned by inspection is used to adapt the next intervention time T
(i)
pred,

this policy can guarantee a good availability level of the system. Hence, it is better than the PIR policy

for cases of variable inactivity cost rate (see Fig. 8a). This result is no longer true when the variance

in degradation is higher. The real evolution of the system has a higher probability of being far from

the s-mean, so the inspections become more useful. Hence, for inspection costs below a given threshold

(around 9 in Fig. 7b), the PIR policy is more profitable than the DR policy, and the reverse is true

above this threshold. One can note that the DR and the PIR policies are more or less equivalent when

the inspection cost Ci = 7 for any value of the inactivity rate (see Fig. 8b).
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Regarding the QIR policy, Fig. 7 shows that it is more profitable than the BR policy when the

inspection cost is not too high, as its preventive replacement decision and replacement time can adapt

to system states. When the inspection cost increases, the QIR policy becomes less profitable compared

to the BR policy, and this result is all the more true if the variance is low. In this case, the QIR decision

rules turn into a BR structure, but with a higher cost because an additional and useless inspection cost

to estimate the system state is incurred at each time Ti. When we compare the QIR policy to the PIR

policy, a first conclusion is that the dynamic non-periodic inspection scheme in the QIR model yields

more savings for any value of the inspection cost and inactivity cost rate. A second very important

conclusion is that this trend is especially true as the variance of the degradation process is low (see

Figs. 7a, and 8a). This observation clearly shows that the interest of using a dynamic policy with real-

time prediction is not at all obvious. If we think about the dynamic structure of the QIR policy, one can

first imagine that it must be efficient in the case of high process variance because the mean evolution

is not representative, and this policy can adapt in real time the inspection scheme to the real system

state. Nevertheless, as shown in Figs. 7b and 8b, the dynamic adaptation in the QIR policy seems to

be relatively inefficient in the cases of high variance. Hence, we prefer in this case a periodic-inspection

scheme of the PIR type, which is easier to implement.

Concerning the DR and QIR policies, their maintenance cost savings depend on the inspection cost,

and the inactivity cost rate. Generally speaking, QIR, which is both condition-based and dynamic,

performs better for reasonable inspection costs and high inactivity cost rates, particularly when the

variance of the degradation process is low.

To conclude, under different possible characteristics of the system and maintenance costs, both main-

tenance policies DR and QIR based on prognostic information can lead to more substantial maintenance

cost savings than classical policies. However, the present results show that the choice of a strategy is

not obvious, and is strongly quantitatively dependent on many parameters such as the maintenance

and inspection costs, or the degradation variance. Each configuration needs to be considered, and the

numerical studies presented here justify the use of quantification models to make a decision.

7. Conclusion

To assess the value of online information, and the impact of measurement uncertainty, we have

developed complete maintenance models integrating the characteristics of degradation phenomenon,

monitoring performance, the nature of maintenance decision rules, and maintenance and inspection

costs. These models are jointly evaluated by an analytical approach (using probability theory), and
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a simulation approach (using the PF technique, and Monte Carlo simulation). Such an evaluation

allows us to break out of classical assumptions of maintenance (stationary degradation phenomenon,

perfect monitoring information, static maintenance structure, etc.) that can be completely optimized

by an analytical approach. Through the considered model, we show that the CBM policy is still more

profitable than the TBM policy for a reasonable level of condition monitoring errors. Applying a

dynamic maintenance structure, and making a decision based on the estimated degradation constructed

from the measurement data, are the potential approaches to reduce the negative impact of measurement

uncertainty. Applying on-line prognostics in maintenance decisions can also yield considerable cost

savings, and it can be a new orientation for future maintenance strategies to avoid inopportune actions.

However, the choice to resort to prognostic approaches, as well as to invest in condition monitoring

devices, must be made with caution, and must rely for each configuration on a precise quantification

step.

Further research should integrate information on the operating environment of the system to con-

struct a complete degradation and failure model for maintenance decision making.
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