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aUniversité de technologie de Troyes - Institut Charles Delaunay and STMR UMR CNRS 6279 - 12, rue Marie Curie,

BP2060, 10010 Troyes cedex, France
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Abstract

This paper deals with the condition-based maintenance of single-unit systems which are subject to the

competing and dependent failures due deterioration and traumatic shock events. The main aim is to provide

a model to assess the value of condition monitoring information for the maintenance decision-making. A

condition-based periodic inspection/replacement policy is developed and compared with a benchmark time-

based block replacement policy.

Numerical results show that it is indeed useful to follow closely the actual evolution of the system to adapt

the maintenance decisions to the true system state to improve the performance of maintenance policies. The

analysis of the maintenance costs savings can be used to justify or not the choice to implement a policy

based on condition monitoring information and to invest in condition monitoring devices.
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1. Introduction

Maintenance has an important role directly related to the competitiveness of a company. The mainte-

nance operation not only guarantees the system availability but also improves the system safety and the

product quality, and assures the customer satisfaction. Nowadays, the growing dissemination of condition

monitoring techniques and of maintenance information management foster the implementation of condition-

based maintenance (CBM) policies among organizations seeking to improve their maintenance performance

under budget and resources constraints and to gain a competitive advantage. However, the maintenance

decision based on the condition monitoring information returned by inspection on a system can be expen-

sive to implement and an analysis has to be performed to determine whether (and under which conditions)

CBM can be an appropriate choice for an industrial system and whether it can replace with profit a more

classical time-based maintenance (TBM) policy [1]. To answer to such a question, it is necessary to perform

a comparison between CBM policy and TBM policy under different system characteristics. In the literature,

comparison on the performance of CBM policy and TBM policy has been discussed by Mann et al. in [2]

and Bouvard et al. in [3]. However, in [2] the comparison is merely a qualitative analysis, while in [3] the

quantitative comparison is based on a rather simple degradation model. Moreover even though a lot of

maintenance models for deteriorating systems have been proposed in the literature (reviewed by Wang in

[4]), both for CBM and TBM strategies, none of them is applicable for a more general deterioration/failure

model considered in this paper. Therefore, the main aims of this study are (i) firstly to introduce a an

extended deterioration/failure model with dependence for a single-unit deteriorating system; (ii) secondly,

to develop a mathematical cost model for a CBM policy (and a TBM policy) for the proposed deteriora-

tion/failure model; and (iii) thirdly to show through numerical examples how these models can be used to

investigate the value of condition monitoring information and to indicate which type of maintenance policy

should be applied according to different conditions and system characteristics.

The degradation behavior of a system is usually modeled by a stochastic process, and developments on

maintenance model based on deterioration process have provided satisfactory results in the maintenance

operation (see [5, 6] for TBM model and [7–9] for CBM model). But, considering a deterioration process

only, as in these papers, seems to be unsatisfactory for many application cases to describe the dynamic

system characteristics since the system does not only degrade in operating environments, but is also subject

to traumatic events or shocks that can lead to a sudden failure [10]. So, we are interested in a more realistic

model combining the deterioration process and the shock process. On dealing with competing risk of the

degradation process and random shock, most of the present papers assumed that they are independent with

each other [11–14], but in many practical situations, the dynamics of the dependent structure between them

is of importance and should not be neglected in the competing risk model. Therefore, in this paper, we

add a new dimension to the degradation-threshold-shock (DTS) model [12] by introducing the dependence
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between the shock process and the degradation process.

Based on the deterioration/failure model, the mathematical cost models for a CBM policy and a

TBM policy are developed. Due to the simplicity and the high usability in practice, the periodic inspec-

tion/replacement (P-I/R) policy, whose maintenance decisions are based on the information returned by

inspection, is mainly studied in this paper. The block replacement (B-R) policy, whose maintenance deci-

sions are performed regardless of the condition of system, is used as a benchmark TBM policy to assess the

value of condition monitoring information in maintenance decision. We do not use age-based replacement

policy as a benchmark TBM policy in this work, even if it can be more profitable than B-R policy, as it is

not a sensible policy in our case because the system is not replaced immediately upon failure. A comparison

of the optimal maintenance cost rate of both P-I/R policy and B-R policy under different conditions and

system characteristics will show the advantage and the situation to implement of each maintenance policy.

Hence, the main contributions of the present study are:

1. Expanding DTS model introducing the dependence between the shock process and degradation process.

2. Providing the analytical cost models and performing a quantitative comparison between TBM and

CBM based on the more general degradation/failure model.

3. Assessing the value of condition monitoring information for maintenance decision-making.

4. Providing the indicators for choosing the adequate maintenance policy according to different system

characteristics.

The remainder of this paper is organized as follows. Section 2 is devoted to model the different competing

failures modes of system and to investigate the associated failure times. The detailed description and

formulation of both P-I/R policy and B-R policy are represented in section 3. Section 4 deals with analysis

and discussions on the sensitivity to different parameters of deterioration/failure model and the maintenance

model, and shows the value of condition monitoring information for maintenance decision-making. Finally

the paper will be end with some conclusions and some directions for future works.

2. System degradation and failure modeling

The present paper considers a single-unit system whose failures are due to the competing causes of

degradation and shocks. The system is described by a so-called degradation-threshold-shock (DTS) model

[12]. In this model, the deterioration is modeled using a time-dependent stochastic process, and the system

is regarded as failed when the degradation process reaches a critical threshold or when a shock occurs

although the degradation process has not reached the threshold. As Singpurwalla advocated in [10], such

a failure/deterioration model can be seen as a combination and more versatile - and hopefully realistic -

extension of many classical failure models based either only on deterioration or only on parametric lifetime

distributions. More recently, Bocchetti et al. apply this model to describe the competing risks due to wear
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degradation and thermal cracking for the cylinder liners of a marine Diesel engine [15]. In the following, the

modeling of different failure modes and the distributions of the associated hitting time is analyzed in more

details highlighting the dependence between failure modes.

2.1. Deterioration-based failure

2.1.1. Deterioration modeling

Consider a system deteriorating with use and age, and subject to continuous accumulation of deterio-

ration. The deterioration evolution of system is usually modeled by a stochastic process. Let X(t) be the

accumulated deterioration (or wear level) at time t. If no maintenance action is performed, the stochastic

process {X(t), t ≥ 0} is continuous-time and monotonically increasing with X(0) = 0. The deterioration is

strictly increasing which means that the system worsens with time due to ageing and accumulated wear or

damage.

Gamma processes were satisfactorily fitted to data of different gradual degradation phenomena such

as erosion, corrosion, concrete creep, crack growth, wear of structural components [16–18]. Moreover, the

existence of an explicit probability distribution function of gamma process permits feasible mathematical

developments. Therefore, since the initial proposal by Abdel-Hameed in [19], the gamma process has been

widely studied to apply in maintenance applications by several authors (see [20] for a thorough review on

the use of Gamma process in maintenance modeling), and we use it in this study to model the degradation

evolution of the system. Note however that an other monotone stochastic process could have been used (e.g.

any process from the Levy family) at the price of more difficult mathematical derivations.

Assume that {X(t), t ≥ 0} is a homogeneous gamma process. It means that the probability density

function of deterioration level X(t) at time t is a gamma density function with shape parameter αt and scale

parameter β,

fαt,β(u) =
βαtuαt−1e−βu

Γ(αt)
, u ≥ 0, (1)

where Γ is the function gamma given by

Γ(α) =

∫ ∞

0

uα−1e−udu.

Such a process depends on two parameters α and β which allows to model various deterioration behaviors

of the system from almost deterministic to highly variable. The parameters α and β can be estimated from

deterioration data with classical statistical methods. The average deterioration rate is m = α/β and its

variance is σ2 = α/β2.

We assume that, when the level of deterioration exceeds the failure threshold L which depends on the

properties of the considered system, a degradation failure happens. We notice that in reality, the failures can

be not obvious to the user and cannot be easily characterized and identified. So, the system can be declared

as “failed” as soon as a defect or an important deterioration is present, even if the system is still functioning.
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This means that it is no longer able to fulfil its mission in acceptable conditions. In this situation, its high

level of deterioration is unacceptable either for economic reasons (poor products quality, high consumption

of raw material, etc.) or for safety reasons (high risk of hazardous breakdowns).

2.1.2. On hitting times of the deterioration process

To characterize the deterioration-based failures, it is necessary to study the hitting times of the deterio-

rating gamma process. Two types of hitting times are showed in this section.

Firstly, denoting by τL the time at which the degradation failure occurs and by FτL its distribution, one

obtains

FτL(t) = P [τL ≤ t] = P [X(t) ≥ L] =

∫ ∞

L

fαt,β(x)dx =
Γ(αt, Lβ)

Γ(αt)
, t ≥ 0, (2)

where

Γ(α, x) =

∫ ∞

x

zα−1e−zdz,

denotes the incomplete gamma function for x ≥ 0 and α > 0. Distribution FτL in (2) is known as the first

hitting time distribution to the level L with density function given by [20]

fτL(t) =
∂

∂t
FτL(t) =

α

Γ(αt)

∫ ∞

Lβ

{log(z)− ψ(αt)}zαt−1e−zdz, t ≥ 0, (3)

where the function ψ(a) is called the digamma function that corresponds to the derivative of the logarithm

of the gamma function

ψ(a) =
Γ′(a)

Γ(a)
=
∂logΓ(a)

∂a
.

Considering another deterioration level M of system with M < L and let FτM the time in which, for

the first time, the deterioration of the system exceeds the level M . In the models showed subsequently, the

distribution of the random variable τL − τM is used but more difficult to derive because of the “overshoot

behavior” of the gamma processes [21], i.e., X(τM ) 6=M and τL − τM 6= τL−M . The distribution of τL − τM

was obtained by [8] and it is given by

F̄τL−τM (t) = F̄(τM ,τL) (t, x, y) 1{y>x>0} + F̄d (t, x, y) 1{y=x>0}, (4)

where 1{} denotes the indicator function which equals 1 if the argument is true and 0 otherwise,

F̄(τM ,τL) (t, x, y) = −

∫ ∫

M<x<L,0<x+y<L,0<y

(∫ ∞

0

fαu,β(x)du

)
∂fαt,β(y)

∂t
dxdy,

and

F̄d (t, x, y) =

∫ ∞

t

∫ y−t

0

α

∫ M

0

fαx,β(w)dw

(∫ ∞

L−y

e−βz

z
dz

)

dxdy.

Expression (4) is complicated and specially burdensome to compute numerically. This fact makes us propose

an approximation of the distribution of the random variable τL − τM to make the computation faster and
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easier. This approximation is based on the distribution of τL−M . If the trajectories of the process {X(t), t ≥

0} were continuous, then τL − τM would have the same probability as τL−M . But, since {X(t), t ≥ 0} is a

jump process (see [20, 22] for more properties of gamma process), X(τM ) ≥ M and hence E[X(τM )] ≥M .

Bérenguer et al. proposed in [8] as approximation of E[X(τM )] the following expression

E[X(τM )] =
α

β
E[τM ] =

α

β

1

α

(

βM +
1

2
−

∫ ∞

βM

(ϕ(y)− 1)dy

)

, (5)

where ϕ is a function closed to 1,

ϕ(y) =

∫ ∞

0

fu,1(y)du, y ≥ 1

hence, when βM is large enough (at least greater 1),

E[X(τM )] ≃M +
1

2β
.

As a consequence, the distribution of the random variable τL − τM can be approximated by the distribution

of τL−M−1/(2β) when βM < βL− 1/2, thus the distribution of τL − τM given in (4) and its density fτL−τM

can be approximated as

FτL−τM (t) ≃ Fτ
L−M−

1

2β

(t) =
Γ(αt, β(L −M)− 1/2)

Γ(αt)
, (6)

fτL−τM (t) ≃ fτ
L−M−

1

2β

(t) =
α

Γ(αt)

∫ ∞

(Lβ−Mβ−1/2)

{log(z)− ψ(αt)}zαt−1e−zdz, (7)

and this approximation will be used later in the numerical examples to compare different maintenance

strategies.

2.2. Shock failure

2.2.1. Shock failure modeling

As mentioned above, in most practical situations the system failure is not solely due to degradation

but also is due to traumatic shock events, either internal or external. Moreover the degradation process

and shock process can depend each other, for example the higher the degradation, the more the system is

vulnerable to the shocks. We assume that the shocks arrival times can be modeled by a nonhomogeneous

Poisson process {N(t), t ≥ 0} with stochastic increasing intensity which depends on the degradation level

r(X(t)), and that can represented by the following relation

r(X(t)) = r1(t)1{X(t)≤Ms} + r2(t)1{X(t)>Ms}, t ≥ 0, (8)

where 1{} denotes the indicator function which equals 1 if the argument is true and 0 otherwise, r1(t)

and r2(t) denote two continuous and non-decreasing failure rates at time t with r1(t) ≤ r2(t), ∀t ≥ 0. The

quantityMs < L represents a fixed deterioration level. The quantities r1(t), r2(t) andMs are the parameters

of shock process and can be estimated form shock failures and deterioration data with classical statistical
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methods. Expression (8) means that the degradation evolution affects to the occurrence of shock failures,

that is, the system is more prone to shock failures when the deterioration increases and exceeds a given

deterioration level.

2.2.2. Failure time of the traumatic shock process

Let N(t) be the number of shock failures in [0, t]. Under this model, the failure rate for the shock failures

r(X(t)) given by (8) is stochastic and the process {N(t), t ≥ 0} is called a doubly stochastic process or a Cox

process (see [23] for a theoretical development of the Cox process). We denote by F̄1 and F̄2 the survival

functions associated with the failure rate functions r1 and r2, that is,

F̄i(t) = exp

{

−

∫ t

0

ri(u)du)

}

, t ≥ 0, i = 1, 2. (9)

We denote by τMs
the time that for which the deterioration of the system first exceeds the value Ms. Let

τs be the time to an shock failure and F̄s(t) be its survival function, one has

F̄s(t) = P [τs > t]

= P [τs > t|X(t) ≤Ms]P [X(t) ≤Ms] + P [τs > t,X(t) > Ms]

= F̄τMs
(t)F̄1(t) +

∫ t

0

fτMs
(u)F̄1(u)exp

{

−

∫ t

u

r2(v)dv

}

du, t ≥ 0. (10)

where FτMs
(resp. fτMs

) denotes the distribution (resp. density) of the hitting time for the deterioration

level Ms obtained using (2) and (3) respectively.

3. Maintenance models

This section aims to develop the maintenance models for the deterioration/failure model described in

section 2. Due to the simplicity and the high usability in practice, the periodic inspection/replacement (P-

I/R) policy, whose maintenance decisions are based on the information returned by inspection, is declared

as a representative of the class of CBM policies and is mainly studied in this paper. The block replacement

(B-R) policy is a “blind” TBM policy used as a benchmark to assess the value of condition monitoring

information in maintenance decision. The analytic cost model of each maintenance policy is developed

based on the well-known renewal theorem.

3.1. Assumptions and performance assessment criterion

3.1.1. Assumptions

Consider a non-reparable single-unit system described in section 2. We suppose that the system starts

working at time t = 0. The degradation system of system is hidden and the system failure is non-self-

announcing. This means that the system reveals only its degradation state or its failure through an inspec-

tion. These assumptions are reasonable because in practice the system degradation is usually not observed
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directly, and as mentioned above, for the economic and safety reasons the system is considered as “failed”

even if it is still running, so no indicator can exhibit the degradation and failure state of system except to

do an inspection. Moreover with a system subject to different failure modes, the inspections are really nec-

essary to distinguish between the types of failure which can used for experience feedback and for parameter

estimation. The inspections are assumed instantaneous, perfect, non-destructive and incurred a cost Ci.

Two maintenance operations are available on the system: the preventive replacement with cost Cp > Ci

and the corrective replacement with cost Cc. A replacement can be either a true physical replacement

or an overhaul or repair such that the system is as-good-as-new after the repair. Even though both the

preventive and the corrective maintenance actions put the system back in the as-good-as-new state, they are

not necessarily identical in practice because the corrective replacement (or renewal) is unplanned and it has

to be performed on a more deteriorated system, and the cost Cc can also comprise different costs associated

to failure like damage to the environment. It is thus likely to be more complex and more expensive (i.e.

Cc > Cp). Moreover a replacement, whether preventive or corrective, can be performed only at the discrete

times (inspection time in P-I/R policy or regular replacement time in B-R policy), and takes negligible time.

Therefore, there exists a system inactivity after failure and an additional cost is incurred from the failure

time until the next replacement time at a cost rate Cd.

3.1.2. Policy performance assessment criterion

To evaluate the performance of a maintenance policy, one can use the availability of the maintained system

or the overall maintenance cost balance [24]. In this work, we focus only on an asymptotic evaluation of a cost

criterion which is the expected maintenance cost per unit over an infinite time span, because this criterion is

most used in reality. Under the assumption of an as-good-as-new maintained system, an analytical formula

of this long run expected cost rate can be computed thanks to the regenerative properties of the maintained

system state [25]

C∞ = lim
t→∞

C (t)

t
=
E [C (S1)]

E [S1]
(11)

where C (t) is the cumulated maintenance cost at time t, S1 is the length of the first renewal cycle.

3.2. Periodic inspection/replacement model

3.2.1. Periodic inspection/replacement policy

For this maintenance policy, the system is periodically inspected with period T and with cost Ci. At

each inspection Ti where i = 1, 2, 3 . . ., if the observed degradation level X(Ti) exceeds a threshold M and if

no failure occurred, a preventive replacement is performed with cost Cp. But upon inspection, if the system

is detected to be in failure state (either due to degradation X(Ti) ≥ L or due to shocks), it is correctively

replaced with cost Cc. In this case, because of the system inactivity after failure, an additional cost is

incurred from the failure time until the inspection time at a cost rate Cd. Practical conditions define the
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constraints of the maintenance costs as follows: Ci < Cp < Cc. The inter-inspection interval T and the

preventive threshold M are the decision variables of this policy. We seek the optimal values of the decision

variables (Topt,Mopt) which minimize the cost criterion (11).

3.2.2. Cost model formulation

Applying (11) the expected cost rate for this inspection strategy is given by

Cins(T,M) =
CpPp(T,M) + Cc(1− Pp(T,M)) + CdE[Wr] + CiE[Ni]

E[τr ]
, (12)

where E[τr], Pp(T,M), E[Wr ] and E[Ni] are respectively the expected time to a system replacement, the

probability of a preventive replacement in a replacement cycle, the expected down time of the system in a

replacement cycle, and the expected number of inspections during a replacement cycle. The remaining of

this section aims to introduce the analytical formulas of these quantities.

Consider a replacement cycle defined as the time interval between successive replacements of the system.

Let τr be the time to the replacement of the system. Under the assumptions of the model, τr can be given

by

τr = (k + 1)T, k = 0, 1, 2, . . . (13)

if one of the three following exclusive events occurs







kT < τM < (k + 1)T, N ((k + 1)T ) = 0

(k + 1)T < τM , N(kT ) = 0, N ((k + 1)T ) > 0

kT < τM < (k + 1)T, N(kT ) = 0, N ((k + 1)T ) > 0

,

where τM denotes the random variable that represents the time from the installation of the system to the

first time that the deterioration exceeds the preventive threshold M . After some calculations, the expected

time to a system replacement for this inspection model is given by (see Appendix Appendix A for proof)

E[τr ] =

∞∑

k=0

(k + 1)T
(
R1(k, T )1{Ms≤M} +R2(k, T )1{Ms>M}

)
(14)

where R1(k, T ) and R2(k, T ) are given by

R1(k, T ) = F̄1(kT )F̄τMs
(kT )− F̄1((k + 1)T )F̄τMs

((k + 1)T ) + F̄2(kT )

∫ kT

0

a(u)F̄τM−τMs
(kT − u)du

− F̄2((k + 1)T )

∫ (k+1)T

0

a(u)F̄τM−τMs
((k + 1)T − u)du

R2(k, T ) = F̄1(kT )F̄τM (kT )− F̄1((k + 1)T )F̄τM ((k + 1)T )

and a(t) is given by

a(t) =
fτMs

(t)F̄1(t)

F̄2(t)
, t ≥ 0, (15)
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F̄1 and F̄2 are given by (9), F̄τMs
(F̄τM ) can be obtained using (2), fτMs

is given by (3) and F̄τM−τMs
can

be obtained using (4) and approximated using (6).

Under the considered periodic inspection/replacement policy, a preventive maintenance is performed if

the inspection detects that the deterioration of the system exceeds the value M but the system is still

working. Thus the probability of a preventive maintenance in a replacement cycle is given by (see Appendix

Appendix B for proof)

Pp(T,M) =







∑∞
k=0 P (A1(k, T )) + P (A2(k, T )) if Ms ≤M

∑∞
k=0 P (A3(k, T )) + P (A4(k, T )) if Ms > M

(16)

where for k = 0, 1, 2, . . . and T > 0, the quantities P (A1(k, T )), P (A2(k, T )), P (A3(k, T )) and P (A4(k, T ))

are respectively given by

P (A1(k, T )) = F̄2((k + 1)T )

∫ kT

0

a(u)

(
∫ (k+1)T−u

kT−u

fτM−τMs
(v)F̄τL−τM ((k + 1)T − u− v)dv

)

du

P (A2(k, T )) = F̄2((k + 1)T )

∫ (k+1)T

kT

a(u)

(
∫ (k+1)T−u

0

fτM−τMs
(v)F̄τL−τM ((k + 1)T − u− v)dv

)

du

P (A3(k, T )) = F̄2((k + 1)T )

∫ (k+1)T

kT

fτM (u)

(
∫ (k+1)T−u

0

fτMs−τM (v)F̄τL−τMs
((k + 1)T − u− v)

F̄1(u+ v)

F̄2(u+ v)
dv

)

du

P (A4(k, T )) = F̄1((k + 1)T )

∫ (k+1)T

kT

fτM (u)F̄τMs−τM ((k + 1)T − u)du,

where a(t) is given by (15), F̄1 and F̄2 are given by (9), fτM can be obtained from (3) and fτM−τMs
, fτMs−τM ,

F̄τL−τM , F̄τL−τMs
and F̄τMs−τM are obtained using (4) and can be approximated using (6) and (7).

Under the considered periodic inspection/replacement policy, if the system fails between inspections, the

system remains failed until the next inspection detects the failure. And the expected down time for the

system in a replacement cycle is given by (see Appendix Appendix C for proof)

E[Wr] =

∞∑

k=0

∫ (k+1)T

kT

(
Pd,k,1(t)1{Ms≤M} + Pd,k,2(t)1{Ms>M}

)
dt (17)

where Pd,k,1 and Pd,k,2 are given by

Pd,k,1(t) = −F̄2(t)

(
∫ t

0

a(u)F̄τL−τMs
(t− u)du−

∫ kT

0

a(u)

∫ kT−u

0

fτM−τMs
(v)F̄τL−τM (t− u− v)dvdu

)

+ F̄2(kT )

∫ kT

0

a(u)F̄τM−τMs
(kT − u)du− F̄1(t)F̄τMs

(t) + F̄1(kT )F̄τMs
(kT ),

and,

Pd,k,2(t) = F̄1(kT )F̄τM (kT )− F̄1(t)F̄τM (t)− F̄1(t)

∫ t

kT

fτM (u)F̄τMs−τM (t− u)du

− F̄2(t)

∫ t

kT

fτM (u)

(∫ t−u

0

fτMs−τM (v)
F̄1(u+ v)

F̄2(u+ v)
F̄τL−τMs

(t− u− v)dv

)

du,
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where a(t) is given by (15), F̄1 and F̄2 are given by (9), F̄τMs
and F̄τM are given by (2) and F̄τM−τMs

,

F̄τL−τMs
, F̄τL−τM and F̄τMs−τM are obtained using (4) and can be approximated using (6).

Considering the expected number of inspections during a replacement cycle E[Ni] is given by

E[Ni] =
E[τr]

T
, (18)

where E[τr] is given by (14).

The optimization problem for this maintenance scheme is reduced to find the values T and M that

minimize the function Cins(T,M) given by (12), that is,

Cins(Topt,Mopt) = inf{Cins(T,M), T > 0, 0 < M < L} (19)

3.2.3. Numerical example

To illustrate the cost surface and the optimum solution of the P-I/R policy, we use the following data

set: α = β = 0.1, L = 30, Ms = 20, r1 (t) = λ1 = 0.01, r2 (t) = λ2 = 0.1, Ci = 2, Cp = 50, Cc = 100

and Cd = 25. This data set represents a case of high variance in deterioration increment (m = α
β = 1,

σ2 = α
β2 = 10), high intensity to shock failure and non-expensive inspections. The numerical example of
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Figure 1: An numerical illustration for P-I/R policy

the policy is illustrated in figure 1. Figure 1a illustrates the shape of expected maintenance cost rate of

P-I/R policy when the replacement threshold and inter-inspection time interval vary. Figure 1b shows that

we can obtain an optimal solution under P-I/R policy, and in this case the optimal values of the decision

variables (obtained by a classical optimization scheme) are Topt = 2.5 and Mopt = 19 with an optimal cost

rate Cins (Topt,Mopt) = 4.4349.
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3.3. Block replacement model

According to the assumptions as in subsection 3.1, a suitable TBM policy for the considered system is

the block replacement (B-R) policy [26] because, as in the P-I/R policy the system is not replaced before T

even if failed, age-based replacement is not a sensible benchmark policy here. Since preventive replacement

decision of the B-R policy is based only on the calendar time of the system and on the knowledge of the

statistical information about its lifetime (i.e. regardless of the actual system state), the B-R is considered a

“blind” and classical TBM policy. In this paper, this maintenance policy is used as a benchmark to assess

the profit of P-I/R policy, as well as the value of condition monitoring information in maintenance decision.

3.3.1. Block replacement policy

Under the B-R policy, the system is always replaced at regular time interval T . If the system is still

running at replacement time, this is a preventive replacement with cost Cp; but if the system has already

failed, a higher replacement cost is incurred Cc > Cp and this is regarded as a corrective replacement. In

this case there exists a system inactivity time interval after failure, and an additional cost is incurred from

the failure time until the replacement time at a cost rate Cd. The optimal solution of this maintenance

policy is to find the optimal values of regular time interval Topt which minimizes the cost criterion (11).

3.3.2. Cost model formulation

Applying (11), the expected cost rate for this maintenance model is given by

Cb(T ) =

CpF̄f (T ) + CcFf (T ) + Cd

∫ T

0

Ff (t)dt

T
, T > 0, (20)

where F̄f (t) denotes the survival distribution of the time to failure for the system, and Ff (t) = 1− F̄f (t).

Denoting by N(t) the number of shock failures in [0, t], the survival function of the time to failure is

given by

F̄f (t) = P (X(t) < L,N(t) = 0)

= P (X(t) ≤Ms, N(t) = 0) + P (Ms < X(t) < L,N(t) = 0)

= F̄1(t)F̄τMs
(t) +

∫ t

0

fτMs
(u)F̄1(u)F̄τL−τMs

(t− u)exp

{

−

∫ t

u

r2(v)dv

}

= F̄1(t)F̄τMs
(t) + F̄2(t)

∫ t

0

a(u)F̄τL−τMs
(t− u)du, t ≥ 0, (21)

where FτMs
(resp. fτMs

) denotes the distribution (resp. density) function of the hitting time for the

deterioration level Ms obtained using (2) and (resp. (3)), F̄1 and F̄2 are the survival functions given by (9),

FτL−τMs
denotes the distribution of the random variable τL − τMs

with distribution obtained using (4) and

the function a(t) is given by (15).
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The optimization problem for this maintenance strategy is to find a value of T that minimizes Cb(T )

given by (20); in other words, to find a value Topt such that minimizes the cost function given in (20), that

is,

Cb(Topt) = inf{Cb(T ), T > 0} (22)

4. Numerical examples and discussions

This section aims to investigate the advantage of P-I/R policy by comparing with the benchmark B-R

policy through the concrete numerical examples. Firstly, we shall analyze the influence of the maintenance

action costs on the optimal values of the decision variables on the evolution of the optimal expected cost

rate of both maintenance policies. Secondly, for different possible characteristics of system, the evolution of

the optimal expected cost rate as a function of inspection cost is studied. Furthermore, a comparison with

the cost incurred by the block replacement strategy allows weighing the benefit of the information returned

by inspections against its cost.

4.1. Sensitivity to the maintenance actions costs

In order to analyze the sensitivity of the maintenance policies to the maintenance actions costs, we

vary one of maintenance costs (i.e. inspection cost, preventive replacement cost or the cost rate for the

system inactivity), fix the other costs and investigate the evolution of the optimal values of the decision

variables and of the optimal expected maintenance cost rate. It is noted that the corrective replacement cost

doesn’t influence on the difference between both P-I/R policy and B-R policy, so we can fix the corrective

replacement cost Cc = 100. The practical constraint of maintenance costs Ci < Cp < Cc leads us to consider

three following case studies:

1. Case 1. Varied preventive replacement cost and the other costs fixed: Ci = 2, Cp = 2 : 1 : 100,

Cc = 100 and Cd = 25.

2. Case 2. Varied inspection cost and the other costs fixed: Ci = 2 : 1 : 90, Cp = 90, Cc = 100 and

Cd = 25.

3. Case 3. Varied cost rate of system inactivity and the other costs fixed: Ci = 5, Cp = 50, Cc = 100

and Cd = 5 : 1 : 150.

These case studies are applied to the system defined by the data set: α = β = 0.1, L = 30, Ms = 20,

r1 (t) = λ1 = 0.01, r2 (t) = λ2 = 0.1. This is the same system described in the numerical example for P-I/R

policy. Note that to have the simpler case study, we choose the intensities to shock failures as the constants,

but the developments above allow describing the shock rate as any law.
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4.1.1. Sensitivity to preventive replacement cost: case 1

To have an unbiased study of the influence of preventive replacement cost on the evolution of the

optimal decision variables and of the optimal expected cost rate for both maintenance policies, we choose

the non-expensive inspections and the intermediate cost rate for system inactivity, and vary the preventive

replacement cost from inspection cost to corrective replacement cost with the cost step equal to 1. The

results for this case are showed as in figure 2.
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Figure 2: Case 1 - varied preventive replacement cost

The figure shows that the optimal values of inter-inspection interval of P-I/R policy are almost constant

against the preventive replacement cost, while the optimal value of preventive replacement threshold in

P-I/R policy and the one of regular replacement interval in B-R policy increase with the increasing of

preventive replacement cost. This means that few preventive replacements are performed when their cost

is high and this also reflects the fundamental difference in the preventive replacement decision between the

two considered policies: condition-based replacement for P-I/R policy and time-based replacement for B-R

policy. In this case the P-I/R policy is almost always more profitable than B-R policy.

4.1.2. Sensitivity to inspection cost: case 2

For this case study, we set the preventive replacement at the high cost, the intermediate cost rate for

system inactivity and vary the value inspection cost from a very low cost to preventive replacement cost

with the cost step equals 1. The evolutions of the optimal decision variables and of the optimal expected

cost rate for both P-I/R policy and B-R policy for this case study are illustrated in figure 3.

Obviously the B-R policy does not depend on inspection cost. Not surprisingly, for the P-I/R policy, the

optimal value of inter-inspection interval (resp. of the preventive replacement threshold) tends to increase

(resp. decrease) when the inspection cost increases. The increasing inter-inspection interval seeks to avoid
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Figure 3: Case 2 - varied inspection cost

more frequent inspections, while the decrease of the value of preventive replacement threshold will limit the

probability of system failure. A balance between the frequency of inspections and the preventive replacement

threshold may provide an attractive saving in the total maintenance cost. We can also note that the P-I/R

policy becomes less advantageous compared to B-R policy when the inspection cost increases. This can

be explained by the fact that when the inspection cost is high, the optimal inter-inspection interval is set

at a high value, while the optimal preventive replacement threshold is set at a small value (see figure 3).

This means that the probability of a replacement at the first inspection is almost 1, thus the optimal P-I/R

policy turns into a B-R policy. However, in this case it is incurred not only the cost to system replacement

and system downtime as in the B-R policy, but also an inspection cost to monitor the system state, hence

P-I/R policy is less profitable against the B-R policy. When the inspection cost is low, the optimal policy

corresponds to a high replacement threshold and involves many inspections in order to monitor precisely the

system state so as to trigger a preventive replacement only when necessary and to avoid system unavailability.

4.1.3. Sensitivity to the cost rate of system inactivity: case 3

Since this case study concentrates on the analysis of the impact of the system inactivity cost rate on the

evolution of the optimal values of the decision variables and of total maintenance cost rate, we set a low cost

for inspections, an intermediate cost for preventive replacement (so that here these costs do not influence so

much on the results), and vary the cost rate of system inactivity from a very low value to a very high value.

Figure 4 reports the result of this analysis.

We can remark that the optimal inter-inspection interval of P-I/R policy, as well as the optimal replace-

ment time of B-R policy decrease when the system inactivity cost rate increases in order to cut short the

downtime of system. When the system inactivity cost rate is low, the optimal values of inter-inspection

interval in P-I/R policy and of periodic replacement time in B-R policy are high, which means that the
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Figure 4: Case 3 - varied cost rate of system inactivity

optimal policies accept a longer downtime interval. The optimal value of preventive replacement does not

vary a lot with the system inactivity cost rate Cd; the small observed variations are due to the flatness of

the cost curve around the optimal value of M , and do not correspond to significant cost variation. In this

configuration, the most sensitive decision variable is the optimal inter-inspection interval. We see that the

P-I/R policy can lead to substantial savings in maintenance cost compared to B-R policy when the system

inactivity cost rate is high. This shows that the P-I/R policy can avoid effectively a long system downtime

thanks to the more frequent inspections.

These last analyses show that the P-I/R policy in a more general way can adapt quite well to different

maintenance costs configurations (inspection cost, preventive replacement cost, system inactivity cost rate).

They also provide some indicators on maintenance costs for choosing a suitable maintenance structure

according to maintenance costs, i.e. in the case of expensive inspections, a B-R policy could be used instead

of the P-I/R policy; for the other cases the P-I/R policy is more interest.

4.2. Sensitivity to the system dynamic behaviors

This subsection concentrates on assessing the value of the condition monitoring information for the

maintenance decision-making. The nature of the maintenance policy structures, as well as the numerical

illustrations in the subsection above show that the inspection cost is the principal impact which causes the

different in the performance of both P-I/R policy and B-R policy. Moreover a question arises naturally

that under which conditions of system behavior, the P-I/R can replace with profit a more classical B-R

policy. Therefore, analogously to the numerical procedure showed by Huynh et al. in [27] and [28], we

vary the inspection cost Ci and investigate the corresponding evolution of the optimal long run expected

maintenance cost rate of P-I/R policy under different possible system characteristics. The comparison of
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this cost to the cost incurred by the block replacement policy allows weighing the benefit of the condition

monitoring information returned by inspections against its cost.

We are interested in the impact of degradation variance and of failure rate due to shocks on the optimal

maintenance cost rate, so four cases of system behaviors are considered:

1. Case 1. Low variance in deterioration increment and low intensity to shock failures: α = β = 1

(σ2 = 1), r1 (t) = λ1 = 0.001, r2 (t) = λ2 = 0.01.

2. Case 2. High variance in deterioration increment and low intensity to shock failures: α = β = 0.1

(σ2 = 10), r1 (t) = λ1 = 0.001, r2 (t) = λ2 = 0.01.

3. Case 3. Low variance in deterioration increment and high intensity to shock failures: α = β = 1

(σ2 = 1), r1 (t) = λ1 = 0.01, r2 (t) = λ2 = 0.1.

4. Case 4. High variance in deterioration increment and high intensity to shock failures: α = β = 0.1

(σ2 = 10), r1 (t) = λ1 = 0.01, r2 (t) = λ2 = 0.1.

And the other parameters are L = 30, Ms = 20, Cp = 50, Cc = 100 and Cd = 25. It is noted that the

average deterioration rates are the same for these cases and equal m = 1. Moreover, to have the simpler

case study but without loss of generality, we choose the intensities to shock failures as the constants.

The numerical results of these case studies are represented as in Figure 5. The figures show clearly
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Figure 5: Comparison on the maintenance cost rates as a function of the inspection costs

that for deterioration processes with high variances in the increments (σ2 = 10) and/or for traumatic shock

process with high intensities to failure (r1 (t) = λ1 = 0.01, r2 (t) = λ2 = 0.1), the P-I/R policy may lead to

a substantial saving in the maintenance costs. This result can be explained by the following considerations:

for a deterioration process with high variance and/or for high frequency of shock failures, an inspection

returning the deterioration level and the shock failure speed brings a lot of information on the actual system
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state, and it justifies its cost Ci. Knowing the deterioration level and the shock failure speed allows the

maintenance decision to be adapted to the system state, hence saving maintenance costs when compared to

a classical B-R policy.

Generalizing the problem, in comparison with a TBM policy, when the inspection cost is not too high,

CBM policy has better capacity to tune the maintenance decision variables (i.e. degradation threshold

and inter-inspection time interval) in order to keep the evolution of a system in an optimal zone where

maintenance costs optimally balance the different failures and deteriorations costs, so that the profit from

the system is maximal. Therefore, it is indeed useful to follow closely the actual evolution of the deterioration

path (as well as shock failure rate) to adapt the maintenance decisions to the true state of system, instead of

applying the “static” rule of TBM policies based only on the “priori” system lifetime distribution. Obviously,

when the inspection cost increases, the CBM loses its interest and become less profitable. That is why the

analysis of the maintenance costs savings could be used to justify or not the choice to implement a CBM

policy based on condition monitoring and to invest in condition monitoring devices.

5. Conclusions

The present paper provides a realistic extension of DTS model by introducing a dependence between

the traumatic shock process and degradation process. The analytical cost models of both P-I/R policy and

B-R policy have been developed for this more general degradation/failure model. The sensitivity analyses

to the different maintenance costs and to different possible characteristics of system provided a thorough

quantitative comparison between CBM policy and TBM policy. The results presented in this paper show

that we should follow closely the actual evolution of system behaviors to adapt the maintenance decisions

to the true system state to improve the maintenance policy performance and decrease its costs. And the

analysis of the maintenance costs savings could be used to justify or not the choice to implement a CBM

policy based on condition monitoring and to invest in condition monitoring devices.

The perspectives for the problem are essential:

1. For a practical implementation, it is necessary to fit degradation and failure processes to the real

data. With the complexity of the proposed degradation/failure model, this is a challenging task. A

procedure of parameter estimation (off-line and/or on-line) for this model from the collected data has

to be considered in a further work.

2. In the viewpoint of maintenance decision rules, we can take into account the minimal repairs and

the non-periodic interventions which are adapted to the observed state of the system, and possible

environment covariates.

3. In the viewpoint of quality of the monitoring information, we can consider an imperfect monitoring

(non-detectable failures, errors in measurement) or indirect monitoring (covariates).
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The future works will be continued with these two directions.

Appendix A. Proof of equation (14)

We denote by τr the time to a system replacement. Under the assumptions of the model,

τr = (k + 1)T, k = 0, 1, 2, . . .

when one of these following events occurs

B(k, T ) = {kT < τM < (k + 1)T, N((k + 1)T ) = 0}

C(k, T ) = {τM > (k + 1)T, N(kT ) = 0, N((k + 1)T ) > 0}

D(k, T ) = {kT < τM < (k + 1)T, N(kT ) = 0, N((k + 1)T ) > 0}

Consider the decomposition of the event B into the following exhaustive and mutually exclusive events,

B1(k, T ) = {τMs
< kT < τM < (k + 1)T, N((k + 1)T ) = 0}

B2(k, T ) = {kT < τMs
< τM < (k + 1)T, N((k + 1)T ) = 0}

B3(k, T ) = {kT < τM < τMs
< (k + 1)T, N((k + 1)T ) = 0}

B4(k, T ) = {kT < τM < (k + 1)T < τMs
, N((k + 1)T ) = 0)}

and considering the respective density and distribution function, the probability of the events Bi(k, T ) where

i = 1, 2, 3, 4, are given by

P (B1(k, T )) = F̄2((k + 1)T )

∫ kT

0

a(u)

(
∫ (k+1)T−u

(kT−u)

fτM−τMs
(v)dv

)

du

P (B2(k, T )) = F̄2((k + 1)T )

∫ (k+1)T

kT

a(u)FτM−τMs
((k + 1)T − u)du

P (B3(k, T )) = F̄2((k + 1)T )

∫ (k+1)T

kT

fτM (u)

(
∫ (k+1)T−u

0

fτMs−τM (v)
F̄1(u + v)

F̄2(u + v)
dv

)

du

P (B4(k, T )) = F̄1((k + 1)T )

∫ (k+1)T

kT

fτM (u)F̄τMs−τM ((k + 1)T − u)du

where F̄1 and F̄2 are given by (9), a(t) is given by (15) and FτM−τMs
(FτMs−τM ) can be obtained using (4).

Analogously, we consider the decomposition of the event C(k, T ) into the following exhaustive and mutually

exclusive events

C1(k, T ) = {τMs
< kT < (k + 1)T < τM , N(kT ) = 0, N((k + 1)T ) > 0},

C2(k, T ) = {kT < τMs
< (k + 1)T < τM , N(kT ) = 0, N((k + 1)T ) > 0},

C3(k, T ) = {(k + 1)T < τMs
< τM , N(kT ) = 0, N((k + 1)T ) > 0},

C4(k, T ) = {(k + 1)T < τM < τMs
, N(kT ) = 0, N((k + 1)T ) > 0},
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and considering the respective density and distribution functions, the probabilities of the partition of C is

given by

P (C1(k, T )) = (F̄2(kT )− F̄2((k + 1)T ))

∫ kT

0

a(u)F̄τM−τMs
((k + 1)T − u)du

P (C2(k, T )) = F̄1(kT )

∫ (k+1)T

kT

fτMs
(u)F̄τM−τMs

((k + 1)T − u)du

− F̄2((k + 1)T )

∫ (k+1)T

kT

a(u)F̄τM−τMs
((k + 1)T − u)du

P (C3(k, T )) = F̄τMs
((k + 1)T )(F̄1(kT )− F̄1((k + 1)T ))

P (C4(k, T )) = F̄τM ((k + 1)T )
(
F̄1(kT )− F̄1((k + 1)T )

)
,

where F̄1 and F̄2 are given by (9), a(t) is given by (15), FτMs
(FτM ) can be obtained using (2) and F̄τM−τMs

using (4). And finally the decomposition of the even D(k, T ) into four events D1(k, T ), D2(k, T ), D3(k, T )

and D4(k, T ) given by

D1(k, T ) = {τMs
< kT < τM < (k + 1)T,N(kT ) = 0, N((k + 1)T ) > 0}

D2(k, T ) = {kT < τMs
< τM < (k + 1)T,N(kT ) = 0, N((k + 1)T ) > 0}

D3(k, T ) = {kT < τM < τMs
< (k + 1)T,N(kT ) = 0, N((k + 1)T ) > 0}

D4(k, T ) = {kT < τM < (k + 1)T < τMs
, N(kT ) = 0, N((k + 1)T ) > 0}

with corresponding probabilities given by

P (D1(k, T )) = (F̄2(kT )− F̄2((k + 1)T ))

∫ kT

0

a(u)

(
∫ (k+1)T−u

kT−u

fτM−τMs
(v)dv

)

du

P (D2(k, T )) = F̄1(kT )

∫ (k+1)T

kT

fτMs
(u)FτM−τMs

((k + 1)T − u)

− F̄2((k + 1)T )

∫ (k+1)T

kT

a(u)FτM−τMs
((k + 1)T − u)du

P (D3(k, T )) = F̄1(kT )

∫ (k+1)T

kT

fτM (u)

∫ (k+1)T−u

0

fτMs−τM (v)

(

1−
F̄1(u + v)

F̄2(u + v)

F̄2((k + 1)T ))

F̄1(kT )
)

)

dudv

P (D4(k, T )) = (F̄1(kT )− F̄1((k + 1)T ))

∫ (k+1)T

kT

fτM (u)F̄τMs−τM ((k + 1)T − u)du,

where F̄1 and F̄2 are given by (9), a(t) is given by (15), fτMs
and fτM can be obtained using (3) and F̄τM−τMs

using (4).

Let R1(k, T ) be the probability of a replacement at time (k + 1)T when Ms ≤ M . Considering the
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previous probabilities, one obtains that

R1(k, T ) =

2∑

i=1

(P (Bi(k, T )) + P (Di(k, T ))) +

3∑

i=1

P (Ci(k, T ))

= F̄1(kT )F̄τMs
(kT )− F̄1((k + 1)T )F̄τMs

((k + 1)T ) + F̄2(kT )

∫ kT

0

a(u)F̄τM−τMs
(kT − u)du

− F̄2((k + 1)T )

∫ (k+1)T

0

a(u)F̄τM−τMs
((k + 1)T − u)du.

Analogously, let R2(k, T ) be the probability of a replacement at time (k+1)T whenMs ≥M . The expression

R2(k, T ) is given by

R2(k, T ) =

4∑

i=3

(P (Bi) + P (Di)) + P (C4)

= F̄1(kT )F̄τM (kT )− F̄1((k + 1)T )F̄τM ((k + 1)T ),

and the result holds.

Appendix B. Proof of equation (16)

For Ms < M , a preventive maintenance is performed in the following cases

A1(k, T ) = {τMs
< kT < τM < (k + 1)T < τL, N((k + 1)T ) = 0}

A2(k, T ) = {kT < τMs
< τM < (k + 1)T < τL, N((k + 1)T ) = 0}

and the probabilities of these events are given by

P (A1(k, T )) = F̄2((k + 1)T )

∫ kT

0

a(u)

(
∫ (k+1)T−u

kT−u

fτM−τMs
(v)F̄τL−τM ((k + 1)T − u− v)dv

)

du

P (A2(k, T )) = F̄2((k + 1)T )

∫ (k+1)T

kT

a(u)

(
∫ (k+1)T−u

0

fτM−τMs
(v)F̄τL−τM ((k + 1)T − u− v)dv

)

du,

where F̄1 and F̄2 are given by (9), a(t) is given by (15), FτM−τMs
(fτM−τMs

) and F̄τL−τM can be obtained

using (4).

Analogously, for Ms > M , a preventive maintenance is performed in the following cases

A3(k, T ) = {kT < τM < τMs
< (k + 1)T < τL, N((k + 1)T ) = 0}

A4(k, T ) = {kT < τM < (k + 1)T < τMs
, N((k + 1)T ) = 0}

and the probabilities of these events are given by

P (A3(k, T )) = F̄2((k + 1)T )

∫ (k+1)T

KT

fτM (u)

(
∫ (k+1)T−u

0

fτMs−τM (v)F̄τL−τMs
((k + 1)T − u− v)

F̄1(u+ v)

F̄2(u+ v)
dv

)

du,

P (A4(k, T )) = F̄1((k + 1)T )

∫ (k+1)T

kT

fτM (u)F̄τMs−τM ((k + 1)T − u)du,
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where F̄1 and F̄2 are given by (9), a(t) is given by (15), FτMs−τM (fτMs−τM ) and F̄τL−τM can be obtained

using (4) and fτM using (3).

Appendix C. Proof of equation (17)

Let Pd,k(t) be the probability that the system is down at time t with kT ≤ t < (k+1)T in a replacement

cycle. The expected time that the system is down in a replacement cycle is given by

∞∑

k=0

∫ (k+1)T

kT

Pd,k(t)dt =
∞∑

k=0

∫ (k+1)T

kT

P (Et(k, T )) + P (Ft(k, T )) + P (Gt(k, T ))dt

where

Et(k, T ) = {kT < τM < τL < t,N(t) = 0}

Ft(k, T ) = {kT < τM , t < τL, N(kT ) = 0, N(t) > 0}

Gt(k, T ) = {kT < τM < τL < t,N(kT ) = 0, N(t) > 0}.

for k = 0, 1, 2, . . ., T > 0 and kT ≤ t < (k + 1)T . Now, we calculate the probability of each event. Notice

that

Et(k, T ) = {Et(k, T ), τMs
< kT }

︸ ︷︷ ︸

Et,1(k,T )

∪{Et(k, T ), kT < τMs
< τM}

︸ ︷︷ ︸

Et,2(k,T )

∪{Et(k, T ), kT < τM < τMs
< τL}

︸ ︷︷ ︸

Et,3(k,T )

,

and the probabilities of the events Et,1(k, T ), Et,2(k, T ) and Et,3(k, T ) are given by

P (Et,1(k, T )) = F̄2(t)

∫ kT

0

a(u)

(∫ t−u

kT−u

fτM−τMs
(v)FτL−τM (t− u− v)dv

)

du

P (Et,2(k, T )) = F̄2(t)

∫ t

kT

a(u)

(∫ t−u

0

fτM−τMs
(v)FτL−τM (t− u− v)dv

)

du

P (Et,3(k, T )) = F̄2(t)

∫ t

kT

fτM (u)

(∫ t−u

0

fτMs−τM (v)FτL−τMs
(t− u− v)

F̄1(u + v)

F̄2(u + v)
dv

)

du,

for k = 0, 1, 2, . . ., T > 0, kT ≤ t < (k + 1)T where F̄1 and F̄2 are given by (9), function a(t) is given by

(15) and fτM−τMs
, fτMs−τM , FτL−τM and FτL−τMs

using (4).

Analogously, the event Ft(k, T ) can be expressed as follows

Ft(k, T ) = {Ft(k, T ), τM < t, τMs
< kT }

︸ ︷︷ ︸

Ft,1(k,T )

∪{Ft(k, T ), τM < t, kT < τMs
< τM}

︸ ︷︷ ︸

Ft,2(k,T )

∪{Ft(k, T ), τM < τMs
< t}

︸ ︷︷ ︸

Ft,3(k,T )

∪{Ft(k, T ), τM < t < τMs
}

︸ ︷︷ ︸

Ft,4(k,T )

∪{Ft(k, T ), τMs
< kT, t < τM}

︸ ︷︷ ︸

Ft,5(k,T )

∪{Ft(k, T ), t < τM , kT < τMs
< t}

︸ ︷︷ ︸

Ft,6(k,T )

∪{Ft(k, T ), t < τMs
< τM}

︸ ︷︷ ︸

Ft,7(k,T )

∪{Ft(k, T ), t < τM < τMs
}

︸ ︷︷ ︸

Ft,8(k,T )
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with probabilities

P (Ft,1(k, T )) = (F̄2(kT )− F̄2(t))

∫ kT

0

a(u)

(∫ t−u

kT−u

fτM−τMs
(v)F̄τL−τM (t− u− v)dv

)

du

P (Ft,2(k, T )) = F̄1(kT )

∫ t

kT

fτMs
(u)

(∫ t−u

0

fτM−τMs
(v)F̄τL−τM (t− u− v)

(

1−
F̄1(u)

F̄1(kT )

F̄2(t)

F̄2(u)

)

dv

)

du

P (Ft,3(k, T )) = F̄1(kT )

∫ t

kT

fτM (u)

(∫ t−u

0

fτMs−τM (v)F̄τL−τMs
(t− u− v)

(

1−
F̄1(u+ v)

F̄1(kT )

F̄2(t)

F̄2(u+ v)

)

dv

)

du

P (Ft,4(k, T )) = (F̄1(kT )− F̄1(t))

∫ t

kT

fτM (u)F̄τMs−τM (t− u)du

P (Ft,5(k, T )) = (F̄2(kT )− F̄2(t))

∫ kT

0

a(u)F̄τM−τMs
(t− u)du

P (Ft,6(k, T )) = F̄1(kT )

∫ t

kT

fτMs
(u)F̄τM−τMs

(t− u)

(

1−
F̄1(u)

F̄1(kT )

F̄2(t)

F̄2(u)

)

du

P (Ft,7(k, T )) = F̄τMs
(t)
(
F̄1(kT )− F̄1(t)

)

P (Ft,8(k, T )) = F̄τM (t)
(
F̄1(kT )− F̄1(t)

)
,

where F̄1 and F̄2 are given by (9), function a(t) is given by (15), F̄τM and F̄τMs
are obtained using (2) and

fτM−τMs
, fτMs−τM , F̄τL−τM , F̄τL−τMs

, F̄τMs−τM , F̄τM−τMs
using (4).

Finally, for the event Gt(k, T ) with k = 0, 1, 2, . . ., kT ≤ t < kT and T > 0, one considers the following

partition

Gt(k, T ) = {Gt(k, T ), τMs
< kT }

︸ ︷︷ ︸

Gt,1(k,T )

∪{Gt(k, T ), kT < τMs
< τM}

︸ ︷︷ ︸

Gt,2(k,T )

∪{Gt(k, T ), τM < τMs
< τL}

︸ ︷︷ ︸

Gt,3(k,T )

with probabilities given by

P (Gt,1(k, T )) = (F̄2(kT )− F̄2(t))

∫ kT

0

a(u)

∫ t−u

kT−u

fτM−τMs
(v)FτL−τM (t− u− v)dv

P (Gt,2(k, T )) = F̄1(kT )

∫ t

kT

fτMs
(u)

(∫ t−u

0

fτM−τMs
(v)FτL−τM (t− u− v)

(

1−
F̄1(u)F̄2(t)

F̄1(kT )F̄2(u)

)

dv

)

du

P (Gt,3(k, T )) = F̄1(kT )

∫ t

kT

fτM (u)

(∫ t−u

0

fτMs−τM (v)FτL−τMs
(t− u− v)

(

1−
F̄1(u+ v)F̄2(t)

F̄1(kT )F̄2(u+ v)

)

dv

)

du,

where F̄1 and F̄2 are given by (9), function a(t) is given by (15), f̄τM and f̄τMs
are obtained using (3) and

fτM−τMs
, fτMs−τM , FτL−τM and FτL−τMs

using (4).

Hence, for M > Ms, the probability that the system is down at time t with kT ≤ t < (k + 1)T is given

by

Pd,k(t) =
2∑

i=1

(P (Et,i(k, T )) + P (Ft,i(k, T )) +Gt,i(k, T )) +
7∑

i=5

Ft,i(k, T )

and, for Ms > M ,

Pd,k(t) = Et,3(k, T ) + Ft,3(k, T ) + Ft,4(k, T ) + Ft,8(k, T ) +Gt,3(k, T ),

after some calculus, the result holds.
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