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CELLULARITY OF THE LOWEST TWO-SIDED IDEAL OF AN
AFFINE HECKE ALGEBRA

JEREMIE GUILHOT

ABsTRACT. In this paper we show that the lowest two-sided ideal of an affine Hecke
algebra is affine cellular for all choices of parameters. We explicitely describe the
cellular basis and we show that the basis elements have a nice decomposition when
expressed in the Kazhdan-Lusztig basis. In type A we provide a combinatorial de-
scription of this decomposition in term of number of paths.

1. INTRODUCTION

The notion of cellular algebra was first introduced by Graham and Lehrer in [6] for
finite dimensional algebras. Roughly speaking, a cellular algebra A possesses a distin-
guished basis (possibly more than one), known as a "cellular basis", that is particularly
well-adapted to studying the representation theory of A. Indeed, a cellular basis yields
a filtration of A with composition factors isomorphic to the cell modules. Further, the
structure constants with respect to the cellular basis define bilinear forms on cell modules
and one can show that the quotient of a cell module by the radical of this bilinear form
is either 0 or irreducible. In this way, one obtains a complete set of isomorphism classes
of simple modules for the given cellular algebra. Examples of cellular algebras include
many finite-dimensional Hecke algebras [4].

Recently, Koenig and Xi [10] have generalized this concept to possibly infinite dimen-
sional algebras over a principal ideal domain k by introducing the notion of affine cellular
algebras. In a cellular algebra, cell modules are isomorphic to matrix rings with coeffi-
cients in k£ and twisted multiplication with respect to the bilinear form. In the affine case,
they still are isomorphic to matrix rings with twisted multiplication but the matrix ring
is now defined over a quotient of a polynomial ring over k. As in the finite dimensional
case, affine cellular structure for an algebra A yields a parametrisation of the irreducible
A-modules. In their paper, Koenig and Xi have shown that extended affine Hecke alge-
bras of type A are affine cellular. In [8], it is shown that affine Hecke algebras of rank 2
are affine cellular for all generic choices of parameters.

In this paper we are concerned with extended affine Weyl groups. Let W, be an ex-
tended affine Weyl group and let W, be the associated finite Weyl group. Then it is a
well-known fact that the set ¢y := {w € W, | w = zwoy, l(w) = £(z) + {(wo) + £(y)} is
a Kazhdan-Lusztig two-sided cell and that it is the lowest one with respect to a certain
order on cells. We can associate to this cell a two-sided ideal .#; of the corresponding
affine Hecke algebra (with possibly unequal parameters).

The purpose of this paper is twofold:

(1) Show that the lowest two-sided ideal .4 is affine cellular and explicitely construct
a cellular basis; see Section 4.
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2 JEREMIE GUILHOT

(2) Study the decomposition of the previously found cellular basis in the Kazhdan-
Lusztig basis; see Section 5.
It is in type A that point (2) above is the nicest : we will show in section 6 that the
coefficients that appear in the expression of the cellular basis when expressed in the
Kazhdan-Lusztig basis can be interpreted as the number of certain kind of paths in a
Weyl chamber.

2. AFFINE WEYL GROUPS AND GEOMETRIC REALISATION

In this paper, we fix an euclidean R-vector space V of dimension r > 1 and we denote
by ® an irreducible root system in V of rank r: the scalar product will be denoted by
(,):VxV — R. The dual of V will be denoted by V* and (, ) : V xV* — R
will denote the canonical pairing. If a € ®, we denote by a¥ € V* the associated
coroot (if z € V, then (z,a") = 2(z,a)/(a,«)) and by ®¥ the dual root system. We
will denote by @ the root lattice. We fix a positive system ®T and a simple system
A={ay,...,an} COT.

2.1. Affine Weyl group. For a € ®T and n € Z, we set
Hyn={z€V |(z,0"y=n} and F ={H,,|a € ®" andn € Z}.

We will say that H is of direction o if H is of the form H, j for some k£ € Z and, for
a € 1, we denote by %, the set of hyperplanes of direction o. We will say that H and
H' are parallel if they have same directions. For H = H, j with a € ®T, we set

Ht =\ eV |\a) >k} and H ={ eV |(\aY) <k}

If H € #, we denote by on the orthogonal reflection with respect to H. Then the
group W, generated by {oy | H € %} is an affine Weyl group of type ®V. Let ag € ®T
be such that af is the highest coroot in ®¥. Then W, is a Coxeter group generated by
Sa = SoU{0ay,1} where Sy :={0a,0 | @ € A}. The Weyl group Wy of @ is generated by
So. The translation t, of vector a € @ indeed lie in W, as have 04,105, , = to. In fact
it is a well-known fact that W, ~ Wy x Q.

To simplify the notation we will write o; instead of o4, 0 for all 1 < ¢ < n and oy
instead of 04,1. Then Wy is generated by Sy := {o1,...,0,} and W, is generated by
Se :={00,...,0n}

An alcove is a connected component of the set
v- |J &
HesF
Then W, acts simply transitively on the set of alcoves Alc(.%). Recall also that, if A is
an alcove, then its closure A is a fundamental domain for the action of W, on V. We
denote by Ag the fundamental alcove associated to ®
Ag={z eV |0<(z,a)<1forallac ®"}
and by €+ the fundamental Weyl chamber
ct={ eV |(\a")>0}

We also set €~ ={ eV | (\,a") <0} =-%".

The group W, acts on the set of faces (the codimension 1 facets) of alcoves. We denote
by S the set of W,-orbits in the set of faces. If A € Ale(.%), then the faces of A is a set
of representatives of S since A is a fundamental domain for the action of W,. If a face f
is contained in the orbit s € S, we say that f is of type s. To each s € S we can associate
an involution A — sA of Ale(.%): the alcove sA is defined to be Aoy, where H, is the
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unique hyperplane that contains the face of type s of A. Let W be the group generated
by all such involutions. Then (W, .S) is a Coxeter system and it is isomorphic to the affine
Weyl group W,. We shall regard W as acting on the left of Ale(.#). The action of W,
on the right and the action of W on the left commute.

Let A € Alc(.#). Then there exists a unique w € W such that wA; = A. We will
freely identify W with the set of alcoves Alc(.#). We set S = {sq,..., S, } in such a way
that s; Ag = Ago; for all 0 < i < n. We introduce the following notation:

e for w € W, let o, be the unique element of W, such that wAg = Agoy;
e for A € Ale(.F), let 04 be the unique element of W, such that Agos = A4;
e for a € @ let p, be the unique element of W such that p, A9 = Aote.

Remark 2.1. (1). Let us investigate the relationship between the actions of W, and W.
Let w € W and let s;, ... s;, be areduced expression of w. If we denote by H;, the unique
hyperplane separating s;, ...s;, Ag and s;,_, ... S;, Ao , we see that the set of hyperplanes
which separates Ay and wAy is {H;,, ..., H;, } and we get

’UJAO = Si, - .Sile = A()UHi1 O'Hi2 ---O0H;, -
But we also have

’UJAO =S4, - .Sile = AOO'inO'infl Oy

From there, we can show that

{Hil, ey Hln} = {Hail,w Hai2,00i17Hai3,00i20i17 ey Hotin,oo'n—l .. .01}.
We refer to [9, Chapter 4.5] for details.

(2). Let A € Ale(.Z). For all a € Q, we have
paA = paAOUA = AOtaoA = AOUAtaaA = AtaUA .
Hence p, A is a translate of A of vector ao 4.

Example 2.2. Let us recall the classic realisation of the root system of type A. Let E
be a n + 1-dimensional R-vector space with basis ¢; (1 < i < n+ 1) and let V be the
n-dimensional subspace of E define by

V={v=(v1,...,0n41) €V | Zvi = 0}.
Then the root system of type A can be describe as follows
e Roots: ¢; —¢;, 1 <4,5 <n+1;
e Simple roots: a; :=¢; — €41 for all 1 <i < mn;
e Positive roots: € —€; = >, 4, Q.

When n = 2, the affine Weyl group Aj has the following Dynkin diagram:

S0

AN,

S1 s2

We draw the alcoves in this type in Figure 1. In Figure 1.(A), the dashed arrows represent
the root system, the gray alcove represents the fundamental alcove Ag, and the dashed
alcoves represent the set —¢*. In Figure 1.(B) we describe the orbits of the faces of Ag
under the action of the group W,. The dashed faces of Ay corresponds to s, the plain
one to ss and the dotted one to sg. Then, the unique element of W, which sends Aj to
A is 51835987.
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(A) Alcove Ag and €~ (B) Orbits of faces of A

FIGURE 1. Roots, hyperplanes and alcoves in type Ao

2.2. Weight functions and L-weights. Let L : W — N be a weight function on W,
that is a function which satisfies L(ww’) = L(w)+ L(w’) whenever {(ww') = £(w) + £(w’)
where ¢ denotes the usual length function and such that L(w) = 0 if and only if w is the
identity of W. Recall that this implies the following property: if s, are conjugate in W
then L(s) = L(t). (Note that the length function is indeed a positive weight function.)
From now on and until the end of this paper, we will fix a positive weight function L
on W.

Let z,y € W. We will write w = z+y if and only if w = zy and ¢(w) = ¢(z) + {(y). By
definition of weight functions, we see that if we have w = zey then L(w) = L(x) + L(y).
We generalise this notation to more than two words in a straightforward fashion.

Let H € .% and assume that H supports a face of type t € S. Then, following [3], we
set Ly = L(t). This is well-defined since, according to [3, Lemma 2.1], if H supports a
face of type s and t then s are conjugate in W and L(s) = L(t) = Ly. For a € ®* we
set Lo := maxpgegz, L. We then say that H is of maximal weight if Ly = L, where
H is of direction . The only case where two parallel hyperplanes might have different
weights is type C. In all other cases, parallel hyperplanes have same weight and therefore
all hyperplanes are of maximal weight.

Convention 2.3. In the case where W is of type C, with Dynkin diagram

S0 S1 Sn—1 Sn
by symmetry, we may (and we will) assume that L(sg) > L(sp). (Recall
that C1 is also of type A1)

Let oo € 1. We set

)1 ifLly,,=Lu,,
“ 12 otherwise

We see that b, = 2 only in type C when L(sg) > L(sp).

For A € V we set
Ly:= Y Lu.

HeZF \eH
If we denote by W), the subgroup of W which stabilises the set of alcoves which contains
A in their closure, then W), is a parabolic subgroup of W, generated by Sy := SNW) and
we have Ly = L(w)) where wy, is the longest element of W,. Note that, by definition, we
have Ly, = Ly for all 0 € W,. We set vy, := maxycy Ly. We then say that A € V is an
L-weight if Ly = v;. We will denote by P the set of all L-weights. With the convention
above, 0 is always a special point and W) is isomorphic to the Weyl group associated to
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W and therefore our notation is coherent with the definition of Wy given before.

Let A be an L-weight. A quarter with vertex A is a connected component of the set

v-JH
AEH
Example 2.4. When L = { then Ly = 1 for all H € % and vy = |®"|. Then the
following are equivalent
(1) A €V is an L-weight;
(2) A lies in the intersection of |®*| hyperplanes;
(3) for all € T, there exists ay € Z such that (A, o) = ay (i.e. A € Hya,);
(4) Xis a weight according to the definition in Bourbaki [2, Proposition 26 and after].
We will denote by P be the set of dominant L-weights, that is the set of L-weights
which lies in the closure of the fundamental Weyl chamber 4. Finally let P be the set
of fundamental L-weights, that is the dual basis of

{bpa¥ | € A} C @Y.

Remark 2.5. Once again, it is clear that the notion of dominant L-weights and funda-
mental L-weights coincide with the ususal one when L = ¢. In fact (once again!) the only

case when the notion of weights and L-weights do not coincide is when W is of type C,
and L(sg) > L(sp).

Example 2.6. The next figure describes the L-weights of Cy. The thick arrows represent
the positive roots ®* and the gray alcoves represents the fundamental alcove. In the case
L(sp) = L(syn), all the circled points are L-weights. In the case L(sg) > L(s,), only the
gray points are L-weights.

FIGURE 3. L-weights of Cb.

2.3. Extended affine Weyl groups. The extended affine Weyl group is defined by
W, = Wy x P; it acts naturally on (the right) of V' and on Alc(.%#) but the action is no
longer faithful. If we denote by II the stabiliser of Ay in W, then we have W, =11 x W,,.
Further the group II is isomorphic to P/Q, hence abelian, and its action on W, is given by
an automorphism of the Dynkin diagram; see Planches I-1X in [2]. We use the following
notation. Let m € II. Since 7 permutes the generators S, of W,, it induces a permutation
of {0,...,n}. We will still denote by 7 this permutation so that we have 7.0; = o).
We write o™ for the image of ¢ under 7 that is

™o J—
0" = Or(i) - On(i,) Where o =0y, ...0;

nt
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We have W, = Il x W, ~ II x W where the action of II on W is of course given
by 7 - 5; = s(;. We would like to define two commutative and faithful (left and right)
actions of W, on a set of alcoves. To this end, we introduce the set of extended alcoves,
denoted by Alc.(%#), which is the cartesian product II x Alc(.#). Then for m, 7’ € II,
w € W and o € W, we set

7 (m, A) = (n'm, A) (1, A) -7’ = (an, Aga )
w- (m,A) = (m,w™A) (7, A) o= (m Ao)

Proposition 2.7. The two actions are faithful and they commudte.

Proof. The fact that these two actions are faithful is straightforward since the right action
of W, (respectively the left action of W) on Ale(.%) is faithful. Let us show that they
commute. First let w=3s7...5, € W and ¢ = 01...0, so that wAy = Ago. We have

w" Ag = 55(1) - - Sx(n)Ao = AoOr(1) - - - On(n) = Ao0"
Let m,m,me €I, w € W, 0 € W, and A = Agos € Ale(.F). We have
mw - (7, A) - m0| = muw[(7me, Agolyo)]
= (mmma, w""? Ago 2 o)
and
[mw - (7, A)] - mp0 = (mim, w™ A) - T20
m,w" Agoa) - Ta0o

mm, Agol o) - 20

T2

T2, Ago 202 0)

= (
= (
= (
= (mmmy, w2 Ago o)

hence the result. [l

In order to simplify the notation, we will write 7A instead of (7, A). One needs to be
careful though, we do have mAy = (7, Ag) = (1, Ap)m = A7 but this only holds for Ay.

Remark 2.8. Each alcove in Alc(.#) can be identified with its set of vertices {f§', ..., fA}
where f4 € V for all 0 < i < n. Then the action of W, on Alc(.F) is given by

A A A A
A-o={fy,.... [} - o={ffo,....f o}
The action on the left is simply deduced form the right action by setting s; - Ag = Ago;.
In the extended setting, we identify Ay with the ordered sequence ( 54", o, fAoy eyl
Now W, naturally acts diagonally on V"T!. Note that since 7 € II stabilises Ay, it
induces a permutation of the vertices of Ag. By labelling the vertices carefully we have

(ffo, ..., flo) . = (ff(%), e f:‘(‘;)). The set of extended alcoves can be identified with

rJmn

the orbit of ( 54", ce ;:‘0) under the action of W, by setting
(m,A) = (7, Agoa) «— Ay - oA

The left action is then given by ww - (7' A) = mwAon’'ca = Agmo,m'o4.

Example 2.9. Let us consider the example of type A, as in Example 2.2. In Figure 2.
the arrows represent the fundamental weights w; and ws and the gray alcove represents
the fundamental alcove Ay. Consider the element m = t,,, 0302. Then one can check that
7 stabilises the alcove Ay but only globally, not pointwise. Indeed the faces of Ay are
permuted circularly as shown on figure 2.(B).
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........ , ———
Ao, T g
w1 oo ;, T=Pwy 0302 "

(A) Alcove Ap and €~ (B) Orbits of faces of Ag

FIGURE 2. Action of II in type A,

The weight function L can be extended to W, by setting L(mw) = L(w) for all = € II
and w € W. The Bruhat order can also be extended by setting 7w < 7’w if and only if
7 =" and w < w’ where 7,7’ € Il and w,w’ € W.

As before, for all @ € P, we will denote by p, the unique element of W, satisfying
DaAo = Aote (where the equality holds in Alc.(.%)).

2.4. The lowest two-sided cell of an affine Weyl groups. We will write wy for the
longest element of Weyl group (W, Sp). We define the following subset of W,:
co={weW, |w==aewgey, z,y € W}.

This set is called the lowest two-sided cell of W,. The reason for this terminology is that
¢o is a Kazhdan-Lusztig cell (we refer to Section 3 for the definition of cells) and it is
the lowest one for a certain partial order. This cell has been extensively studied, see for
instance (3, 7, 12, 14, 15, 16].

In this section, we give a nice description of the elements lying in ¢ as in 1, 15]. Recall
the definition of b, in section 2.2. Let By be the subset of Alc.(.#) which consist of all
the alcoves mA with A € Ale(.%) satisfying the following property for all a € A:

YA€ A0 < (A a) <bg.
The set By is very closely related to the set ¢y as shown in the following theorem.

Theorem 2.10. Let w € cy. There exist unique 7 € PT and 2,2 € By such that
W= zepyewpez L.

The proof of this theorem can be found in [15, Proposition 4.3]. The result is slightly
different as the author consider the non-extended case when L = ¢ but all the main idea
easily generalize to our case. Another proof of this result in the extended case can be
found in [1, Proposition 3.1].

Theorem 2.10 should be understood as follows. The set ¢y can be decomposed into
connected components:

co = |_| N, where N, :={w e W, |w = :c-wonz’il, x € W.}.
z'€Bg

In turn each connected component can be decomposed in the following way:
N, = {Zpﬁ,-szlil | T E P+,Z € Bo}

This shows that the set IV,» can be covered by translates of Bg; see Example 2.12 below.
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Remark 2.11. In the above expression of N,,, we do not need to specify that w =
zepaewgez' "' as it is a (non-trivial!) consequence of the definition of By and w.

Example 2.12. Let W be of type Cy and let a, b, ¢ € N* be such that L(sg) = a, L(s1) = b
and L(s2) = ¢. By convention, we assume that a > ¢. In the following figures, we describe
the set By, the set ¢ as well as each of its connected components. We need to distinguish
the case a > ¢ in which IT = {1} and a = ¢ in which II ~ Z/27Z.

In Figure 3.(a) and 3.(c), the black alcove is the fundamental alcove, the dark grey
alcoves correspond to the alcoves z 1Ay for z € By and the light gray areas to the
set ¢p. In Figure 3.(b) and 3.(d), we represent the connected component N, for z’ € By.
The light grey alcoves correspond zwpz’ _1A0 for all z € By and the darker ones to
zpwlwoz’fle and zpwzwoz’fle where w1 and wy are the fundamental L-weights.

FI1GURE 3. Description of ¢

XX

XXX

w1 o
(a) The set ¢g when a > ¢ (b) Connected component N,/ of ¢
]
]
]
]
R0 XX
]
]
] o
K .

(c) The set ¢y when a = ¢ (d) Connected component N, of ¢



CELLULARITY OF THE LOWEST TWO-SIDED IDEAL OF AN AFFINE HECKE ALGEBRA 9

3. KAZHDAN-LUSZTIG THEORY

In this section W, = II x W denotes an extended affine Weyl group with generating
set S. The extended Bruhat order and the extended weight function will be denoted by
< and L.

3.1. Hecke algebras and Kazhdan-Lusztig basis. Let &/ = C[q,q '] where ¢ is an
indeterminate. Let % be the Iwahori-Hecke algebra associated to W, with <7-basis
{Tw|w € W.} and multiplication rule given by

Tow, if £(sw) > L(w),
TsTw = L L .
Tow 4 (¢%) — g7 LT, if £(sw) < £(w),
for all s € S and w € W,.

Remark 3.1. If we denote by .’ the subalgebra of .7 generated by T, with s € S then
A is isomorphic to the twisted tensor product Z[II] ® #2” by setting Ty — w @ Ty
Here Z[II] denotes the group algebra of IT over Z and w € II.

We will denote by ~ the ring involution of &/ which takes ¢ to ¢~ . This involution can
be extended to a ring involution of 7 via the formula

o awTw= > aT, (aw€ ).

weW, weWe
We set
Ao = q 'Z[g ) Ho = @weWC 0Ty
JZ{SO = Z[qil] and :%ﬂgo = ®w6We JngoTw.

For each w € W, there exists a unique element C,, € 5 (see [13, Theorem 5.2]) such

that (1) Cy, = Cy, and (2) C, =T,y mod H#g. For any w € W, we set

Cw=Ty+ Y PyuT, whereP,, €.
yeW,

The coefficients P, ,, are called as the Kazhdan-Lusztig polynomials. It is well known
(|13, §5.3]) that P, ,, = 0 whenever y £ w. It follows that {C\,|w € W.} forms an
o/ -basis of S known as the “Kazhdan-Lusztig basis”.

Lemma 3.2. Let h € # be such that h = h and h = > a, T, mod H#y where a, € 7.
Then h =3 a,C,.

Proof. We know [13, §5.2.(e)] that if i’ € ¢ satisfies h/ = h then h' = 0. The lemma
is an easy consequence of this result setting b’ =h — > a,C.. O

Following Lusztig [13, §3.4], let us now introduce another involution of ## which plays
a crucial role in the sequel.

Definition 3.3. There exists a unique involutive antiautomorphism, i.e. an .&7-involution,
b: # — S which carries Ty, to Ty,-1.

Using this map, we obtain right handed version of the multiplication of J7:
Tws, if L(ws) > (w),
TwTs = .
Tws + (q%®) — g~ LONT,,  if £(ws) < £(w).

Further, since b sends .7 to itself it can be shown that [13, §5.6] that C?, = C\,-1, from
where it follows that

Pyw =Pyt 1.
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3.2. Kazhdan-Lusztig cells. For any z,y € W,, we set
CoCy= > huy.C-.

zeWe
Note that hg . = he,y . and using the b-involution we have that hy y . = hy-1 -1 -1.
We write z <& y if one of the following condition holds:
(1) z =wy with w € IT
(2) C, appears with a non-zero coefficient in the expression of CsCy in the Kazhdan-
Lusztig basis: that is, if there exists s € S such that hg . # 0.

We then denote by < ¢ the transitive closure of this relation: it is known as the Kazhdan-
Lusztig left pre-order < on W,.. We will denote by ~ ¢ equivalence relation associated
to <& and the equivalence classes will be called left cells.

Similarly, multiplying on the right in the defining relation, we can define a pre-order
<. Unsurprisingly, The associated equivalence relation will be denoted by ~4 and the
corresponding equivalence classes are called the right cells of W,. Using the antiautomor-
phism b, we have (see [13, §8])

1

r<gye=a<gpy "

Finally we will write x < 4 y if one can find a sequence x = zg, z1, ..., x, = y of W, such
that for each 0 < i <n — 1 we have either x; < ;1 or x; <% z;11. The equivalence
relation associated to < ¢4 will be denoted by ~ 4 and the equivalence classes are called
the two-sided cells of W,.

Example 3.4. Let s € S and w € W, be such that sw > w. Then it can be shown [13,
Theorem 6.6] that
C,Cyp = Cyyp + Z a,C,where a, € <.
z<w
Therefore if sw > w we always have sw <¢ w. A straightforward generalisation of this
result shows that

(1) for all z,w € W, such that zw = x+w we have 2w <o w
(2) for all y,w € W, such that wy = wey we have wy <g w
(3) for all z,y, w € W, such that zwy = xewey we have zwy < gz w

3.3. Lowest two-sided cell modules. Recall that (Wy,Sy) denotes the Weyl group
associated to W, that wy is the longest element of Wy and the definition of c¢y:

co:={weW, |w=2xewgey,x,y € W}

It is a well known result that ¢y is a two-sided cell and that it is the lowest one with
respect to the partial order on two-sided cells induced by < &g. In other words, for all
y € W, and all w € ¢y we have

(3.4) Yy <gz w =Y € co.

Remark 3.5. If one knows that ¢g is a two-sided cell, it is fairly easy to see why it has to
be the lowest one. Let z € W,. Let us show that there exists w € ¢y such that z > ¢4 w.
We construct a sequence z = zg, ..., 2z, in the following way

(1) if sz; < z; for all s € Sy then we stop and we set z; = w;
(2) if there exists s € Sy such that sz; > z; then we set z;,41 = s2;.

The process finishes as Sy generates a finite group. Further, when it finishes, say for z,,
then sz, < z, for all s € Sy, that is z, = wpz and it is easy to see that by construction
we have z, = wgez. It follows that z > ¢ 2, € ¢y by Example 3.4 and, in particular we
have z > 4% z,. Now this implies that cg is the lowest two-sided cell. Indeed let z € W,
be such that z < ¢4 w € ¢g. Then we can construct z, € cg such that z, <gp 2 <gp w
which implies z,, ~»% 2z ~ 2% w as both z, and w lies in c¢y.
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Relation 3.4 shows that the &/-module .#; := (Cy, | w € ¢) is a two-sided ideal. By
definition of the pre-order < ¢4, we have for all h,h/ € ## and w € cq:

hCul = > C,

y<gaw

which lies in .#.
Recall the definition of By in Section 2.4. For y € By we set
Ny={weW|w=zwy,z € Xo} and 4 =(Cy|we Ny .
We will show in the next section that .#, is a left ideal.

Remark 3.6. Note that the involution b can be restricted to .4 as it sends Cy, to Cy,—1
and ¢y is easily be seen to be stable under taking the inverse.

3.4. Relative Kazhdan-Lusztig polynomials. We denote by X the set of represen-
tative of minimal length of the left cosets of W in W,.. We have

Xo={r €W, |zrwy =zewy} and X,;'={zreW,|wor=wyex}.

Theorem 3.7. Lety € Xo_l. For all x € Xy, there exists a unique family of polynomials
(P o)arexo in <o such that py » = 0 whenever 2’ £ x and

(3.7) waoy =T Cuoy + Z Pa’ 2 T Cugy
x'eXo

1s stable under the ~ involution.

Proof. The proof of this theorem is given in [7] (see Lemma 5.5, Lemma 5.6 and Propo-
sition 5.7). It is based on the fact that the .&/-submodule

M= Ty Cuoy | © € Xo)or

is a left ideal of 2 for all y € X . Then the construction of the polynomials Pz, only
depends on the action of the T’ on the elements T,,C\,,y. We show here that .# is indeed
a left ideal and we describe the action of T, on T, C\,, as we will need it later on.

Fix T;Cywoy € A4 and s € S. In order to show that .# is a left ideal, it is enough
to show that T57,Cyyy € A . To simplify we will assume that x € W, the case where
x = mx’ with (m,z) € II x W is similar. According to Deodhar’s lemma (see [5, Lemma
2.1.2]), there are three cases to consider

(1) sz € Xo and £(sz) > £(x). Then TsTpClyyy = TszCluy-

(2) sz € Xo and £(sx) < £(z). Then TsT,Clpyy = TseCuupy + (¢4 — g EENT,Cly -

(3) t:= a7 tsz € Sp. Then {(sz) = {(x) + 1 = {(zt). Now, since twoy < woy, we
have [13, §5.5, Theorem 6.6.b]

T,C, = ¢~ .
Thus, we see that
T T Cuoy = TszCuoy = TetCugy = TuTiCugy = 4" DT Cly
In all cases, we do have 1T, Cy,y € A as required ]
Looking at the proof, we see that the action of Ty on .# do not depend on y. This
means that the construction of the polynomials p,/ , do not depend on y either. As a

consequence, there exists a unique family of polynomials (pys 4)szex, In <o such that
Pz = 0 whenever ' £ x and such that:

(37) Oxwoy = Tmcwgy + Z px’,me/Owgy
x'eXo
is stable under the bar involution for all y € X.
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Theorem 3.8. Let y € Bal. We have C’xwoy = Cruoy for all x € Xo. For ally € Bal
the < -submodule:

My = (Cowoy | v € Xo)or
is a left ideal.

Proof. According to the proof of |7, Proposition 5.7] we have
C’zwoy = Thwey mod Jxg.

We get that C’zwoy = Cywyy using Lemma 5.3. Next using the previous theorem we see
that

(ToCuwpy | T € Xo)or = (Crwoy | = € Xo)
hence the second part of the theorem. O

Remark 3.9. Using the b-involution, we obtain right handed versions of all the results in
this section. For instance, for all y € Xy and = € X !, there exists a unique family of
polynomials (p}, , )arex,,2/<y in #<o such that

C~Vywow = Cyuo T + Z p;’,ywocy’on; = Cyuw, (Tw + Z p;’,ngTw’)

z'eXy ! zeXy !

is stable under the bar involution. Also, if y € B ! then we have C'ywom = Cyuwyz for all
xr € XQ.

4. ON THE CELLULAR STRUCTURE

In this section we prove the main result of this paper, that the lowest two-sided ideal
My of W, is affine cellular in the sense of Koenig and C.Xi [10].

4.1. Affine cell ideal. Let k be a principal ideal domain. For a k-algebra A, a k-linear
anti-automorphism i of A satisfying i = id4 is called a k-involution on A. A quotient
B = klty,...,t.]/I where I is an ideal of k[t1,...,t,] will be called an affine k-algebra.

For an affine k-algebra B with a k-involution v, a free k-module V of finite rank
and a k-bilinear form ¢ : V x V — B, denote by A(V, B, ) the (possibly non-unital)
algebra given as a k-module by V ®; B ®; V', on which we impose the multiplication
(1)1 X bl X wl)(vg X bQ X w2) = bl(p(wl,’UQ)bQ & wa.

Remark 4.1. Let ¥ be the matrix representing the bilinear form v with respect to some
choice of basis {vi,...,v,} of V. Then the algebra A(V, B, ) is nothing else than a
generalised matrix algebra over B, that is the ordinary matrix algebra with coefficients
in B in which the multiplication is twisted by ¥. Indeed we can identify an element

Y vi®bi; Qv
1<ij<n

of A(V, B, ¢) with a n x n matrix M = (b; j)1<i j<n With coefficients in B. The multipli-
cation of My, Ms is then defined to be

My - My = M1V Ms.
In this paper, we will use the following definition of affine cell ideal.

Definition 4.2. [10, Proposition 2.3] Let k& be a principal ideal domain, A a unitary
k-algebra with a k-involution i¢. A two-sided ideal J in A is an affine cell ideal if and only
if there exists an affine k-algebra B with a k-involution v, a free k-module V of finite rank
and a bilinear form ¢ : V® V — B, and an A-A-bimodule structure on V ®; B ®; V,
such that J = A(V, B, ) as an algebra and as an A-A-bimodule, and such that under
this isomorphism the k-involution ¢ restricted to J corresponds to the k-involution given
by v@b@w— w®vr() ®wv.
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An algebra A is then affine cellular if one can find a chain of two-sided ideals 0 = Jy C
Jp C Jy C -+ C J, = A, such that each subquotient J;/J;—1 is an affine cell ideal in
A/J;—1. Then J;/J;—1 is isomorphic to A(V;, B;, ¢;) for some finite-dimensional vector
space V;, a commutative k-algebra B; and a bilinear form ¢; : V; x V; = B;. Let ( ;t)
be the matrix representing the bilinear form ¢ with respect to some choice of basis of
Vi. Then Koenig and Xi obtain a parametrisation of simple modules of an affine cellular
algebra by establishing a bijection between isomorphism classes of simple A-modules and
the set

{(j,m) | 1 < j <n,m € MaxSpec(B;) such that some ¢/, & m}

where MaxSpec(B;) denotes the maximal ideal spectrum of B;.

Remark 4.3. The notion of affine cellularity should really be understood as a generalisa-
tion of cellularity for finite dimensional algebra as defined by Graham and Lehrer in [6].
In fact, we obtain the definition of cellularity for finite dimensional algebras by setting
B = k in the above definition. We refer to [11] for details.

4.2. The elements P. We now introduce the P-elements, which are crucial ingredients
for the definition of the cellular basis. Recall the definition of the polynomials p, 5 € &
for 2,2’ € X, in Section 3.4. We (have) set for all z € By and y € B!
Ny = {awoy | z € Xo} My = (Cy | w E Ny) oy
N‘@:{zwox|x€X1} M = (Cyp | wE NZ)y
We also set

My —///lﬁ//ll = (Cp,uwo | 7€ PP
Definition 4.4. For z € By and w € P+ we set

= Z pz,sz and P Z Pz pw

zeXo xeXo
and
T
E pm,z*1T1 and Ppg(— E pwp T..
z€X, " zeXy

By definition, we see that for all y € Bgl, 2z € Bg and w € P* we have
P(2)Cuoy = Crwgy and P(w)Cupy = Cpwoy

and
CouwoPR(Y) = Cowgy and CoyoPr(—w) = C,,, =1
Further, we have (P(2))” = Pr(z~!) and (P(w))’ = Pr(—w).
Proposition 4.5. Let w,w’ € PT. We have
(1) P(w)Cuy = CuyPr(—w);
(2) P(w)P(w')Cyy = P(w)P(w)Cy,-
Proof. We prove (1). For all w € PT we have
P(w)Cuyy = Cppwy = Crpopct = CuwoPr(—w).
We prove (2). On the one hand we have
(P(w)P(w)Cuy)” = Cp, P(W) P (w)’
= CwOPR( —w")Pr(—w)
=P (W )P(w)Cy,
On the other hand, since
P(w)P(w')Cyy = CuwyPr(—w)Pr(—w)
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we see that the element P(w)P(w')Cy, € 41 N MY = M. Hence P(w)P(w')Cy, is an
&/-linear combination of elements Cp_,,, each of which is stable under the b-involution.
Therefore P(w)P(w’)Cy, is stable under the b-involution and we get

(P(w)P(w)Cly)” = P(w)P(w')Cuy = P(w)P(w)Cluy
as desired. ]

Definition 4.6. For 7 = w; 4wy ... +w, € PT (with w; € PT for all ¢) we set
P(r) = P(w1)P(w2) ... P(wy)
and

PR(—T) = PR(—wk)PR(—wk_l) .. .PR(—wl).

Note that since PT is an abelian group, we need part (2) of the previous proposition
for the elements P(7) to be well-defined.

Remark 4.7. By construction, we have
P(2)Cuoy = Crwoy and P(w)Cupy = Cpwoy
-1

for all y € By, 2 € By and w € P*. It is important to notice however that we do
not have P(7)Cuyy = Cp wey- Indeed, we did not define P(7) as > ¢ Pap,Tz. The
decomposition of P(7)Cy,y in the Kazhdan-Lusztig basis will be discuss in Section 5.

Lemma 4.8. (1) The set {P(7)Cy, | T € P} is an <7 -basis of M.
(2) The set {P(2)P(7)Cuyy | 2 € Bo, T € Pt} is an o -basis of M, for ally € By*.
Proof. (1) Since P(7)Cy, = CuwoPr(—7) we see that
P(7)Cuy € M N ME = M.
Then the result follows easily by a triangularity property:
P(7)Cuy = Cpouwy + > AC-.

z2<prwo

(2) It is clear that P(2)P(7)Cyyy € A, since Cyyy € A,y and A, is a left ideal. Once
again, the result follows easily by a triangularity argument.
O

4.3. Main result. As our principal ideal domain k, we choose &/ and we set B to be
the monoid algebra «/[P*] = {e” | 7 € P*}. Note that B is isomorphic to the ring of
polynomials in Card(P*) indeterminates. The proof is similar to the one in [§].

Let 2,2’ € Bg. On the one hand we have
Cupz1Clrtyy € Copor1 H € M
and on the other hand
Cuoz-1Co-14, € HC -1y, € M
therefore Cy,,,-1C,/-1,,, € 4. Thus, by Lemma 4.8, we have
Cuoz—1Cor—14 = Z a?*'P(7)Cy, where a>* € o .
TEPt

Let V be the free «7-module of rank Card(Bg) on basis {v,,z € Bo} and define the
&7-bilinear form ¢ by
p: VxV — B
(U2 v2) — 3 a2 e,
TEPtT
This defines an algebra A(V,B,¢) 2 V Q4 B ® V with multiplication <-bilinearly
extended from (v,, ®e” ®v;;)(vz, ®e” Qus,) = v, ®eTp(vy;, V., )e” @us, as in Section 4.1.
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We now define a map
O :AV,B,p) > H
by
v, ®e @1 = P(2)P(r)Cu Pr(z' ")
for basis elements v,, v, of V and 7 € P*. We have
P(2)P(r)Cu,Pr(2' ") € HCuyt € > AC..
z2< pgwo
Hence, the image of ® is contained in .#, the two-sided ideal associated to the lowest
two-sided cell cg.
Theorem 4.9. The two-sided ideal 4y is a an affine cell ideal. More precisely:
(1) The map @ : A(V, B, ) — My is an isomorphism of <7 -algebras.
(2) Using (1) to define left and right 7€ -module structures on A(V, B, p) by letting
h € S act, forv,w eV and b € B, as
hv@bow) =& Hhd(ve b w)
and
(v@b@w)h=o"1(®(vebew)h)
respectively, ® is an isomorphism of -7 -bimodules.
(3) We have d(v@b@w)’” = d(w bR v) for v,w €V and b € B.

Proof. The map ® is o7/-linear by definition. We have, for basis elements v.,,v.,,v.,, v,
of Vand 7,7 € PT,

D (v, @™ @ v, )0 (v, @ D vy,)
= P(2))P(7)CuyPr(z; )P (21)P(r')Cuy Pr(z )
=P(2)P(1)C,, _71P(zk)CwoPR(—T/)PR(zl_l)
=P

)
(2 P(r)cwoz;lOzwoPm—T')PR(zﬁ
)

)

)

)

P(z)P(r)( Y a2 P(r)) Cuy Pr(~7)Pr(21)
TEPT

P(r)( Y @ P(r))P(*)CunPrz )

TEPt

= fI)(vzi ® er(vzj,vzk)eT, ® Uz@)-

So @ is a morphism of «7-algebras. The fact that & is bijective follows easily from the
fact that
P(2)P(7)CuyPr(z; ') = Coprunst + > ..
z<Zip7—w0z]71

This completes the proof of (1). Statement (2) follows directly from the definition and the
fact that .#p is an - -bimodule. We prove Claim (3). Let v.,,v.; be basis elements
of V.and 7 € PT. We have

B(v., @€ @v,,)" = (P(2)P(r)Cu PRz )’
= (Pr(z; 1))’ (Cuy ) (P(7))" (P(z))’
= P(2)CuPr(—7)Pr(z ")
= P(2))P(1)Cuy Pr(z ")
=®(v,, ®e" @uy,).

Statement (3) follows from .7-linearity.
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5. ON THE CELLULAR BASIS

In this section, we study the decomposition of the cellular basis in the Kazhdan-Lusztig
basis. We set Bg := {21,...,2,} and for all 1 < 4,5 <n and 7 € PT. We will show that

(*) P(T)C’wo = Z mT’CpT/wo

T'ePt
where the coefficients m,. are integers. Note that, if we prove (x) then we can deduce
the expression of any element of the cellular basis in the Kazhdan-Lusztig basis using
Corollary 5.4 below:

P(Zi)P(T)CwOPR(Zj_l) Zz ZmT/Cp s wo PR _1 Zm"—,csz/woz 1.

Remark 5.1. In this section, it will sometime be more convenient to enumerate the ele-
ments of the lowest two-sided cell as z;woprz; with A € P~ = —P7 instead of ZiPrWoZj
with 7 € PT. Indeed, these are the same since we have prwo = wop;! = wop_,. As
much as possible in order to avoid confusion, we will use the letter A for negative weights
and 7 for positive weights.

5.1. Multiplication of the standard and the Kazhdan-Lusztig bases. For x,y €
We, we set
T.Ty =Y foy:T: where fo, . € .
zeW,
In this section, we present some results of [7, §2.3] that will be needed later on and we
introduce some notation. For a € &1, we have set %, = {Hqa.n | n € Z}. For z,y € W
we set

H,,={H €% |HeH(Ay,yAo) N H(yAo,zyAp)} and
Iy ={a€®" | H,yNZ, #0}.
Finally for o € I 4, let

Coy() = Heginfj(mfaLH and ¢z, = Z Cay(@).
acly ,
Then we have the following result on the degree of the structure constants f; , . with
respect to the standard basis [7, Theorem 2.4].

Theorem 5.2. Let z,y € W.. We have deg(fa,y,2) < €y for all z € We.

Proposition 5.3. Let 7 € P*, y € Xo_l, x € Xo and v € Wy. The following holds
(1) epuy < L(wg) — L(v) for all v € Wy; if x € By then cguy < L(wo) — L(v)
(2) Tzcwoy = Z’UGW{) qL(v)*L(wo)TxTvy mod #o;
(3) Tszoy € %S()'

Proof. Fix v € Wy. Let u = wov™! so that wy = uev. Write wy = Sip oo+ Sipi1 Sig -+ - Sy
where v = s;,...5s;,,, and v = s;, ...s; are reduced expression. Let H; ,...,H; .,
(respectively H;, ..., H;, ) with direction o, ,..., s, ., (respectively a;,,,...,q; ) be
the set of hyperplanes separating vyAg and woyAo (respectively yAg and vyAp). Let 7
be the unique L-weight lying in the intersection of all the H;,. Then since x € Xy, we

see that xvyAg lies in the quarter ¥ with vertex 7 which contains vyAy.

Let 1 <7 <m and let k € Z such that H; = H,, . We will assume that k > 0, the
case k < 0 being similar. We have vyAg € VI}:_ . Now, since 7 lies in the closure of vp, Ay
and 7 € H;,, one can see that

k< {p a;,) <k+1forall u € vyAo.
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Moreover, zvyAg € € implies that
k < {p,a;,) for all p € zvyAo.

From there, we conclude that all the hyperplanes H,, ; with [ <k donot liein H (vyAo, zvyAo)
and that all the hyperplanes H,, ; with [ > k do not lie in H (Ao, vyAg). Thus o, & Iy vy
and we have

Iy vy C {aim+17 ceey ain}?

which implies

r=n
Cm,vy S Z Cx,vy(o‘ir) = L(wO) - L(’U)
r=m-1
as required. In the case where x € B, we see that

o if W is not of type C or if W is of type C and L(t) = L(t') then o, ., & Iy
o if W is of type C' and L(t) > L(t'), then we may have a;m41 € Iy but in this

case the hyperplane of direction «;,,, that lies in H, ,, cannot be of maximal

weight.

In both cases we see that

Cowy < Y Cawylai) = L(wg) — L(v).
r=m-1

Next we have

Tzcwoy = Tm( Z Pz,woyTz)
zeEWe
= meoy + Z Pz,woyTsz-

z<woy

Write z = vy’ where y' € X' and v € W, (any element of W, can uniquely be written
in this way; [5]). Then, using the recursive formula for Kazhdan-Lusztig polynomials, we
see that

L(v)—L(wo) p

P wyy = Poyrwoy = 4 woy’,woy -

Since the degree of the polynomials appearing in the expression of 1T}, is at most ¢; , =
Covy AN Cp oy < L{wg) — L(v) we see that we must have P, 15T, € H#%o. More
precisely, if woy’ < woy, then Puyy wey € F<o and P, yoyIuT. € H#o in this case.
Putting all this together, we get

Tmcwoy = Tzwoy + Z Pz,womiTz

z<woy

Tzwoy + Z Pz,womiTz mod t%<0
zeWoy

Tzwoy+ Z va,womiTvy mod jf<0
veWy

Ty + Z qL(v)*L(wo)TmTvy mod
veWy

as required in (2). Statement (3) is a direct consequence of (1) and the above relation. [
Corollary 5.4. For all z,2’ € By and 7 € PT we have
P(Z>CPTMOPR(Z/71) = Ozp.,.wgz’*l
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Proof. Let z € By, 7 € P* and y € X; . We have

P(Z)Cprwoy = Z pw;szCwopily

r€Xo,x<z
=01y + Z P2,z ToCypprty
r<z,x€Xq
= zwopily mod %<0

by the proposition above and since T,C,, -1, € H<y and pg . € <. Further, by
definition, we know that P(z)Cp_w,y is stable under the ~ -involution, hence we get

P(2)Cp.woy = Cap,wey- In particular we have

P(2)Cp.wo = Cap.w, and CpTwOPR(z_l) = Cpwyz1

the last equality being easily obtained using the b-involution. Putting all this together,
we get
P(2)Cp,u,P(2' ") = P(2)C

prwoz’~!

=C

zprwoz’ 1

as required. O

Let z,w € W and ¢ = m,5n ... 51 be a reduced expression of . We denote J, ,, the
collection of all subsets I = {i1,...,4,} such that 1 <i4; < ... <4, <N and

Siy oo Siy_q o Sip e S1W <S4y -0 Sjy_q -0 Sip .. S1W.

For I = {i1,...,ip} € Ty Weset o7 = sy ... 5, ...5; ...51.

Then we have [3, Proof of Proposition 5.1]

(5.4) T.Ty= Y & - bey Ty
I1€T, 4y

Note that by definition we have x; < z in the Bruhat order, therefore
1.7, = Z a,T., where a, € &/.

2<uw
We will write
T,T, =~ T,T,
if and only if
T.T, =Y a.T.y and T,Ty = a.T.y.

z<x z<x
Let o € &' and w € P*. We define the following integer:

Mme (W) : zg[lﬁ;zi]}(vao)a’
veWy
where [1, p,,] denotes the Bruhat interval from the identity to p,, and (wvAo)a is the largest
integer k in absolute value such that H, j separates Ag and zvAy. It is a straightforward
consequence of this definition that if H, € H(Ag,2vAp) for some = € [1,p,] then
|k] < mqy(w). We will then say that A € P~ is w-far away from the a-wall if A\, < —m,,.
For A € P and @ € ® we set A\, = (A, ") and A, := Apt,.

Lemma 5.5. Let A € P~, v € Wy and x € [1,py]. Then if Hop € H(xvAx,vA)) we
have

[k — Aa| < mg(w).
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Proof. Translating the relation H,, € H(zvAyx,vAx) by —\ we get that Hy p—», €
H(zvAop,vAo). If Hyp—», € H(zvAp, Ag) then by definition of mg,(w) we get that
|k — Aol < mq(w) as required. If Hy x—»x, ¢ H(zvAo, Ao) then H, j—», must separate
Ap and vAg. Therefore k — A, = 0 and the result is obvious. O

The end of this section is devoted to the study of product of the form 7}, T.,, where
wePT, Ne P andveW,.

Proposition 5.6. Let A\, X' € P~ and &+ = ®F | |®} be a disjoint union such that

(1) X and N are w-far away from the a-wall for all o € ®F,
(2) Ao = A, for all a € O .
Then Ty, Topy = Ty, Top,, for all v e Wy.

Proof. Let p, = 7,8y ...s1 be a reduced expression and let I = {i1,...,ip} € Tp, vps-
For1<t<pwesetz; =35 ...5;,_,...8, ...51. Then by definition of J,_ ,p, we have
8, T, 0px < x;vpy for all t € {1,...,p}. We will show that s;,x;,vpy < x;,vpy for all
t € {1,...,p}. This is enough to prove the lemma, since this will show, by echanging the
role of A and X' that J,, vp, = Jp,,,vp,, and the result will follow from 5.4.

k.

Let Hy := Ha,, k;, With a;, € ®T and k;, € Z be the unique hyperplane separating
x;, vAx and s;,x;,vAx. Since s;,x;,vpy < x;,vp) we have Hy € H(Ag, z;,vAy). We denote
by Hj the translate of Hy by A —\. We set ki, = ki, + A, — Aq,, so that

iy

gy

!
H; :== Hit(n_y) = Hait,kit-i-)\’ait Y

oy ,k;t .

Now, s;,x;,vAx and x;,vAy are translates by A — X\ of s;,2;,vA and z;,vA) respectively,

therefore we have H] € H(s;,x;,vAx, 2z, vAx). We claim that H] € H(Ag, z;,vAx).
First of wall, assume that «;, € <I>;{, that is A and X are w-far away from the wall.

Since s;,;,,x;, € [1,p.] and Hy € H(xz;,vAy, si,x;,vAY), H; separates Ay and one of the

alcoves x;, vAy or s;,x;,vAy, hence by the previous lemma we see that

)\ait - May, (w) < kit < Aait + May, (w) <0.

Further we must have s;,x;, vAy € Ht'|r and z;,vAy € H; as Ay and s;,x;,vAy lie on
the same side of H; which has to be H, . Adding )\fm — Aa,;, throughout the previous
equality, we get
)\Iait - mait (w) S k’it S >\IO¢” + mait (w)
But )" is w-far away from the oy, -wall, therefore Aj,, +maq,, (w) <0 and ki, < 0. We have
seen that s;,z;,vA\ € H;” and x;,vA, € H; . Translating by X — X, we get s;,x;,vA4} €
H'[ and x;,vA, € H';. Then as, ki, < 0, this implies that H{ € H(x;,vAx, Ao) as
required.
Next assume that a;, € . In that case, we have
(z,a)) = (2',a) forall z € x;,vAy and o’ € z;,vA)
and
{y, O‘Z\Q ={y, aivt> for all y € s;,2;,vA\ and y' € s;,x;,0vA)
therefore it is easy to see that H] € H(z;,vAx, Ao) in this case since H, € H(x;,vAx, Ap).

Finally, in both cases, we have shown that H, € H(x;,vA, Ag). We have seen that
H] € H(sj,x;,vAx,x;,vAN). Tt follows that we have s;,x;, vpx < x;,vpn as required to
complete the proof of the lemma. O

Corollary 5.7. Let A € P, w € Pt and v € Wy. There exists N € P~ such that
0 <\, <myg for all « € T such that T, Typ, ~ Ty, Top., -
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5.2. Decomposition of the cellular basis.

Theorem 5.8. Let \,\ € P~ and @ = &} | | @;r be a disjoint union such that

(1) X and N are w-far away from the a-wall for all o € ®F,
(2) Mo =X, for all a € DF.

Then there exists a family (aq)acp of integers such that

(1) P(w)Cuopy = Cpowops + Z aaCpawopa
aEP\—a€eP~

and

(2) P(W)Cwopy = prwopy + Z aacpawopy

Q€PN —aEP~

Proof. We start by proving that

P(w)cwopx = Cpwops + § aaCp,wops
aEP A \—aEeP—

for some integers ao. We know that P(w)Clyyp, = P(w)Cuyyp, hence according to Lemma
5.3, in order to prove the result it is enough to show that

(%) P(w)Cxwo = Tpawops + Z aaTpowopy mod Hp.
a€EP\—aEeP—
We have
P(w)Cuopr = (T, + Z Pzp. T=)Cugpa

2€X0,2<pw
=Ty, Cuopy + E P2,p L= Clugpy -
2€X0,2<pw

By Corollary 5.3, we know that T,C\y,p, € H#%o and therefore, since p, ., € /<o for all
z € Xo, we get that p. ., T.Cyyp, € H#«o. Thus

pr C’WOZDA + Z pz,szCwopA = pr O’LU()P)\ mod %<0.

2€X0,2<pw

Again by Corollary 5.3 (3) we obtain

TPWCIUOPA = prwopx + Z qL(U)_L(wO)prTvp,\ mod %<O'
veWy
On the one hand, the above expression is an integer combination of elements of the
standard basis by Corollary 5.3 (3). On the other hand, the terms appearing in the
product T}, T,p, are of the form T,,, for some z € [1,p,] (see formula 5.4). Thus we
have
Tp., Cwopr = Tpowopy + Z a;Tsvp, mod S where a, € Z.

Ze[lva]

From there we see that
P(w)Chwo = Tpowops + Z a;Tspp, mod .
Ze[l,pw]

Next we have P(w)Cuyyp, € My = (Cuwop, | ¥ € P ). Thus, the only terms with non-
zero coefficients in the above expression have to be of the form T, with v € P~. Hence,

for all z < p,, there exists v € P~ such that zvp) = wop, = wWopy—rPx = Pr—,Wopx and
we get the desired expression by setting o = px—_-.



CELLULARITY OF THE LOWEST TWO-SIDED IDEAL OF AN AFFINE HECKE ALGEBRA 21

Now, the fact that

P(W)Cwom/ = prwopy + E aacpawom/
a€EPA\—aEP~

is a direct consequence of Proposition 5.6. Indeed the decomposition of P(w)Cyy,p,, in
the Kazhdan-Lusztig basis only depends on the products of the form 7%.,,, where v € Wy
and z € [1,p.]. O

As a direct corollary of this theorem, we see that the multiplication of the form
P(w)Cyyp, can be determined for all A € P~ only by calculating the expression in the
Kazhdan-Lusztig basis of all the products P(w)Cly,p, for all A satisfying |Aa| < ma(w).
Then, one can find the expression of a cellular basis element by induction by successively
computing products of the form P(w)Cp, w,-

6. AFFINE WEYL GROUP OF TYPE A

In this section we study in more detail the decomposition of the cellular basis in the
Kazhdan-Lusztig basis for affine Weyl groups of type A. We will see that the integer
coeflicients that appear in Theorem 5.8 in that case can be interpreted as the number of
certain kind of paths from 0 to A\. We will assume that W = (so, ..., s,,) is an affine Weyl
group of type A, and that W, = II x W is the extended group where II = (r) is a cyclic
group of order n.

Remark 6.1. In type A we have (w, ") = +1 for all fundamental weight w and all & € ®
(see [2, Planche 1]), therefore one can easily see that mq(w) = 1; see Section 5.1 for the
definition of m,(w). Also, we have oV = « for all a € ®.

6.1. A refinement of Theorem 5.8. Let w € PT. We denote by & (w) the orbit of w
under the action of Wy = {(0q, ..., 0n).

Theorem 6.2. Let A € P~ and w € PT. We have
P(W)Cwopx = Z Cppwopx'

pEO(w),\—pEP~
Proof. In view of the proof of Theorem 5.8, we know that

Ty, Cuwops = Tp,wops + Z qg(v)_é(wO)prTva mod .

veWy
By Lemma 5.3, we need to show that
(%) Z qé(v)—f(wo)prTvm = Z Ty wops mod Hg.
veWy pEO (W), \—pEP—

Let v € Wy and v = wov™! so that wy = wev. Let wy = Sip o+ Sipi1Sig -+ - Siy DE

a reduced expression of wg such that v = s; ...s;,., and v = s;, ...s; (note that
these are necessarily reduced expression). We will denote by H;,,..., H;, ., (respec-
tively Hj,,, ..., H; ) with direction «y,,...,a;, ., (respectively a;, ,...,q;, ) the set of

hyperplanes separating vpyAg and wopy Ao (respectively py Ay and vpyAy).

We have seen in the proof of Proposition 5.3, that the direction of the hyperplanes ly-
ing in Hyp,, vp, belongs to {«;,,...,q;, .} and are of the form H,, ., where (A ;) =
Xip < 1y, < 0. (In particular, if A\;;, = 0 there are no hyperplane of direction «;, in
pr »UPX )

In type A, since {(w,a¥) =0 or 1 for all « € ®T, we see that we must have

HZDMU;DA C {Hai.r,,q)\ain S R Hﬂfim+17)\ +1}'

Y41
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This set contains £(wp) — £(v) elements, thus to get ¢“")=/(wo)T, T, #0 mod .o we
need to have equality in the above inclusion.

Remark 6.3. If one can show that there are no hyperplane of direction o, for m+1 <r <n
separating the alcoves Ag and vpy Ay or vpyAg and p,vpyAg then

¢! =Hwlp T =0 mod A
We will make frequent use of this remark in the sequel.
Let A’ be the subset of A which consists of all simple roots satisfying (w, ") = 0. Then
the subgroup Wy of Wy stabilising p,, is generated by S{ = {s € S | s4¢ = Agoa, € A’}
To prove the theorem, we will proceed in four steps:
Claim 1. If there exists s € S’ such that sv > v then qe(”)’l(w")pr Topy, =0 mod Hy.

Claim 2. There is at most one term in the product 7}, 7., expressed in the standard
basis that can have a coefficient of degree ¢(wg) — £(v).

Claim 3. If v is of maximal length in its coset W'v then p,v = u~te(pye, wo)-
Claim 4. If A —wo, ¢ P~ then ¢! —¢wo)T, T, =0 mod .

Before giving the proofs of those claims, we show that they imply the theorem. By
Claim 1 the only terms in (%) that can contribute mod 5% are those of the form
ql(”)fe(w“)pr Typ, where v € Wy is of maximal length in its right cosets W/v. Then, by
Claim 2, each of these products contribute with at most one term. Fix v of maximal

length in W/v. Then
Tp, Topy = Tp, ToTp, =Tp o1y, = u*lpwuonm = u*lpruonp

AC

The last equality is true, thanks to Claim 3. The product Tj,, w,Tp, gives a term

Lo, wops With coefficient 1. But we have Ty, wopy = Twops_.., - SO either A —wo € P~
in which case py_wo € XO_1 and we get
O(u=t 14 —L
TuflTwoP(xfwnu) = TuflTonP(Afwu) =4q (o )Twop(xfwnu) =4q (wo) (U)Twop(xfwu)
and
qav)il(wO)TPu Tvpx = Lpyo, wopa mod %<0'

Otherwise, A — wo ¢ P~ and ¢ =4wo)T, =0 mod S, by Claim 4.

Finally when v runs through all the maximal length right cosets representative of W’
in W we see that u runs through all the minimal length left cosets representative and
so wo, runs exactly through the orbit of w under the action of Wy. Hence the desired
expression.

We now prove the four claims.

Proof of the Claim 1. If sv > v then we also have svp) > vpy and the hyperplane
H; which separates the alcoves vpyAg and svpyAg lies in {H; ., Hj, ., } and is of the
form Haik),k for some m +1 < k <n. We have

7

ny e

Spva)\AO = Svp)\AOtwa'u - 'UpAAOUHS twov
and
PwSUPAA = DDA AooH, = VDA Aolwe, OH, -

Thus og.tws, = twe,0m, which implies that the vector wo, lies in Hg, that is woy,
is orthogonal to «;,. As a consequence, since p,(vprAog) = vprAotws,, both alcoves
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Pw(vprAg) and vpyApt,e, lie on the same side of Hs and there can be no hyperplane of
direction o, lying in H(vpyAo, p,vprAo). Therefore we have

pr,vm - {Hain,Aain +1y--- A +1}

P Ay

and the claim follows with Remark 6.3.

Proof of the Claim 2. We use the notation of Section 5.1. We show that there is at
most one set I € J,,, ,p, which can give a term with a coefficient of degree £(wg) — £(v).
Let p, = 7t ...t1 where # € Il and ¢,,...t; € W is a reduced expression. Let j; the
smallest index such that ¢;, ... t1opy < fjl ...tivpx and let Hj, be the unique hyperplane
separating the two corresponding alcoves. Note that H;, € Hy,_ .p,. We have

TmT'UpA = Ttk..

-tj1+1th1Tfj1 .tivps
— ~1 x
- Ttk~~~tj1+1th~~~t1UpT + (q —q )Ttk~~~tj1+1th1...t1’UpT

Firstly we see that Hy, .+, ,1.t,...t20ps = Hpyop, — {Hj, }. But Hy, 4, only contains one
hyperplane of direction o, hence there are no hyperplane of direction o, in Hy yp, —
{H;,} and we have

Itk»»»tj1+17ti---tlvp>\ = IPMU;DA - {ajl}'

By Theorem 5.2, the maximal degree appearing in the coefficients in Ttk~~~tj1+1Tti~~~t1'UpT
is £(wp) — L(v) — 1.

Secondly, we can see that the set § of hyperplanes separating the alcoves
tn . tAjl . tlvp)\Ao = tn . tjl . tlvp)\AoaHjl

and
tAjl . tlvp)\Ao = tjl .. -tl'Up)\AOUHjl

is included in Hy,, vp, -om,;, —{H}, } and this set contains at most £(wo) —¢(v) —1 elements.
But we have

.t1upa C ‘6

breetiy 41,85 -

hence if § contains strictly less than ¢(wp) — £(v) — 1 we cannot have a term of degree
L(wp) —€(v) —1in Ty, . Ty,

wtigr1t Lt opy

By induction, we construct a set I = {ji,...,Jji} with k& < £(wp) — ¢(v). (For instance
j2 is the smallest integer such that t;, ... ¢ ...tavpy < tj, ... 15 ... t1opy.) If we have
k = ¢(wo) — ¢(v), then the term corresponding to I in the product T}, T, has a coeffi-
cient of degree ¢(wg) — ¢(v) otherwise there are none.

Proof of the Claim 3. The equality p,v = pou~lwy = v 'py.,,wo is clear. Let
n(o ) :={a € ®" | ao,! € ® }. It is a well known fact that n(o, ') = ¢(u). We define
the following subset of ®¥:

Py ={acdt | (woy,,a) =0}
P ={acdt | (wo,,a) <0}
P ={aedt | (woy,,a) >0}
Note that, if a € n(o,), then (woy,,a) = (w,ac; ') < 0 since w € PT. On the other

hand, if ao, € & then (wo,,a) = (w,ac; ') > 0. Therefore we see that 2. C n(o; ).
Assume that there exists o € n(o, ') such that (woy,a) = (w,ao, ') = 0. Then ao,! €
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®’, the root system generated by the simple system A’. Further, since ac,! € &=, we
have that ao, € ', hence we can write

ao, b = Z a7y where a, <0
yEA!

But then we obtain that

o= Z a,yo, where a, <0.

YEA'

Since v is of maximal length in its coset, we can check that u is of minimal length in its
right coset with respect to W/, that is us > u for all s € S’. Therefore, yo,, is a positive
root for all v € A’ and the last equality is a contradiction with the fact o € ®*. We have
proved that Z. = n(o,!).

Next, since the length of an element is equal to the number of hyperplanes separating
the corresponding alcoves and since py,», woAo = woAot—_we, We can see that

U(puwo,wo) = L(wo) + | P~ | — | P<|
= {(wo) + £(pw) — 2| P<|
= l(wo) + £(pw) — 2¢(u).

Finally we obtain
Uu™h) 4+ U(puo,wo) = £(u) +L(wo) + £(pw) — 26(u) = €(ps) + (€(wo) = L(w)) = L(pe,) +L(v)

The claim is proved.

Proof of the Claim 4. Assume A —wo, ¢ P~. As we are in type A we know that for
all 0 € Wy and all @ € ® we have |(w,a0)] < £1. As A € P, to have A —wo, ¢ P,
we must have (\,o;) = 0 and (woy, ;) = (w,a0,') = —1. In turn this implies that
uls; < w~!. Thus the alcoves woprAg and v~ twoprAg = vprAg lies on two different
sides of H,, 0. This implies that (z, ;) > 0 for all z € vpyAp. Thus there can’t be any
hyperplane of direction o; in H,, ,p, as Ag and vpy A both lie between H,, o and Hy, 1.

The Claim follows. O

6.2. Combinatorics of the cellular basis. In this section we study the decomposition
in the Kazhdan-Lusztig basis of the element P(7)C,y, for all 7 € PT. Recall that it is
enough to find the expression of any element of the cellular basis in the Kazhdan-Lusztig
basis, as noted in the beginning of Section 5.

We denote by {wi,...,w,} the set of fundamental weights and for each w; € P we
denote by O(w;) = {w; = wgl), e ,wa)} its orbit under the action of Wy. Let z,y € P~.
A path of length N in P~ from « to y is an (ordered) sequence & = zg,z1,..., 2y =y

in P~ such that for all 1 < ¢ < N — 1 we have xpy1 = z¢ — wg’f) and ¢z, € P~. The
element wg’f) is called the ¢*"'-step of the path from z to y. A path is said to be of
type m = (my,...,my) € {1,...,n} if its £*P-step lies in O(wy,). Let v € P~ and
m € {1,...,n}"N. We define Z,(7) to be the number of paths of type m from 0 to 7.

Remark 6.4. Let A\ € P~ be such that A = —> a;w; for some a; > 0. Let m =
(m1,...,my) € {1,...,n}" be any N-tuples which contains exactly a; i’s for all i’s.
Then Pm(A) =1 as the (*'-step needs to be equal to w},, = wy,, .

Corollary 6.5. Let (ai,...,a,) € N, 7 = Y auw; € PT and N = Y. a;. Let m =
(m1,...,myn) € {1,...,n} be any N-tuples which contains exactly a; i’s for alli’s. Then
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the element P(7)Cy, of the cellular basis has the following expression in the Kazhdan-
Lusztig basis :

P(T)Cwo = Z '@m()‘)cwop/\
AeP—

Proof. Let A € P~ and let m’ = (my,...,my_1). Then we have
Pm(\) = > P (N).
NEP~ N —=AEO (wn y)

We have P(7)Cyy = P(wmy) .- P(wm,)Cuy,- Let us prove the result by induction. For
N =1 the result is true. Indeed we have P(w;)Cy, = Cp,, w, and there is only one path
of type (4) from 0 to w;. Next assume that we have

P(wny_y) - - Plw1)Cy, = Z Pt (N)Clyps, where m’ = (mpy_1,...,1).
AEP—
Then

P(wny) .. . P(w1)Cuy = Plwny) Z Pt (A)Cupp,

AP~

= Z Dot (NP (W ) Cugpa
AP~

> 2w X Cun)

AP~ yeP~
A—v€O (wi,,)

Z Z P ()‘)Cwopw

AEP— yeEP—
A=v€EO0 (wn )

Z Z P ()‘)Cwopw

yEP~ AEP—
A=vEO (wn )

Z Pm(7)Cuop,

yeEP—

as required. 0

Example 6.6. In this example, we study the case of the affine Weyl group of type As.
The quarter ¥~ = —%¢* is represented in figure 4. We denote by w; and ws the funda-
mental weights. The set of anti-dominant weights, that is —P™*, is just the set of points
lying in ¥~ and at the intersection of 3 hyperplanes. For each antidominant weight
A € P, the red (respectively green) arrows leaving from A represents the orbit of w;
(respectively ws) under the action of Wy.

To find the expression of the cellular basis element P (2w; +2w2)C,,, one needs to count
the number of path of type (1,1,2,2) from 0 to A for all A € P~. This number (when
non-zero) is indicated in figure 5. Hence we find

P (2w + 2w2)Cy = Opalpgzwo + Opilwo + Cpizwo +4Cp, pu,ywo T 2Cu,-

The description of all paths form 0 to —(w; + w2) of type (1,1,2,2) can be found in
Figure 5.

Remark 6.7. The interpretation in term of paths also works for other types, however the
situation gets more complicated as we get closer to the wall and one needs to define many
different kind of paths depending on how close we are from each wall.
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FIGURE 4. The chamber !

FIGURE 5. Paths from 0 to —(w; + w2) of type (1,1,2,2)
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