A Parallel Inertial Proximal Optimization Method - Archive ouverte HAL
Article Dans Une Revue Pacific journal of optimization Année : 2012

A Parallel Inertial Proximal Optimization Method

Résumé

The Douglas-Rachford algorithm is a popular iterative method for finding a zero of a sum of two maximal monotone operators defined on a Hilbert space. In this paper, we propose an extension of this algorithm including inertia parameters and develop parallel versions to deal with the case of a sum of an arbitrary number of maximal operators. Based on this algorithm, parallel proximal algorithms are proposed to minimize over a linear subspace of a Hilbert space the sum of a finite number of proper, lower semicontinuous convex functions composed with linear operators. It is shown that particular cases of these methods are the simultaneous direction method of multipliers proposed by Stetzer et al., the parallel proximal algorithm developed by Combettes and Pesquet, and a parallelized version of an algorithm proposed by Attouch and Soueycatt.
Fichier principal
Vignette du fichier
parallelin_v3.pdf (354.22 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00790702 , version 1 (21-02-2013)

Identifiants

  • HAL Id : hal-00790702 , version 1

Citer

Jean-Christophe Pesquet, Nelly Pustelnik. A Parallel Inertial Proximal Optimization Method. Pacific journal of optimization, 2012, 8 (2), pp.273-305. ⟨hal-00790702⟩
551 Consultations
642 Téléchargements

Partager

More