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Introduction

Finite permutation groups can be considered as building blocks of finite transformation monoids. Indeed, by the Krohn-Rhodes Theorem, any finite transformation monoid divides a semidirect product of permutation groups and three element transformation monoids.

Given a transformation monoid M on a finite set, defined by a finite set of generators, it is in general non-trivial to obtain a description of the groups contained in M . For example, there is no simple algorithm to check that all these groups are trivial (see [START_REF] Stern | Complexity of some problems from the theory of automata[END_REF]).

This paper, which is of expository nature, contains a new presentation of the techniques that allow to compute the groups contained in a transformation monoid. We use this technique to present a survey on some recent results that allow to describe the groups contained in transformation monoids. These transformation monoids arise as the transition monoid M of the minimal automaton recognizing the submonoid generated by a prefix code X. The maximal groups contained in M are called the syntactic groups of X. We treat two cases. In the first case, we discuss the problem of building bifix codes with the minimal possible number of elements having a given syntactic group. In the second one, we show that, for a particular class of prefix codes, all proper syntactic groups are cyclic.

The first case uses Sturmian words, which are a basic notion of combinatorics on words (see [START_REF] Lothaire | Algebraic Combinatorics on Words[END_REF]). Using Sturmian words one may prove that any transitive permutation group G of degree d and rank k is a syntactic group of a bifix code with (k -1)d+1 elements [START_REF] Berstel | Bifix codes and Sturmian words[END_REF]. We describe this construction here (Theorem 4.2). This result is an improvement of several previous ones due to Schützenberger [16] and to part of the authors of this paper [START_REF] Perrin | On syntactic groups[END_REF].

The second case uses prefix codes such that no element of them is an internal factor of another one, called prefix codes with empty kernel. We describe here the result proved in [START_REF] Berstel | On the groups of codes with empty kernel[END_REF]: if X is a prefix code with empty kernel, all proper syntactic groups of X are cyclic (Theorem 5.1).

The paper is organized as follows.

In Section 2, we give some basic definitions concerning automata, monoids and groups. A more detailed presentation can be found in [START_REF] Berstel | Codes and Automata[END_REF].

In Section 3, we define the holonomy groups of a transformation monoid. This notion is due to Eilenberg [START_REF] Eilenberg | Automata, Languages, and Machines[END_REF]. We show how it is related to the classical notion of group in a monoid, as presented for example in [START_REF] Lallement | Semigroups and combinatorial applications[END_REF] or [START_REF] Berstel | Codes and Automata[END_REF]. We recall the notion of Schützenberger representation and show how it may be used to compute generators of the holonomy groups. We also give an alternative method to compute such a set of generators based upon the notion of fundamental group of a graph.

In Section 4, we present a result from [START_REF] Berstel | Bifix codes and Sturmian words[END_REF] according to which any transitive permutation group of degree d which can be generated by k elements is a syntactic group of a bifix code with (k -1)d + 1 elements (Theorem 4.2). The proof uses Sturmian words. We recall the necessary definitions of Sturmian and episturmian words. We illustrate the construction on several examples.

In Section 5, we define the kernel of a set of words. We present the main result of [START_REF] Berstel | On the groups of codes with empty kernel[END_REF] which states that the proper syntactic groups of a prefix code with empty kernel are regular and cyclic (Theorem 5.1). We give several examples of this situation including ones using the well-known Černý automata.

Automata, monoids and groups

Let A be a finite set. We denote by A * the free monoid on the set A. A deterministic automaton A = (Q, i, T ) on the alphabet A is given by a set Q of states, an initial state i ∈ Q, a set T ⊂ Q of terminal states and a partial map from

Q × A into Q denoted (q, a) → q • a. An edge from p to q labeled a is a triple (p, a, q) ∈ Q × A × Q such that p • a = q. A path is a sequence c = (f 1 , f 2 , . . . , f n ) of consecutive edges f j = (q j , a j , q j+1 ). The word a 1 a 2 • • • a n is the label of the path.
For a state p ∈ Q and a word w ∈ A * , we denote p • w = q if there is a path labeled w from p to the state q and p • w = ∅ otherwise.

The set recognized by the automaton is the set of words w ∈ A * such that i • w ∈ T .

When the initial state and the terminal state need not be specified, we also denote an automaton A = (Q, E) with Q its set of states and E its set of edges.

Example 2.1 The automaton on the left of Figure 2.1 recognizes the words without any occurrence of bb. We use an incoming arrow to denote the initial state and an outgoing arrow to denote the terminal states. Thus, for the automata of Figure 2.1, state 1 is initial and terminal and state 2 is terminal. An automaton A is trim if for any q ∈ Q, there is a path from i to q and a path from q to some t ∈ T .

An automaton is called simple if it is trim and if it has a unique terminal state which coincides with the initial state.

For a set X ⊂ A * , we denote by A(X) the minimal automaton of X. The states of A(X) are the nonempty sets u

-1 X = {v ∈ A * | uv ∈ X} for u ∈ A * .
The initial state is the set X and the terminal states are the sets u -1 X for u ∈ X. Its edges are the triples (p, a, q) such that p = u -1 X and q = (ua) -1 X for some u ∈ A * . The minimal automaton A(X) is trim and recognizes the set X. A prefix code is a set of words which does not contain a proper prefix of one of its elements. The dual notion of a suffix code is defined symmetrically. A bifix code is a set of words which is simultaneously a prefix code and a suffix code.

Let X ⊂ A * be a prefix code. There is a simple automaton which recognizes the submonoid X * generated by X, namely the minimal automaton of X * . Conversely, any set is recognized by a simple automaton is a submonoid generated by a prefix code.

Let A = (Q, i, T ) be an automaton. For w ∈ A * , we denote ϕ A (w) the partial map from Q to Q defined by pϕ A (w) = q if p • w = q. The transition monoid of A is the monoid of partial maps from Q to Q of the form ϕ A (w) for w ∈ A * . It is denoted M (A). The degree of a permutation group G on a set R is the cardinality of R. The permutation group G is transitive if for any r, s ∈ R there is some g ∈ G such that rg = s.

A group automaton is a simple automaton A = (Q, 1, 1) on the alphabet A such that the maps ϕ A (a), for all letters a ∈ A, are permutations of Q. The transition monoid of a group automaton is a permutation group on Q. Its degree is Card(Q). Since the automaton is trim, the group is transitive.

The following result gives equivalent definition of submonoids recognized by group automata (see [START_REF] Berstel | Bifix codes and Sturmian words[END_REF]).

Proposition 2.6

The following conditions are equivalent for a submonoid M of A * .

(i) M is recognized by a group automaton with d states.

(ii) M = ϕ -1 (H), where H is a subgroup of index d of a group G and ϕ is a surjective morphism from A * onto G. (iii) M = H ∩ A * ,
where H is a subgroup of index d of the free group on A.

Let Z be the minimal generating set of a submonoid satisfying one of the conditions of Proposition 2.6. It is a bifix code called a group code. The integer d is its degree. The transition monoid of the minimal automaton of Z * is the group of Z, denoted G(Z). Note that, since a group automaton is minimal, the group automaton recognizing Z * is unique (up to the names of the states). Note also that the degree of Z is equal to the degree of the permutation group G(Z) and also to the index of the subgroup generated by Z. Eilenberg uses the term holonomy group in a sligthly different sense. The definition of the holonomy group in [START_REF] Eilenberg | Automata, Languages, and Machines[END_REF], is the following (see also [START_REF] Michael | Algebraic Automata Theory[END_REF]). Let J be the set of subsets of Q which are of the form Qm for m ∈ M or have cardinality at most one. Let I ⊂ Q and let J (I) be the set of J ∈ J such that J ⊂ I, J = I and which are maximal with respect to this property. Any element of Stab(I) defines a permutation of the set J (I). Indeed, for J ∈ J (I) and m ∈ Stab(I), the set Jm is in J (I) (it is maximal because m defines a permutation of the elements of J contained in I). The holonomy group, as defined in [START_REF] Eilenberg | Automata, Languages, and Machines[END_REF], is the permutation group on J (I) obtained in this way. Thus our definition differs in defining the action of the elements of Stab(I) on I itself instead of the set J (I).

Groups in monoids.. Let M be a monoid. A group in M is a subsemigroup of M which is isomorphic to a group. Note that the neutral element of a group contained in M needs not be equal to the neutral element of M .

A group in M is maximal if it not included in another group in M . For any idempotent e in M , there is a unique maximal group contained in M and containing e. It is denoted by G(e). The following property is well-known (see [START_REF] Berstel | Bifix codes and Sturmian words[END_REF]). Let G be a group in a transformation monoid on Q as above. The canonical representation of G is the group of permutations which is formed of the restrictions of the maps in G to their common image. We denote by G e the canonical representation of the group G(e). By Proposition 3.1, this representation is faithful.

For any set I ⊂ Q, there exists idempotents e of M such that I ⊂ Qe. Indeed, the neutral element of M is such an idempotent. We say that the idempotent e covers exactly the set I if I ⊂ Qe and Qe is minimal for this property. Note that any idempotent e covers exactly the set Qe.

The following statement shows that for any I ⊂ Q, the group Group(I) is obtained as the restriction to I of a group in M . Proposition 3.2 Let M be a transformation monoid on a finite set Q. For any I ⊂ Q, let e be an idempotent which covers exactly I. Then Group(I) is the restriction to I of the group G(e) ∩ Stab(I).

Proof. Let H = G(e) ∩ Stab(I). The restriction to I of an element of H is in Group(I). Conversely, let m ∈ Stab(I) and let g = eme. Since M is finite, there is an integer n such that h = g n is idempotent. Since I ⊂ Qe, we have e ∈ Stab(I) and thus g ∈ Stab(I), which implies that h ∈ Stab(I) and I ⊂ Qh. On the other hand, since h ∈ M e, we have Qh ⊂ Qe. By the minimality of Qe, we obtain Qh = Qe. This implies h = e. Thus the submonoid generated by g is a cyclic group containing e, which implies that g belongs to G(e) and thus to H. Since m and g have the same restriction to I, this shows that any element of Group(I) is obtained as the restriction to I of an element of H.

The following result shows in particular that the holonomy groups of a monoid M relative to the image of an idempotent are isomorphic with maximal groups contained in M . Holonomy groups of automata. The holonomy groups of an automaton are the holonomy groups of its transition monoid.

Let A = (Q, E) be an automaton and let I ⊂ Q. Let w ∈ A * be such that ϕ A (w) ∈ Stab(I). The restriction of ϕ A (w) to I is a permutation which belongs to Group(I). It is called the permutation of I defined by w. To compute a set of generators of a holonomy group, one may use two different methods. The first one is to compute the appropriate Schützenberger representation.

The Schützenberger representation. We recall here a description of the Schützenberger representation of a transformation monoid. For a more detailed description, see [START_REF] Lallement | Semigroups and combinatorial applications[END_REF] or [START_REF] Berstel | Codes and Automata[END_REF] (where the more general case of a monoid of unambiguous relations is treated).

Let M be a transformation monoid on a finite set Q. Let e be an idempotent of M and let I = Qe. Let I be the set of subsets J of Q such that Im = J and Jn = I for some m, n ∈ M . For each J ∈ I let m J , m ′ J ∈ M be such that

Im J = J, Jm ′ J = I with the normalization conditions m I = m ′ I = e and em J m ′ J = e (3.1)
for all J ∈ I. It is always possible to choose the m J , m ′ J in such a way that condition (3.1) is satisfied since em J m ′ J belongs to the group in M containing e.

Note that for any J ∈ I, the restriction of m ′ J m J to J is the identity on J. Indeed, let j ∈ J. Since J = Im J there is an i ∈ I such that j = im J . Then, using (3.1), we have

jm ′ J m J = im J m ′ J m J = iem J m ′ J m J = iem J = im J = j.
For J, K ∈ I and m ∈ M such that Jm = K, we define an element (J, m, K) of Group(I) as the restriction to I of m J mm ′ K . It is straightforward to verify that if Jm = K and Kn = L, then (J, mn, L) = (J, m, K)(K, n, L). Indeed, for any i ∈ I, we have

i(J, m, K)(K, n, L) = im J mm ′ K m K nm ′ L = im J mnm ′ L = i(J, mn, L)
since im J m ∈ K and m ′ K m K is the identity on K. Thus, we have the following result (see Proposition 9.2.1 in [START_REF] Berstel | Codes and Automata[END_REF]). Proposition 3.5 Let S be a set of generators of M . The permutations (J, m, K) for m ∈ S and J, K ∈ I with Jm = K form a set of generators of the group Group(I).

The Schützenberger representation of M relative to the idempotent e is the map which assigns to m ∈ M the I × I matrix with elements in Group(I) ∪ 0 defined by

µ(m) J,K = (J, m, K) if Jm = K 0 otherwise
When M is the monoid of transitions of an automaton A, the Schützenberger representation is defined by a transducer as in the following example.

Example 3.6 Let A be the automaton of Example 3.4. Set ϕ = ϕ A and M = ϕ(A * ). Let e be the idempotent ϕ(a 3 ). The set I is composed of

I = {1, 2, 3}, J = {1, 4, 5} and K = {1, 2, 5}. We choose m J = ϕ(b), m ′ J = ϕ(a 2 ba 2 ), m K = ϕ(ba), m ′ K = ϕ(aba 2
). The Schützenberger representation of M relative to e is the transducer of Figure 3

.3. 1, 2, 5 1, 4, 5 1, 2, 3 a | (123) b | (1) a | (1)
a | (23) An alternative method. An alternative method can be used to compute a set of generators of the holonomy groups of an automaton. Let A = (Q, E) be an automaton on a finite set Q of states. Let M be the transition monoid of A. Let e be an idempotent of M and let I = Qe. Let I be, as above, the set of subsets J of Q such that Im = J and Jn = I for some m, n ∈ M . Let G be the graph with I as set of vertices and the triples (J, a, K) ∈ I × A × I such that J • a = K as set of edges. We consider (J, a, K) as an edge from the vertex J to the vertex K with label a.

We also consider in the graph G inverses of the edges. If f = (J, a, K), then f -1 is an edge from K to J labeled a -1 . A generalized path in G is a sequence of consecutive elements from the set of edges and their inverses. Its label is the element of the free group on A obtained by concatenating the labels of its elements. The iterated simplification of consecutive edges which are mutually inverse generates an equivalence on the set of generalized paths. The set of classes of generalized paths from I to I forms a group denoted by H. The group H is called the fundamental group at the point I (see [START_REF] Lyndon | Combinatorial Group Theory[END_REF] for example). It is well-known that H is a free group and that a basis of H can be obtained as follows. Let T ⊂ E be a spanning tree with root I of the graph G. Since G is strongly connected, there is for every J in I a unique path p J in T from I to J.

Then the set X = {p J f p -1 K | f = (J, a, K) ∈ E \ T } is a basis of H called the Schreier basis relative to T (see [START_REF] Lyndon | Combinatorial Group Theory[END_REF]).

Let S ⊂ E be a set of edges such that S -1 is a spanning tree with root I of the reversal of the graph G. In this way, for each vertex J of G, there is a unique path q J from J to I using edges in S.

The following result shows that each choice of the pair T, S gives a set of generators of the holonomy group Group(I).

Proposition 3.7 The set Y = {p J f q K | f = (J, a, K) ∈ E \ T } is a basis of H.
The restriction to I of the labels of the elements of Y generates Group(I).

Proof. We first observe that for any f = (J, a, K) ∈ E, we have p J f q K ∈ Y . It is true by definition if f / ∈ T . Otherwise, we use an induction on the length of q K . Since T is a tree, we cannot have K = I and thus q K is not empty. Let g = (K, b, L) be the first edge of q K . Since the set of paths in S contains the suffixes of its elements, we have q K = gq L . Similarly, since T is a tree, p K = p J f . We have p K gq L ∈ Y by induction hypothesis. Since p J f q K = p K gq L , we have proved the claim.

Since Y ⊂ H = X , it is enough to prove that X ⊂ Y . We prove that, for f = (J, a, K) ∈ E \T , we have

p J f p -1 K ∈ Y . It is true if q K is empty since then p J f is in X ∩ Y .
Otherwise, let g = (K, b, L) ∈ E be the first edge of q K . Since the set of paths in S contains the suffixes of its elements, we have

q K = gq L . Then p J f q K = (p J f p -1 K )(p K gq L ) and thus p J f p -1 K = p J f q K (p K gq L ) -1 .
We have p J f q K ∈ Y by definition and p K gq L ∈ Y by the preliminary remark. Thus p J f p -1 K ∈ Y . Finally, the labels of the elements of Y form the submonoid Stab(I) and thus their restrictions to I form the group Group(I).

Note that, in the definition of Y , every element appears only once. Indeed, assume that p J f q K = p J ′ f ′ q K ′ for two edges f = (J, a, K) and f ′ = (J ′ , a ′ , K ′ ) in E \ T . Suppose that p J is a prefix of p J ′ . If it is a proper prefix, then f is an edge of the path p J ′ and thus is in T , a contradiction. Thus p J = p J ′ and f = f ′ . 

The degree of syntactic groups

Let X be a prefix code and let A be the minimal automaton of X * . A syntactic group of X is a holonomy group of A relative to the image of an idempotent of M (A). Thus, by Proposition 3.3, a syntactic group of X has the form Group(I) for a set I = Qe, which is the image of an idempotent e in the monoid M (A).

Recall some terminology concerning permutation groups. Let G be a permutation group G on a set S. The order of G is its cardinality and its degree is the cardinality of the set S. The group G is said to be transitive if for any r, s ∈ S there is an element g of G such that rg = s.

Let us call minimal rank of a group G the minimal cardinality of a generating set for G. We will discuss the following conjecture [START_REF] Perrin | Sur les groupes dans les monoïdes finis[END_REF].

Conjecture 1 (Rank Conjecture) Let X be a finite bifix code and let G be a transitive permutation group of degree d and minimal rank k. If G is a syntactic group of X, then Card(X) ≥ (k -1)d + 1.

The inequality is related to Schreier's Formula. Indeed, if X is a basis of a subgroup of index d in a free group on k generators, then by Schreier's Formula, Card(X) = (k -1)d + 1.

The degree of nonspecial groups. Let X be a prefix code and let

A = A(X * ). A syntactic group G of X is called special if ϕ -1
A (G) is a cyclic submonoid. In particular a special syntactic group is cyclic.

The following result is from [START_REF] Perrin | On syntactic groups[END_REF]. This shows that the conjecture is true for groups of minimal rank 2. The theorem is clearly not true for special syntactic groups since Z/nZ is a syntactic group of X = a n for any n ≥ 1. This theorem was proved before by Schützenberger [START_REF] Schützenberger | A property of finitely generated submonoids of free monoids[END_REF] with a weaker bound (Card(X) ≥ d) but with a more general hypothesis (an arbitrary set X of words instead of a prefix code).

The general idea is that some parameters in the transition monoid of the minimal automaton of X * (such as the degrees of the holonomy groups) can be bounded in terms of Card(X) only, instead of the sum of the lengths of the words of X.

The proof of Schützenberger uses the Critical Factorization Theorem (see [START_REF] Lothaire | Combinatorics on Words[END_REF]).

The following result (from [START_REF] Berstel | Bifix codes and Sturmian words[END_REF]) shows that the bound in the Rank Conjecture can be reached for any transitive permutation group. Theorem 4.2 Any transitive permutation group of degree d which can be generated by k elements is a syntactic group of a bifix code with (k-1)d+1 elements.

We first give two examples illustrating the result. We will see afterwards the general construction. The holonomy group relative to {1, 2, 3} is the symmetric group S 3 generated by (123) defined by a and (23) defined by baa (see Example 3.4). Such a construction can be used to realize any group generated by a d-cycle α and another permutation β using

X = a d ∪ {a i ba d-(i+1)β | 0 ≤ i ≤ d -1}.
Example 4.4 Let X be the bifix code with 5 elements represented below.

The action on the sets of states with four elements is shown in Figure 4.2 below.

The word ba defines the permutation (18)(24) and the word aba the permutation (14)(28). Thus the regular representation of (Z/2Z) 2 is a syntactic group of this code. The proof of Theorem 4.2 relies on the notion of Sturmian and episturmian word that we describe now.

Episturmian words. Given a set F of words over an alphabet A, the right (resp. left) order of a word u in F is the number of letters a such that ua ∈ F (resp. au ∈ F ). A word u is right-special (resp. left-special ) if its right order (resp. left order) is at least 2. A right-special (resp. left-special) word is strict if its right (resp. left) order is equal to Card(A). In the case of a 2-letter alphabet, all special words are strict. For an infinite word x, we denote by F (x) the set of factors of x. By definition, an infinite word x is episturmian if F (x) is closed under reversal and if F (x) contains, for each n ≥ 1, at most one word of length n which is right-special.

Since F (x) is closed under reversal, the reversal of a right-special factor of length n is left-special, and it is the only left-special factor of length n of x. A suffix of a right-special factor is again right-special. Symmetrically, a prefix of a left-special factor is again left-special.

As a particular case, a strict episturmian word is an episturmian word x with the two following properties: x has exactly one right-special factor of each length and moreover each right-special factor u of x is strict, that is satisfies the inclusion uA ⊂ F (x) (see [START_REF] Droubay | Episturmian words and some constructions of de Luca and Rauzy[END_REF]).

A Sturmian set is the set of factors of a strict episturmian word.

It is easy to see that for a strict episturmian word x on an alphabet A with k letters, the set F (x) ∩ A n has (k -1)n + 1 elements for each n. Thus, for a binary alphabet, the strict episturmian words are just the Sturmian words, since a Sturmian word has one right-special factor for each length and its set of factors is closed under reversal. An episturmian word s is called standard if all its left-special factors are prefixes of s. For any episturmian word s, there is a standard one t such that F (s) = F (t). This is a rephrasing of Theorem 5 in [START_REF] Droubay | Episturmian words and some constructions of de Luca and Rauzy[END_REF]. Let G be a transitive permutation group of degree d on a set Q which can be generated by k elements. Let A be a k-letter alphabet and let ϕ : A * → G be a surjective morphism from A * onto G. Let 1 be an element of Q. The map q → qϕ(a) defines an automaton A = (Q, 1, 1). It is trim since G is transitive and thus it is a group automaton. Furthermore, G is the transition monoid of A. Let Z be the group code generating the submonoid recognized by A. Then G(Z) = G by definition. Thus Theorem 4.2 follows from the following result from [START_REF] Berstel | Bifix codes and Sturmian words[END_REF]. Theorem 4.7 Let A be an alphabet with k elements. Let Z ⊂ A * be a group code of degree d. Let F be a Sturmian set. The set X = Z ∩ F has (k -1)d + 1 elements and G(Z) is a syntactic group of X.

We illustrate the construction on three examples. In each case, we start from a group code Z and we compute the minimal automaton of X * , where X = Z ∩F . We exhibit in each case a set I ⊂ Q such that Group(I) is equivalent to G(Z). We have already seen (Example 4.4) that the holonomy group relative to {1, 2, 4, 8} is the regular representation of (Z/2Z) 2 .

Example 4.10 Let A = {a, b, c} and let F ⊂ A * be the set of factors of the Tribonacci word (see Example 4.6). Let ϕ : A * → (Z/2Z) 3 be the morphism defined by ϕ(a) = (1, 0, 0), ϕ(b) = (0, 1, 0) and ϕ(c) = (0, 0, 1). Let Z be the group code generating the submonoid ϕ -1 (0, 0, 0) and let X = Z ∩ F . The code X has 17 elements and the minimal automaton of X * is given in Table 4.1. The word abacaba is an element of F of rank 8. Its image is the set I = {1, 2, 7, 9, 19, 21, 30, 32}. The action on the 8-element sets is shown on Figure 4 defined respectively by the three words on the left. Thus this group is the regular representation of (Z/2Z) 3 .

Codes with empty kernel

A word s is an internal factor of w if w = rst with r, t nonempty. The kernel of a set of words X is the set of words in X which are internal factors of the words of X. We will state in this section results on syntactic groups of prefix codes with empty kernel. There are two important particular cases of prefix codes with empty kernel.

The first case is that of semaphore codes. A semaphore code is a set of the form X = A * S \ A * SA + for some nonempty set S ⊂ A + . Equivalently, a semaphore code is a maximal prefix code with empty kernel (see [START_REF] Berstel | Codes and Automata[END_REF]).

The second particular case is that of infix codes. An infix code is a set of words which does not contain any proper factor of its elements. It is a bifix code with an empty kernel.

Let X be a prefix code and let F be the set of internal factors of X. Let A = A(X * ) be the minimal automaton of X * . A syntactic group G of X is proper if there is a word w / ∈ F such that ϕ A (w) ∈ G. Note that if G is proper, then for any g ∈ G there is a word w / ∈ F such that ϕ A (w) = g.

Recall that a permutation group G is regular if no element of G distinct from the identity has a fixpoint.

The following result is from [START_REF] Berstel | On the groups of codes with empty kernel[END_REF] where it is stated in the more general case of codes instead of prefix codes. Theorem 5.1 Let X ⊂ A + be a prefix code with empty kernel. Any proper syntactic group of X is a finite regular cyclic group. M of A contains groups which are cyclic of order 1, 2 or 3. For example, ab contains the cycle (134) while a contains the cycle [START_REF] Lothaire | Algebraic Combinatorics on Words[END_REF]. Let us note an interesting feature of this example. For any word w in (a ∪ babb * aba) * , we have ϕ A (w) ∈ Stab({1, 2}) and w defines a cyclic group of order 2 (see Figure 5.2). But the set of these words is a submonoid which is not cyclic and not even finitely generated. This example shows another interesting feature. Consider the group G containing ϕ(ba). The neutral element of G is e = ϕ(baba) and its set of fixpoints is {1, 2, 3, 6}. The group G is of degree 4. It is composed of the permutation (16)(23) and the identity. It is thus of order 2 (note that this gives an example of a syntactic group which is not transitive). Actually, M does not contain any cyclic group of order 4. From groups to monoids. Let G be a transitive permutation group on R = {1, 2, . . . , n} and let ϕ : A * → G be a surjective morphism. Let H be the subgroup of G which fixes 1. Let Z be the bifix code generating the submonoid ϕ -1 (H). Let X be the set of elements of Z which have no proper factor in Z. Let M be the transition monoid of the automaton A(X * ).

The following result appears in [START_REF] Berstel | On the groups of codes with empty kernel[END_REF].

Proposition 5.4 The set X is a finite infix code. The syntactic groups of X, except possibly the group reduced to the neutral element of M , are cyclic and regular of degree at most n.

Note that the group reduced to the neutral element of M is of degree equal to the number of states of A(X * ) which may be larger than n. ware Semigroupes [START_REF] Froidure | Algorithms for computing finite semigroups[END_REF]). Moreover

• ab defines the cycle (1 6 11 4 9).

• a 2 ba 2 b 2 defines the permutation (1 12)(5 11) of degree 4 but there is no cyclic group of order 4 in M (A).

• a and b define cycles of degree 3.

• a 4 ba 5 defines the identity on {1, 2} and a 2 bab 2 a 2 ba 4 defines the transposition (1 2).

Černý automata. Let A be a complete deterministic automaton on a set Q of states. A word w is called synchronizing for A if the set Q • w of states reached after reading w has only one element. The automaton A is called synchronized if there exists a synchronizing word for A. Recall that Černý's conjecture [START_REF] Černý | Poznamka k homogenym s konecnymi automati[END_REF] expresses that a complete deterministic synchronized automaton with n states has a synchronizing word of length at most (n -1) 2 . The Černý automaton of order n, denoted C n is the following automaton on the alphabet A = {a, b}. Its set of states is the set {0, 1, . . . , n -1} and the transitions are defined by

i • a = i + 1 mod n, i • b = 1 if i = 0 i otherwise
The automata C n for n = 4, 5, 6 are represented in Figure 5.5.

For each n ≥ 1, the automaton C n is synchronized. Indeed, it is easy to verify that the word (ba n-1 ) n-2 b is a synchronizing word of length (n -1) 2 . It is known that there is no synchronizing word of length less than (n -1) 2 [START_REF] Černý | Poznamka k homogenym s konecnymi automati[END_REF]. We use Theorem 5.1 to prove the following result. The proof uses semaphore codes (see the beginning of Section 5). Proof. Let X n be the prefix code generating the stabilizer of 0 in C n , which is the submonoid formed by the words x ∈ A * such that 0 • x = 0. We have

X n = a(b * a) n-1 ∪ b(b * a) n-1
It is easy to verify that X n is a maximal prefix code which has empty kernel. Thus it is a semaphore code. The automaton A = C n , with 0 as initial and terminal state, is the minimal automaton of X * n . Let G be a syntactic group of X n . Since ϕ A (a n ) is the neutral element of M (A), the set ϕ -1 A (G) contains words which have an arbitrary high number of occurrences of a, and thus which are not factors of X. Thus G is proper and we conclude that it is cyclic and regular by Theorem 5.1. By Proposition 3.2, the holonomy groups of A are the restriction to I of the group G(e)∩Stab(I) for some idempotent e in M (A) with image J containing I. Since Group(J) is a syntactic group of X, it is cyclic and regular. Thus the same holds for the holonomy groups of A.

Note that the semaphore code X n above is the product of the two semaphore codes A and (b * a) n-1 (the product of two semaphore codes is a semaphore code by Proposition 3.5.12 of [START_REF] Berstel | Codes and Automata[END_REF]).

We do not know if there is a relation between the property of Černý automata expressed by Proposition 5.8 and the fact that they are an extremal exemple for the shortest length of synchronizing words. A connexion between Černý's conjecture and holonomy groups has already been established. Indeed, it is known that the conjecure holds for aperiodic automata, i.e. automata with trivial holonomy groups [18].

We give below examples showing the following features of the automata C n for n = 4, 5, 6: All holonomy groups are cyclic of order and degree k for all k with 1 ≤ k ≤ n.

We do not know if this property holds for all automata C n .

Example 5.9 The automaton C 4 has cyclic holonomy groups of order and degree 1, 2, 3, 4. Indeed, the table below indicates the permutations defined by each word on the first row. It does not seem easy to describe in general the shape of the words defining a cycle of length k for 1 < k < n -1.
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 21 Figure 2.1: Two automata
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 2322 Figure 2.2: Two simple automata
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 24 The transition monoid of the automaton on the left of Figure2.2 has six elements, images of 1, a, b, ab, ba and bb respectively.
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 25 The transition monoid of the automaton on the right of Figure 2.2 is the regular representation of the cyclic group Z/2Z.
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 2732823 Figure 2.3: Two group automata
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 31 Let G be a group in a transformation monoid M . All elements of G have the same image I. The restriction of the elements of G to I is a faithful representation of G as a permutation group on I.

Proposition 3 . 3

 33 Let M be a transformation monoid on a finite set Q. Let e be an idempotent in M and set I = Qe. Then Group(I) = G e . Proof. By Proposition 3.2, and since G(e) ⊂ Stab(I), Group(I) is the restriction to I of the group G(e), which is by definition G e .
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 343132 Figure 3.1: An automaton with holonomy group S 3 .
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 33 Figure 3.3: The Schützenberger representation
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 38 Consider again the automaton of Example 3.4 and the idempotent e = ϕ(a 3 ) as in Example 3.6. Set also I = {1, 2, 3}. The group H is generated by the loop (I, a, I) and the cycle (I, baa, I). Thus Group(I) is generated by α(a) = (123) and α(baa) = (23) where α(w) denotes for w ∈ A * the restriction to I of ϕ(w).Example 3.9 Let A be the automaton represented in Table3.1. Set ϕ = ϕ A and let e = ϕ(a 5 ). The action of A on the sets with 5 elements is represented in Figure3.4. Set I = {1, 2, 3, 4, 5} and J = {1, 2, 6, 7, 8}. Set f = (I, a, I), g = (I, b, J), h = (J, b, J) and k = (J, a, I). Let us choose the tree T reduced to the edge g and the set S reduced to the edge k.
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 34 Figure 3.4: The action on 5 element subsets
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 35 Figure 3.5: The Schützenberger representation
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 41 Let G be a permutation group of degree d. If G is a nonspecial syntactic group of a prefix code X, then Card(X) ≥ d + 1.
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 43 Let X = {aaa, aaba, ab, baa}. The minimal automaton of X * is the automaton of Figure3.1.
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 42 Figure 4.1: An automaton
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 4546 Set A = {a, b}. The Fibonacci morphism is the substitution f : A * → A * defined by f (a) = ab and f (b) = a. The Fibonacci word x = abaababaabaababaababaabaababaabaab • • • is the fixpoint f ω (a) of f . It is a Sturmian word (see [12] Example 2.1.1). We call Fibonacci set the set of factors of the Fibonacci word. Consider the following generalization of the Fibonacci word to the ternary alphabet A = {a, b, c}. Consider the morphism f : A * → A * defined by f (a) = ab, f (b) = ac and f (c) = a. The fixpoint f ω (a) = abacabaabacababacabaabacabacabaabacab • • • is the Tribonacci word . It is a strict standard episturmian word (see [9]).
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 4843 Figure 4.3: A code with syntactic group S 3
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 44 Figure 4.4: A code with syntactic group (Z/2Z) 2
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 45 Figure 4.5: The action on 8-elements subsets It shows that the holonomy group relative to I is generated by the three
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 5251 Figure 5.1: The automaton A(X * )
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 52 Figure 5.2: The action of A * on the 2-element subsets reachable from {1, 2}
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 53 Figure 5.3: An infix code with a group of degree 4 and order 2.
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 55545657 Figure 5.4: The infinite group code Z and the finite code X
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 55658 Figure 5.5: The automata C 4 , C 5 , C 6

a ab a 2 b a 3 bab a 3 bab a 2 b a 3

 33 (0123) (123)[START_REF] Lyndon | Combinatorial Group Theory[END_REF] [START_REF] Berstel | On the groups of codes with empty kernel[END_REF] Example 5.10 The automaton C 5 has cyclic holonomy groups of order and degree 1, 2, 3, 4, 5. Indeed, the table below indicates the permutations defined by each word on the first row. a ab a 3 b a 2 b a 4 b (01234) (1234) (142) (13) (1) Example 5.11 The automaton C 6 has cyclic holonomy groups of order and degree 1, 2, 3, 4, 5, 6. Indeed, the table below indicates the permutations defined by each word on the first row. a ba 5 b a 5 b (012345) (12345) (1532) (135)(13) (1)It is easy to see that, in general, (i) a defines the n-cycle (01• • • n -1) (ii) ab defines the n -1 cycle (12 • • • n -1).(iii) a n-1 b defines the cycle (1).

Table 4 .

 4 1: The transitions of the automaton A(X * )

	permutations on the right below:
	caba	(1, 19)(2, 21)(7, 30)(9, 32)
	bacaba	(1, 30)(2, 32)(7, 19)(9, 21)
	abacaba (1, 32)(2, 30)(7, 21)(9, 19)

Table 5 .

 5 1: The transitions of A(X * )
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