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Abstract

The equations governing plane steady-state flow hgterogeneous porous media
containing curved-line intersecting crack3o(lya and Ghabezloo 2018hd the potential
solution obtained for these equations are consilérere. The theoretical results are first
completed for the mass balance at crack intersecfioints. Then, a numerical procedure based
on asingular integral equationmethodis described concretely to derive this solutiond@cked
materials. Closed-form expressions of elementatggnmals for special choice of collocation
points lead to a very quick and easy numerical ptketht is shown that this method can be
applied efficiently to the study of the steady etfiow in cracked materials with anisotropic
matrix permeability and a dense distribution ofvaali-line intersecting cracks. Some applications
of this method to the permeability of cracked miaterare given.

Keywords: porous media, cracks, steady state flow, singutdegral equations, effective
permeability

1 Introduction

The discontinuities such as fractures and cracke lyanerally a great influence on the effective
permeability of fractured rocks and porous matsriflome physical and engineering problems
such as the contaminant transport in micro-crackeks or reservoir study in petroleum industry
require the modelling of the fluid flow in porousetia containing cracks or fractures. The
problem of flow in a porous matrix containing crackith mass exchange between matrix and
cracks has been intensively investigated in regeats by different approaches (see the reviews
given by Sanchez-Vila etl. (1995), Goméz-Hernandez and Wen (1986) Renard and de
Marsily (1997). Two-dimensional flow in and around a facture edtéed by an infinite
porous medium, under a constant pressure gradieas, in several cases derived
analytically by means of some geometrical simpéfions. In particular, the fracture has
been sometimes modelled as a flattened ellipsam@lsion Zimmerman, 1996pr as a
two-dimensional lengMityushev and Adler, 200&illed with a Darcy type material. In the
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present paper, we only consider the case of zekitless fractures with no pressure
jump between the two faces of the fracture. Thigegponds to an assumption of infinite
transverse permeability of the fracture and exatgdihe cases where fractures act as an
impermeable membrane like some cases of shearsfaMlanzocchi et al. 2000 The
effective permeability of materials with this kiodl cracks has been studied by many numerical-
empirical approacheé& more rigorous approach based on the homogenizatahemenas
been given byShafiro and Kachanov (2000Rormieux and Kondo (2004) and Barthélémy
(2009)in which the crack is assimilated to oblate ebipgal inclusions obeying to a Darcy’s law.
This powerful approach easily provides results tloe effective permeability of 3D cracked
materials, but it can not take into account crantkrsections explicitly. Regarding the numerical
modelling, the most difficult question is to gertera consistent mesh for a randomly fractured
medium. A robust and automated algorithm was ptesefirst by Koudina et al. 19980
triangulate a polygonal fracture network; and tias extended for the fracture network and the
embedding matrix as described Bpgdanov etal., 2003 The flow equations are then
discretized by means of the finite volume methodcasompute the effective permeability of
fractured porous medi@gdanov etal., 2003 Bogdanov etal., 2007; Mourzenko et al.
20119).

Following a different wayl.iolios and Exadaktylos (200@resented a mathematical formulation
for plane steady-state flow in a cracked porousimathere the cracks are considered as zero
thickness discontinuity lines. However, their methaising complex number potentials, was
restricted to isotropic matrix and excluded crackelisections. More recentlfRouya and
Ghabezloo (2010)sed a direct approach to model plane steadyfstadeflow in an anisotropic
porous body containing curved line cracks with gmesntersections. This approach provided a
general potential solution for the fluid pressurdhe matrix function of discharge along cracks.
The flow in the cracks is modelled by a Poiseuilfpe law, a linear relation between the
discharge and the pressure gradient along the .cfdw& model of cracks will be designated as
Poiseuille crackto be distinguished from ellipsoidal cracks obgyin Darcy’s law. Moreover,
closed-form solutions were derived for the casa single crack in an infinite matrix and applied
to the problem of permeability upscaling.

In the present paper, we first complete the worlPoflya and Ghabezloo (2016y the mass
balance equation at crack intersection points. Thanomerical method is developed to solve the
general system of singular equations for the casm anfinite body containing a dense family of
curved line and intersecting cracks. This methdobised on the resolution of the equations for a
finite number ofcollocation points A special choice of collocation points is giversimplify the
computation. Besides, all the elementary integrahs are calculated explicitly. This leads to a
highly efficient and fast calculation method. Affmesenting the method, a successful validation
is first presented by comparing the numerical tesoibtained for a singleuperconductiverack
with the closed-form solution for this case. Thine flow is modelled around several curvilinear
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and intersecting cracks and the masse balancesketl carefully at intersection points. After
that, the effective permeability of a material @ning a random crack distribution, inspired from
geological observations on a rock formation, igl&d for the illustration of the method. Finally,
the effective permeability of a periodic crack netk is calculated with this method and the
result is compared to those obtained by theoretieghods.

2 Governing equations

In this section, we briefly present the basic réesubtained byPouya and Ghabezloo
(2010) An infinite heterogeneous porous body containing a crack network is
considered. The cracks are numberednbgnd denoted by™ (Fig. 1). The crack™ is

geometrically represented by a smooth cugleof the curvilinear abscisg A crack can

end in the matrix or intersect other cracks atexsremities. The intersection points of
two or more cracks and the extremities of crackgirg in the matrix constitute a set of
singular points denoted by S. The set of points on theksaoe denoted by, therefore,
SO I'. The matrix corresponds -T'.

q(z) /P

/&?\

P(X), V()
Q 0p Q

o, Q

Fig. 1 Heterogeneous porous material containing micro-&sc

The fluid flow in the matrix is assumed to be gaved by Darcy’s law:
OxO0Q-T (¥ =-k(XOp (1)

where,v(x) designates the fluid velocitk the local permeability andp(x) the pressure
gradient ax.

In the absence of point sources, mass conservatitile matrix reads:
OxO0Q-T O.v(x) =0 (2)

The flow model in the cracks is described commolnyya Poiseuille type lawLpuis,
1969; Norton and Knapp, 1977; Witherspoonadt 1980; Guéguen and Palciauskas,



1994) in which the dischargg in the crack is proportional to the pressure geatlialong
the crack line:

OsOr a(s) =-q 9.9 (3)

wherec is the hydraulic conductivity of the crack depemglion its hydraulic aperture or
its fill materials. According to the Poiseuille’aw c=e®/(12u) wheree is the hydraulic
aperture of the crack and p the fluid viscosBuperconductiveracks correspond to the
limite case of € - «). In this case the pressure is constant alongthek curve.

The equation governing the crack-matrix mass exghaatregular points on the crack
(excluding intersection points) is established lopsidering mass balance in a fragment
of the crack comprised between abscisesnds+ds (Fig. 2a). It reads:

OsOr [v(2]-n(9+0, ¢ $=0 (4)

In this equation,z is the point on the crack at the curvilinear abasn(s)is the unit
normal vector to the crack curve oriented from thiele I to I'" (Fig. 2a) and
[v(2] =V (3-_v( ) is the discontinuity or jump of fluid velocity amss the crack.

At crack intersections, analysing the mass balanca circle centred at the intersection
point, Pouya and Ghabezloo (20183tablished the following relation for the fluiglecity at
this point:

DzOS Q-\_/QO{Z q‘fjé(g(—_z) =0 (5)

where, q? designates the outgoing discharge on the crackdbramumbelj, x is a point

in a small neighbourhood o containing only z as singular pointHig. 2b, and &
represents th®irac distribution.

. An v’
r tt
X v E—»
r S stds
(@) (b)

Fig. 2 a Crack-matrix mass exchange at a regular point craak.b Crack-matrix mass
exchanges at an intersection point of several @ack



The body is submitted at infinity to a pressurddip«(X):

Lim{p( - p. (] =0 (6)

The field p. satisfies Ap.=0. In the most general case of effective permebil
modelling, p. corresponds to constant pressure gradiéest, p.(X)=A.x whereA is a
constant vector.

For the case of uniform matrix permeabiliky a general potential solution for these
equations was rigorously established Bguya and Ghabezloo (201@jth the following
expression:

_ -z"(9 1 m
AX) =P (X)+ (9 =kt (9 ds
o qu HJ_ x-2"(9]| "

In this relation,x is the current point in the porous body(s) is the point on the crack
I'™ at the curvilinear abscisg q™(s) is the discharge along the craok t™(s) is unit
vector tangent to this crack at the po#i(s) andk is the square root of determinant of

k: K =\/M. If the dischargey(s) in (7) is replaced by its expression functionpg$), for

instance by (3), and theollocation pointx is taken on the cracks, then a system of
equations is obtained that allows us to determhreegressur® on the crack network. It
is worth noting that this system of equation invedvonly the pressure on the crack lines
and thus reduces the dimension of the problem f2ota 1. This simplifies considerably
the numerical resolution method in the same wayt tBaundary Elements method
simplifies the numerical resolution compared to iE&nElements or Finite Volume
methods.

3 Mass balance at intersection points

A deeper mathematical analysis of the mass balaalition at intersection points
allows going further than equation (5) and demaai®ts that at these points we have:

;q? =0 (8)

This relationship has an important physical intetption and consequences for
numerical modelling that will be detailed furthdfo demonstrate it, let us consider a
small domainD surrounding an intersection pointwith its boundary designated ¥
(Fig. 2b. If there arel intersecting cracks &, thenD is divided intoJ sub-domains
Dj,+1 bounded by the crackis; and T+, (with the convention ;41 = I'1 to have cyclic
notation). The mass exchange betw®and the matrix contains two parts: one by flow
through the matrix oD with fluid velocity v, and the other by the cracks at their
intersection withdD where discharge is designated QS/. Therefore, the mass balance

for this domain reads:

j\_/.ﬂ ds+> ¢ =0 9)
aD i



Now, we consider the mass balance in the subdowiajn.;. It reads:
J' v.n ds—J'_\7._n ds- j _v.ndsO

D D
0D jn 5 Ma

(10)

where, F? represents the portion &% included inD, n is the unit normal vector on the

integration line. OdD;;+1, n represents the outward unit normal, wheread gnt is
oriented from the surfacd; to the domainDj,+1. On [ the fluid velocity is
discontinuousy™ andv’ represent the velocity at respectively the negatimd positive
sides of this surface orientated hy(Fig. 2b). This convention determines the sign of
the two last integrals in (10). When summing thgg&tion onj, the contribution of the
two last integrals can be transformed into expm@ssiinvolving the jump o on ;.
Hence, the following equation is then found:

_[\_/.Q ds-) j [M.nds0 11
D jre (11)

Now, by using (4) the second integral in this eguacan be changed to write:

> [ Ivlnds=-3(¢ - ) (12)
e I
Introducing (12) and (11) into (9) results in (8).

The physical interpretation of (8) is that the mmsbalance condition at crack
intersection points is independent from the crackx mass exchange. This relation is
the same that one would find for a crack networkimpermeable material. Moreover,
this result also allows extending the Cauchy in&igm to intersection points by
elimination of the singular contribution of diffarecrack branches at these points to the
integral (7). This equation will be verified numeaily in Section 5.

4 Numerical resolution

By replacingq(s) in (7) by its expression (3), a system of integiferential equations
is obtained and then solved in order to determime pore pressure and the fluid flow
fields. This system allows us to investigate iniratfstage only the pressure along crack
lines and determining it by resolving the systemsofgular integral equationsin the
second stage, the integral equation (7) with thewkm expression of the dischargés)
will be used to calculate the pressure field atamtrary point of the matrix. It is worth
noting that the values of(s) in the first stage can be directly used for peabiéty
upscaling and the second stage is not necessarthi®mpurpose. This is an interesting
feature of the numerical method presented here wsdlibe seen in section 6.

The principle for resolving theingular integral equation®y collocationmethodcan be
found in Bonnet (199% We propose in this paper a special choice otripblation
functions and collocation points as well as anabfti expressions for elementary
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integrals that lead to an efficient and fast resolu method. The numerical method
presented in the following assumes a constant veduehe cracks conductivitg but it
can be easily extended to variable conductivitmscracks.

4.1 Discretization and Interpolation

As a consequence for the theoretical formulae if@merical calculation only requires a
mesh generation on the cracks which must be cadigty taking into account crack
intersection points. Thus, cracks are discretizgdalmumber of intervals, called in the
sequel «elements ». The set of intervals on a#cks define globallyN elements
numbered byn and denoted b¥, (1sn<N). With these notations, Eq. (7) can be written
as:

P =Ax+Y |, (19
where,
0= [an9—2"2 0 it g ”

E, HJk_'l-[z—_Z”(S)]

In order to define the interpolation functions adriable on the elements, we distinguish
two types of elements: current element on the crac# extremity elements where the
cracks end in the matrix. On the current elemeat$éinear interpolation of pressure is
used; henceg is constant on the elemenFEi§. 3). For extremity elements, general
theoretical results concerning the velocity fieldgularity close to a crack tip leads to
suppose that varies asr'’? around the crack extremity point¥@skhelishvili, 1953.

Besides, based on the analytical solutions of flilédv in superconductive crack®guya
and Ghabezloo, 20),0we choose an interpolation function for dischagg® with a variation as
s? wheres is the distance from crack extremity. This leads t@dation ass®? for p(s) on
the extremity elements. We designatelbthe length of the element and py andp; its
nodal pressures at curvilinear abscises0 ands=L. Then the interpolation functions
for the pressure and discharge on current eleméefisextremity element@ip ats = 0)
andright extremity element@ip ats = L) take, respectively, the following expressions:

P> — Py P2~ Ps

p(s) = p1 +%s; aes) = ¢ T (15)
B(s) = p1 +%J§3: A(s) = -av/s (16)
L



- 3
p(S)=pz-pz—3plx/L—s ; q(s) =-avJL-s (17)
where:

B (18)

Fig. 3 Interpolation of the discharge (a) and pressure gdpng a discretized crack

4.2 Choice of collocation points

The collocation methodtonsists in enforcing exactly the singular intégrquation (7) at

a finite number of points called collocation points its simplest form and in most
studies in the literature, these collocation poiate chosen to be the nodes used to
discretize the geometry. Herein, we propose anoter to choose the collocation points
that easily allows the introdution of analyticalpggssions for the elementary integrals
and thus the simplification of the calculation. ftst, a collocation point is taken per
element and if the collocation poinxtis on the elemenE,, I,(X) becomes a singular
integral. For the current element, a collocationnpx, is placed naturally in the middle
of the element because this implies:

(X)) =0 (19)

This equation results from the linearity of pressiumterpolation on the current elements
and simplifies the calculations. It suggests aldoasing the collocation point on the
extremity element such that the same equation {iB)be obtained.

Consider deft-extremity elementBvith endpointg; andz, and take the collocation point:
X=2s) =z + (sdL) (22 - z2) (20)



with 0 <s; <L. Substituting Eqgs.(16), (18) and (20) into Eq.(1#)en I,(x) can be
integrated explicitly. As a result, equation (18)fulfilled for a value ofs, /L = & where
¢ is the solution of the equation:

BN

Numerical computation leads €= 0.694817 In a similar way, the conditiog/L = 1-¢
is obtained with the same numerical value §dor right-extremity elements

In conclusion, on the elemeft, a collocation poink, =z; + &, (22 - z1) is chosen with,
&h = ¢, & = 0.5 and ¢, = 1< for respectivelyleft-extremity current andright-extremity
elements

It should be noted that depending on the crack odtwconnectivity, the number of
elements can be smaller than the number of noderncé] it is not generally sufficient to
take one collocation point per element to solvedhgtem of equations that has the nodal
pressures as unknown variable because the numbeguations can be smaller than the
number of unknowns. The difference between the memad nodes and elements depends
on the connectivity properties of the crack netwakd is not easy to determine.
Nevertheless, a summary count of nodes and elemeot$d help to determine an
optimum choice of collocation points. As a mattéfact, each element is always related
to two nodes, whereas, except for crack extremiyngs, a node is related to two or
more elements. Thus, the number of elements is rtteap the number of nodes that are
not crack extremities. Therefore, if, to the sell@mations pointsx, defined here-above
(the same number than the elements), we add thek @atremity points, the number of
collocation points will become always greater thha number of nodes. In this way, we
can have more equations than unknowns, and thefretst square fitting method will be
required to solve the problem. This method willgresented later in the paper.

4.3 Explicit expression for elementary integrals

In the literature on boundary elements method, ast@fon of regular elementary
integrals is usually based, as well as in finiteneént method, on the use of Gaussian
quadrature formulas. Contrariwise, the Cauchy Rpalc Value definition for the
singular elementary integral is the standard teghaiin the boundary integral analysis
(Guiggiani, 199). However, there are still other techniques auddato deal with the
singular integral such agegularization techniqugTanaka etal. 2002 that permits
treating weak singularitypoundary limit approachSutradhar etl. 200§ that defines
the boundary equation as a limit casexfpproaches the boundary from either interior

or exterior and which is efficient for symmetric Bekin boundary elements method.
Otherwise, the numerical difficulty appears whems too close tcE,. In this case, the
integrals are not strictly singular but nearly sitey and can be computed by some
transformation techniques that allow the concemrabf Gauss’s points in the vicinity
of the orthogonal projection of on the considered element. In this study, all eetary
integrals are explicitly computed by an analytipabcedure which aims to a high speed
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convergence of numerical computation and avoidso allse numerical integration
difficulties.

According to the relative position of the poixitand the elemenk,, we can distinguish
five types of elementary integralg(x.) to be calculated:

(i) Xc = xn is the collocation point defined here above anititervalg,,

(i) X is the extremity point on the extremity elemEnpt

(iif) % is an intersection point

(iv) xc is on the elemert, but is not an extremity nor endpoint,

(V) X is not onEp,.

For the first case, we have already choggwerified I1,(x,)=0. For the second case, the
integrant function is singular at the poinxt, but remains integrable because its
singularity is the order o2 In the third casex, is an intersection point between
several cracks or common points between severahesE,. Eachl,(x;) is singular in
this case, nevertheless, the sum of singulariteagshes because of the mass balance (8).
For the fourth case, the integrant function is silag at x;, but can be integrated in
Cauchy principal value sense. Finally, the integrdanction is not singular in the last
case. For determination of the nodal pressure,oorthie first stage of our numerical
method (see the beginning of Section 4), the systénequations derived from (13)
involves only the first and second cases listedvabdn these cased,(x;) can be
expressed by the analytical expressions. Henceatemu (13) leads to a matrix equation
in which all components of the matrix are computathlytically. This provides a very
fast calculation method for determining the nodedgsures in the first stage. In the case
(iii) listed abovex; is a nodal point and its pressure in deduced ftbenresults of the
first stage. The pressure for the casg (s deduced by interpolation functions (15) to
(17) from the nodal pressure. For the last cagedgnalytical expressions for elementary
equations can also be derived that simplify thecaktions. Analytical expressions of
different cases of elementary integrals are giveAppendix.

4.4 Construction and resolution of linear systeneqtiations

The set ofM scalar equations (13) fdd nodal pressure unknowns have the following
matrix structure:

F=HP=C+GP (22)

where, FMx1) is the column of pressure values at collocatpmnts, PNx1) is the
column of unknown nodal pressure, MX1) is column of infinite pressure fielg@,
applied to collocation pointdi(MxN) is established from the interpolation functioms i
Eqgs.(15)-(17),G(MxN) is computed from the elementary integrals in tighnd side of
equation (7) which is set up through taesemblyoperation that is carried out by two
nested loops: the first one is over all collocatipoints and the second one over all
elements.

As a consequence, the system (22) consistdl equations andN unknowns withM>N.
However, an approximate solution can be computedusing the least squares fitting
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method which is performed by minimiziri¢H-G)P - C|* on the P values. This leads to
the equation:

KP=Y (23)
where:
K = (H-G)'(H-G); Y = (H-G)'C (24)

In this way, finally, the system of equations (1i8)reduced to a linear system O
equations o\ unknown nodal pressures.

5 Numerical examples

In this section, we present some examples thastilaie the numerical method obtained
in precedent sections. The algorithm described irecpdent section was been
implemented in a Fortran code that generates auioally a consistent mesh to

discretize the crack network. Then, as describerk hebove, the nodal pressures are
determined from (24) in a first stage and inserited13) to determine the pressure at an
arbitrary point.

5.1 Straight single crack in an infinite plane

In order to validate the numerical solution, theidl flow around a single straight crack
in an infinite homogeneous matrix was modeled aondgared to the analytical and
semi-analytical results obtained Bouya and Ghabezloo (2010Jonsider an infinite
matrix, with uniform and isotropic permeabiliky containing a straight crack of length
2L and conductivityc, occupying the interval-L,L] on thex-axis of coordinate system.
This infinite body is submitted to a farfield prese with a uniform gradienA = (a,0)
parallel to the crack:

Pe(X) = a.x (25)
The following dimensionless parameters are intradlic

A=—C x=X R(x)=Fx0 (26)
2TKL L alL

Fig. 4 displays, for different values &f the pressure and the discharge obtained along
the crack line. Since the problem is symmetric widspect to they-axis, only the
solution on the right half-crack0£X<1) is presented in the figure. It is important tmie
that, for every value of >0, at the crack tip, the dischargeas well as the pressure
gradient in the crack are null. The pressure figtained for the limit case of
superconductive crackc{>o or A—o, numericallyd = 10°) is presented in Fig. 5. This
figure shows the singularity of the pressure gradi@ the neighbourhood of the crack
tip. The numerical results obtained here are ifgmragreement with the semi-analytical
or close-formed solutions given Rouya and Ghabezloo (201®ig. 4 - right).
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Fig. 4 Pressure and discharge along the crack line plotteddifferent values ofl. Left:
pressure R along the x-axis, right: discharge g in the craf@l«X<1)
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Pressure

Fig. 5 Pressure field p(x,y) in the plane of the crack &ouniform pressure gradient at infinity
parallel to the crack (X-axis in the figure).

5.2 Curvilinear cracks with intersection

The following example of several straight or cuiwéar intersecting cracks allows us to
illustrate the benefit of the new numerical metlominpared to previous works, and also
to numerically check the mass balance equation @) geometry of the cracks is
presented in the Fig. 6, with details for elemestisrounding the intersection point on
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the right. The pressure field has been calculateck Hor an anisotropic matrixg = 2,
kyy=0.5) under the limit condition (25). The pressure diedbbtained in the matrix is
presented in the left of Fig. 6. This example ithases two improvements of the method
compared to that presented hiplios and Exadaktylos (2006extension to intersecting
cracks and to anisotropic matrix.

Note that the limit condition of pressure is giveyp(x) = ax at infinity and not on the
boundary of the domain presented in the figure.tlla boundary the pressure is affected
by the presence of the cracks. This shows anottiearstage of the method: in numerical
calculations for determination of the effective peability of cracked materials, one
often seeks for the flow in a family of cracks in mfinite matrix subjected at infinity to

a uniform pressure gradient. This is the conceprofnclusion in an infinite matrix. But
to determine numerically the flow field, generalgn REV Representive Element
Volumg is considered and a pressyr&) =ax is imposed on the boundary of this REV
(Long et al, 1982, Pouya and Fouché, 200%his does not correspond to the theoretical
condition of a farfield pressure gradient. The noetlpresented here, based on equation
(7), allows naturally imposing a uniform pressuradjent at infinite boundary.

Here is also an occasion to check if the numerreallts satisfy well the mass balance
(8) at the intersection points. Note that equatiphhas not been included in the system
of equations determining the numerical results &éimeh mass balance (8) is not an
priori condition imposed on these results.

120

121

124

Pressure

3.0131
I2.34?
1.6809

-1.0148

., 0.34872
B 031738

- -0.96348
-1.6496
-23157
-2.9818

Fig. 6 The Pressure field p(x,y) in the anisotropic matrix
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However, the numerical discharges obtained on tkenents related to the intersection
point in the right-side of Fig. 6 (the nogel22), show that this mass balance is very
accurately satisfied. As a matter of fact, let &reor estimation be defined by:

b
E :ZTq (27)
of]|

where q*j’ is the discharge outgoing from the noden the branctb (one of the four

elements in the case considered here), h’ﬂ)dis the average absolute value of theses

discharges. In the case considered here abovepwedfat the intersection point122

E =0.004andE = 0.012for an isotropic and anisotropic matrix, respeetwThus, the
mass balance is fulfilled with a good accuracy. Hagne result is obtained for all the
intersection points that were analyzed.

6 Application to the per meability of cracked porous media

The numerical method established here above spgdiatomes interesting and efficient
compared to other methods in cases where a greabeu of cracks are present. We
show in this section its application to compute thermeability of cracked materials
which needs the modelling of the flow in the presewf a crack distribution.

A homogeneous domaif2, containing a population of internal curvilinearacksTy, is
under the influence of the linear pressure conditigp(x)=Ax applied on its
boundaryQ . A general and classical result for the case atks with zero or negligible
thickness is that the effective permeabilktyis the sum of the matrix permeabilikyand
a contribution of crackk®;

ke=k+k® (28)

The crack contributiork® can be deduced from the balance of discharge énctiacks
under a farfield pressure gradient applied to thetrm from the following relation
(Bogdanov etl., 2003 Liolios and Exadaktylos, 200®ouya and Ghabezloo, 2010

1 _ e
5; rj qtds=-k°. A (29)

In this formula,A is the pressure gradient imposed on the bound&rythat contains the
cracksly. It is sufficient to compute the left-side of (2@r two different directions of

A to be able to determin&®. The result can be compared to that predicted by
approximate closed-form solutions for the case twéight cracks. Leff™ designate a
family of cracks with length 2", orientationt™, conductivityc™ and density (number of
crack centres per unit areg). In the case of randomly oriented crackSjs isotropic:

kS=K& (30)
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and thenk® = k°3 where, according t®ouya and Ghabezloo (2016he Mori-Tanaka and
self consistent estimatek’ are respectively given by (31a) and (31b):

mkLMc™
k®=k+> L'p"—r—— 3la
Zm: L 2c™+ kL™ (312)
mkL"c ™
ké=k+>» L'p"—r—"— 31b
Zm: P 2c™+mk °L™ (31b)
with K :\/ﬂ, K®=,/k . In this case = k andk® = k°.
For a network of parallel cracks, with unit vectpwe have:
k®=K°tOt (32)
and then:
k® =k nOn + k® tOt (33)

where, the Mori-Tanaka and self consistent estimatik® are deduced respectively from
(34a) and (34b):

ke = k+ 2pL—TEEK (34a)
2c+TiLK

ke =k+2p | TeLK” (34b)
2c +TiLK®

where, k® = \Jkk®. Thus, the self-consistent scheme (34b) leadshto third-degree
equation for the variablk®.

The dilute Mori-Tanaka estimations (31a) and (3da)not take into consideration the
interaction between cracks whereas this interacteommplicitly taken into account in
some approximate forms of the self consistent se&heand fully in the numerical
modelling. In the following, the theoretical resultvill be compared to the results
obtained by the numerical method in the two cased bf porous media containing a
distribution of randomly oriented cracks and thdaaegular network of parallel cracks.

6.1 Randomly oriented cracks

A geological rock formation is considered contamiseveral families of fractures. Each
family of fractures is characterized by an averdgegth, a mean orientation and a
density that are determined from in situ geologi@hservations Rillaux, 1990; Gervais,

1993. The rock formation is represented by an infinp@ous matrix with uniform and

isotropic permeability and containing several faesl of cracks randomly generated by
stochastic laws. A domain of 10x10 (Fig. 7 - leaft)the cracked matrix is used for the
numerical modelling. In this domain, fractures gemerated according to statistical laws
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reproducing the geological data. This domain ibrsiited to the boundary conditions
(25). A smaller area is taken in which the pressfieéd is computed and used for the
equivalent permeability calculation. (Fig. 7 - righThe numerical method is very easy
to use since it does not require meshing the wisol¢ace as it would be required for
Finite Element or Finite Volume methods. The pressfield obtained by this method is
represented in Fig. 7 - right. The conductivity ofacks relative to the matrix
permeability is given by. = 1 where dimensionless variableis defined by (26). For a
crack family of density (number of crack centres peit area)p=2.5, average length =
0.35 and of uniformly distributed orientation (stolgally isotropic), the Mori-Tanaka
estimate (31a) providek®k = 1.38, the self consistent estimatélk = 1.53 and the
numerical calculationk®’k = 1.59. The difference between the numerical andriM
Tanaka estimation reveals the effect of the intBoac between cracks. The self-
consistent estimate takes approximately the craté&raction into account and is, for this
reason, closer to the numerical result.

IO)T% == F <
s,

PrEssSUre
7.56333

IE 9492
- 6.0652
-8.7811
- 0.1971

-4613
4029

34448
2.6608
22768

2 4 6 8 10
Fig. 7 Cracks network in geological rock formation

6.2 Periodic distribution cracks

An infinite porous matrix containing a periodic ttibution of cracks parallel to the
axis is consideredr{g. 8). The matrix has a uniform and isotropic permeigpik, and is
submitted to the farfield pressure gradient (25heTcracks have the lengftL and the
distance2b between their extremities in thedirection andh between their centres in
they-direction. The crack density is then:
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N 1

P20 " 2n+ 1)

(35)

where,N is number of cracks of2. The mean value ofqu is numerically computed on
r

an array of fnxm) cracks at the centre of the domain witkx1,2,3... Greater ism, more
accurately the interaction between cracks is tak€n account. As predicted by the
formula (33), the effective permeability is changedly in the direction parallel to
cracks.

2b__ 2L

22

. 2 =
(@]

. 9

(O8]

[—

Fig. 8 Periodic distribution of parallel cracks in infirétporous media

Fig. 9 depicts the variation & as a function of the crack densipyfor different values
of A. The equivalent permeability” obviously increases with the densjiyand with the
crack conductivity represented Ry The evolution ofk® with p is not linear due to the
cracks interactions. It is interesting to compadreste results to theoretical estimates.

Erreur ! Source du renvoi introuvable. Effective permeability of direction x plotted as a
function of crack density for different dimensionless variable

Fig. 10 displays the effective permeability comguiby the numerical method compared
to Mori-Tanaka and self consistent estimates. Tred curves begin with the same slope
at p=0, and this shows that the theoretical estimate® ghe exact variation of the
permeability at first order development for smallvalues. The dilute Mori-Tanaka
estimate remains a linear function pfbecause it does not take into consideration the
cracks interaction. It can be noticed that the -selfisistent estimate, that is supposed to
take into account in some extent the cracks intévas, is strangely less accurate that
the Mori-Tanaka estimate. This result is in contrasth that obtained in precedent
section for randomly oriented cracks. However siwwell known that the self-consistent
scheme improves the estimation only in the caseaofandom orientation of the
heterogeneity ormieux and Kondo, 2004 It can be shown that the in the case of
parallel cracks must lead to a smaller equivalesrineability than that one obtained by
the Mori-Tanaka estimate, and to prove that the euoal results presented here give the
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good trend of equivalent permeability versus densithis can be done by using the
solution obtained for the pressure field aroundnagle crack as shown iRig. 10

Numerical solution 7
— = — Mori-Tanaka estimation
16 —| ———==—-= Self-consistent estimation 7
: 7

K/k

Fig. 9 Comparison of effective permeability in the directix obtained by three different ways:
numerical method and Mori-Tanaka and self-consisestimationgA=1)

Fig. 10displays the pressure field in the infinite matciantaining only one of the cracks
among the network presented Kig. 8 (crack number 1). The pressure field, before this
crack is placed in the matrix, is represented by $traight line corresponding to the
farfield gradient. The bold line displays the pneigsfield on line containing a first crack
placed in the matrix and the two other lines, thesgure on the lines parallel to the first
line and distant from it oh and %. When the second and third cracks are placeden th
matrix at a distancé and 2 from the first crack (cracks number 2 and 3Fig. 8), they
are placed in the pressure field locally represerig the curvey = h andy = 2h in the
figure, hence, in a local pressure field with smanlgradients compared to the farfield

gradient encountered by the first crack. Tﬁ@ds determining the contribution of these
r

cracks to the global permeability is therefore derathan that obtained for the first
crack. This reasoning is somehow approximate sihd¢akes into account the effect of
the presence of the first crack on the pressure mcountered by the following cracks
but not the effects of the following cracks on thiest one. However, it explains well
why the crack interaction tends to decrease th@eslof the equivalent permeability
curve versus the crack density, as found by thearuwal results shown in Fig. 7. It also
confirms that the self consistent scheme is hefeigat.
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Infinite pressure

Fig. 10 Pressures along the lines at different level ohgde are parallel to the axe x on which
an isolated crack is place@= )

7 Conclusions

Recent theoretical advances in the modelling owfia cracked porous material®quya
and Ghabezloo, 201QGyere in some points completed here and then usegstablish a
numerical method for the study of these materidlsis method was validated in the
simple cases of a finite size crack in an infinmatrix for which closed-form solutions
are available. It was shown that this method camdsly applied to the determination of
the steady state flow in the materials with an atrigpic permeability, containing a
dense distribution of curved-line cracks that isemt together. Some examples showed
the efficiency of this method to determine the emlént permeability of micro-cracked
porous materials.

The efficiency of the numerical method is partlyedto special choice of collocation
points and to using closed-form expressions of eletary integrals. The theoretical
result obtained on the mass balance at interse@ants allows establishing a probably
more efficient numerical method in which nodes ah®msen as collocation points and
using yet analytical expressions for elementaryegnals. Furthermore, the theoretical
results and the numerical algorithm may be extentedthe 3D steady-state flow
problem. These extensions are pursued in our omgesearch and will be presented in
future papers.

Although these methods include some simplificati@esumptions, like the uniform
permeability of the matrix and no pressure jumpwesn the two faces of the fracture,
they can be usefully applied to many current reseaand engineering problems. The
determination of the equivalent permeability of dnared oil reservoirs, of geological
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formations used for COsequestration and of damaged zones around undergrou
galleries for nuclear waste disposal are some pbssxamples of applications that we
undertake in parallel researches.

Appendix: Analytical expression of elementary integrals

The elementE, between the endpointg, z is considered with the unit tangent vector
designated by. An arbitrary point in the plane of the crack isstgnated bx. It can be
shown that the elementary integral in Eq.(13) ca&ndalculated analytically with the
interpolation functions (15)-(17) for current elemte and extremity elements as
following:

Current element

1) = S (X_ )k (x=2) PP (36)
2 (X_ )k (x- z) L
Extremity element
In(X) =€ S [2+aLogq>+BArctan 2L j P2~ Py (37)
2 L- L
with
_ k™.(x-3) (x-2zp) k"
=tklt , (X=%). # 38
TELkL, 0= \/ tk't 9 t k't (38
and

a=tF9 g / VL 2""‘+Z2 (39)
2L L+ J2@+QL +T

wherec stands for the hydraulic conductivity of cragk; p. the nodal pressures of the
elementE,, zo0=z; and e =1 for theleft extremity elementz=2z, ande =-1 for theright
extremity elements
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