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Abstract Layered decoding is known to provide ef-
ficient and high-throughput implementation of LDPC

decoders. In the practical hardware implementation of

layered decoders, the performance is strongly affected

by quantization. The finite precision model determines

the area of the decoder, which is mainly composed of
memory, especially for long frames. To be specific, in

the DVB-S2,-T2 and -C2 standards, the memory can

occupy up to 70% of the total area. In this paper, we

first focus our attention on the optimization of the num-
ber of quantization bits. The effect of quantification on

the channel values, Extrinsic and A-Posteriori Proba-

bilities are studied separately. We propose solutions to

optimize the quantification by an efficient saturation

considering the case of a DVB-S2 decoder. We show
that the memory area can be reduced by 28% compared

to the state-of-the-art, without performance loss.

Then, we optimize the size of the extrinsic memory
considering implementation constraints when decoding

multiple code rates. Finally, fixed point architecture is

presented with implementation results.

Keywords

Low-density parity-check (LDPC) code, layered de-

coding, VLSI implementation, DVB-S2.

1 Introduction

Low Density Parity-Check (LDPC) codes were initially

proposed by Gallager in the early 60’s [1] but they
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were not used for three decades mainly because the
technology was not mature enough for practical imple-

mentation. Rediscovered by MacKay [2] in 1995 with

a moderate decoding complexity, LDPC codes are now

included in many standards. Among the existing stan-

dards, we can distinguish standards using short frames
(648, 1296 and 1944 bits for Wi-Fi) and standards us-

ing long frames (16200 and 64800 bits for DVB-S2).

The use of long frames makes it possible to get closer

to the Shannon limit, but leads to delays that are not
suitable for internet protocols or mobile phone commu-

nications. On the other hand, long frames are suitable

for streaming or Digital Video Broadcasting (DVB).

The 2nd Generation Satellite Digital Video Broadcast

(DVB-S2) standard was ratified in 2005, the 2nd Gener-
ation Terrestrial DVB (DVB-T2) standard was adopted

in 2009 and the 2nd Generation Cable DVB (DVB-

C2) has been adopted during 2010. These three DVB

standards include a common Forward Error Correc-
tion (FEC) block. The FEC is composed of an LDPC

inner code and BCH outer code. The FEC supports

eleven code rates for the DVB-S2 standard frames and

is reduced to six code rates for the DVB-T2 standard

frames. The LDPC codes defined by the DVB-S2,-T2,-
C2 standards are structured codes or architecture-aware

codes (AA-LDPC) [3]) and they can be efficiently im-

plemented using the layered decoder architecture [4,5]

and [6]. The layered decoder benefits from three archi-
tecture improvements: parallelism of structured codes,

turbo message passing, and Soft-Output (SO) based

Node Processor (NP) [4,5] and [6].

Even if the state-of-the-art of the decoder archi-

tecture converges to the layered decoder solution, the
search of an efficient trade-off between area, cost, low

consumption, high throughput and high performance

make the implementation of the LDPC decoder still a
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challenge. Furthermore, the designer has to deal with

many possible choices of algorithm, parallelism, quan-

tization parameters, code rates and frame lengths. In

this article, we study the optimization of the layerd de-

coders. We consider the DVB-S2 standard to compare
results with the literature but our work can also be ap-

plied to the Wi-Fi and WiMAX LDPC standards or,

more generally, to any layered LDPC decoder.

The well-known Min-Sum algorithm [7] and its vari-

ants significantly reduce the memory needs by the com-
pression of the extrinsic messages. This memory com-

pression makes naturaly the Min-Sum algorithm a good

condidate as a mean of memory reduction and is choosen

for this studies althought we will show that in case of
the DVB-S2 standard, the sum-product algorithm can

gives better performance for a resonnable overcost.

Another way to reduce the memory needs is to limit

the word size by saturation. The other advantages of re-

ducing the number of quantification bit are a reduction
in complexity of the interconnection routing scheme

and the processing units. In the state-of-the-art, the

way how the SO and the extrinsic messages are satu-

rated is rarely explicitly explained. In this article, we
provide some discussion on efficient saturation of the

channel LLR values, the extrinsic messages and the SO

values. We present some ideas related on the efficient

use of saturation leading to significant memory savings.

To complete the discussion, we also introduce a method-
ology to optimize the implementation of the extrinsic

memory with the constraint of 11 code rates and single

port RAM.

The paper is organized as follows: Section 2 presents

the layered decoder and the Min-Sum sub-optimal algo-
rithm. In Section 3, we explain the saturating process.

Section 4 deals with the optimization of the size of the

extrinsic memory. Finally, simulation and synthesis re-

sults are provided in Section 5.

2 LDPC layered decoder

An LDPC code is defined by a parity check matrix H

of M rows by N columns. Each column in H is associ-

ated with a bit of the codeword or Variable Node (VN),
and each row corresponds to a parity check equation or

Check Node (CN). A non-zero element in a row means

that the corresponding bit contributes to this parity

check equation. Fig. 1 shows the structure of the rate-
2/3 short-frame DVB-S2 LDPC parity check matrix.

This structured matrix is composed of shifted identity

matrices, allowing for efficient parallel decoding.
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Fig. 1 Block-structured rate-2/3 DVB-S2 matrix (N=16200)

2.1 Horizontal layered decoder

In the horizontal layered decoder, an SO value is as-

sociated to each VN. This value is first initialized by

the channel Log-Likelihood Ratio (LLR= log(P (v =

0)/P (v = 1)) ). Then the decoding proceeds iteratively
until all the parity checks are verified or a maximum

number of iterations is reached. For layered decoding,

one iteration is split into sub-iterations, one for each

layer. A layer corresponds to one or several CNs and
a sub-iteration consists in updating all the VNs con-

nected to the CNs of the layer. The update of the VNs

connected to a given CN is done serially in three steps.

First, the message from a VN v to a CN c (Mv→c) is

calculated as:

Mv→c = SOv − Mold
c→v (1)

The second step is the serial Mc→v update, where Mc→v

is a message from CN to VN, and it is also called ex-
trinsic. Let vc be the set of all the VNs connected to CN

c and vc/v be vc without v. For implementation conve-

nience, the sign and the absolute value of the messages

|Mnew
c→v| are updated separately:

sign(Mnew
c→v) =

∏

v′∈vc/v

sign(Mv′→c) (2)

|Mnew
c→v| = f

(

∑

v′∈vc/v

f(|Mv′→c|)
)

(3)

where f(x) = − ln tanh
(

x
2

)

. The third step is the cal-
culation of the SOnew value:

SOnew
v = Mv→c + Mnew

c→v (4)

The updated SOnew
v value can be used in the same it-

eration by another sub-iteration leading to convergence
which is twice as fast as the flooding schedule [3].

2.2 Architecture overview

From equations (1) to (4), the Node Processsor (NP)

architecture shown in Fig. 2 can be derived. The left
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Fig. 2 Check Node centric Node Processor

adder of the architecture performs equation (1) and the

right adder performs equation (4).

As the structured matrices are made of identity ma-
trices of size P , then P CNs can be computed in parallel

without memory access conflicts. Hence, the layered de-

coder architecture is based on P NPs that first read se-

rially the Groups of P VNs linked to one layer and then

write back the SOnew
v in the VNs. The central part is in

charge of the serial Mc→v update described in equation

3. The f(.) function used in this equation is difficult

to implement. This function can be implemented us-

ing look up table or linear pieceware approximation as
in [8] but can also be implemented more efficiently by

using a sub-optimal algorithm.

2.3 The normalized Min-Sum algorithm and other

related algorithms

The most used sub-obtimal algorithms are improved
version of the well known Min-Sum algorithm [7], such

as the normalized Min-Sum algorithm, the Offset Min-

Sum algorithm, the A-min* algorithm [9], the λ-min al-

gorithm [10] and related [11]. The advantages of these
algorithms are the simplified computation of equation

(3) and the compression of the Mc→v messages. Al-

though all these algorithms present different perfor-

mances, the memory space they require to store the

Mc→v messages is identical (considering λ = 2 for the
λ-min algorithm). Hence, without loss of generality, for

the rest of the paper, we will consider the normalized

Min-Sum algorithm. With this algorithm, equation (3)

becomes:

|Mnew
c→v| = α min

v′∈vc/v
|Mv′→c| (5)

where α is the normalization factor, 0 < α ≤ 1.

The CN generates two different values: min and
submin. The min value is the normalized minimum

of all the incoming Mv→c values and the submin is

the second normalized minimum. Let indmin be the in-

dex of the minimum. For each |Mnew
c→v| values, if the

index of Mnew
c→v is indmin then |Mnew

c→v| = submin else

|Mnew
c→v| = min. The Mc→v from one CN can be com-

pressed with four elements, i.e. min, submin, indmin

Fig. 3 Resulting distribution of a quantified BPSK modula-
tion

and sign(Mnew
c→v). For matrices with a check node degree

greater than four, this compression leads to significant

memory saving.

3 Saturation

An SO value is the sum of the channel LLR with all

the incoming extrinsic messages. Considering the case
of an LDPC code of the DVB-S2 standard, the maxi-

mum variable node degree (dv) is 13. Even if the channel

LLR and the Mc→v are quantized on 6 bits, the SO val-

ues must be quantized on 10 bits to prevent overflows.
However, to avoid prohibitive word size, efficient satu-

ration of channel LLRs lead to a reduction of the overall

quantization. Then a saturation of the SO values and

the Mc→v are considered.

3.1 Channel LLR saturation

Figure 3 shows the Probability Density Fonction of a

quantized BPSK modulation (-1 and +1) which is per-

turbed by an Additive White Gaussian Noise (AWGN)
of variance σ = 0.866 (corresponding to Eb/No = 2

dB). The channel is quantization on 5 bits and the sat-

uration threshold at 1+β = 2, 47. The distribution filled

in black shows the +1 offset, and the unfilled distribu-
tion is the -1 offset. The quantized distribution varies

from Xmin = −(24−1) to Xmax = 24−1. The problem-

atic is to find for a given quantization, the saturation

threshold which will provide the best performances. If

the saturation threshold is low, then the informations
given by the tail of the gaussian curve are saturated,

and if the threshold is hight then the quantization er-

ror increase.

For floating point simulation, it is known that the
decoders using the Normalized Min-Sum algorithm are

not sensitive to scaling in the LLRin values. During the

initializing process, the equation LLRin = 2y/σ2 can
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be simplified to LLRin = y, saving the need to compute

the variance. However, it is important to scale the y

value so that the LLRin values fit the range imposed

by the quantification. We define

LLRin = ω × y

where ω is the scaling factor. Considering the BPSK

modulation and LLRin quantified on nLLR bits, we

saturate y at 1 + β and compute ω using the follow-

ing equation:

ω =
2nLLR−1 − 1

1 + β
(6)

The saturation limit β +1 can be calculated so that

the proportion of saturated values is equal to the av-
erage proportion of the other values. The average pro-

portion of a given value is 1/(2nLLR − 1)(probability

of a value in an uniform distribution). On the other

side of the eguality, the Cumulate Distributive Func-
tion (CDF) of a -1 offset distribution applied to the

negative saturation limit will give the proportion of sat-

urated values for a -1 offset signal. The eguality can be

written as:

1

2

[

1 + erf
( −β√

2σ

)

]

=
1

2nLLR − 1
(7)

From equation (7), one can deduce β:

β = σ ×
√

2

(

erf−1

(2nLLR − 1

2nLLR + 1

)

)

(8)

Thus the β value is function of nLLR and is propor-

tional to σ. By applying equations (8) and (6), the op-

timum saturation treashold and the scaling factor can

be computed. The problem of this solution is that an

adaptative quantization of y is needed wich requires a
channel estimation of σ .

In fact, to prevent the σ computation, an optimal
scaling factor is calculated for a given SNR. If the per-

formance requirement are reach for a given SNR, then

for higher SNR, the quantification would be sub-optimal

but well within the performance requirement. For each
code rates, a constant scaling factor ω and saturation

value 1 + β can be pre-computed saving the need for

the σ value.
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Fig. 4 BER simulation for a rate 2/3

3.1.1 Effects of LLRin saturation on BER

performance

Fig. 4 shows the simulation results for a normalized

Min-Sum fixed point layered decoder, with a maximum

of 30 iterations, long frame, code rates 2/3 in Additive

White Gaussian Noise channel. The normalization fac-

tor is 0.75. Let us consider the following notation: a
3-8-4 configuration refers to a channel LLR quantized

on 3 bits, an SO value word size of 8 bits and a Mc→v

word size of 4 bits. We also depicted the standard limit

at 1 dB from the Shannon limit in Eb/N0 for code rate
2/3.

The quantification values of the Mc→v and SO are
not optimized and chosen large enough to not affect the

results of the channel quantification. Fig. 4 shows that

a quantification on 4 or 5 bit of the LLRin is enough

to fulfill the standard requirements.

3.2 SO saturation

Once the LLRin quantized, they are stored in an SO
memory wich will evoluate with the iteration process.

This SO memory need to be saturated to limit their

size.

3.2.1 The problem of SO saturation

Let us consider the saturation case where SOmax <

SOnew
v during the SO update (4). A saturation process

will bound SOnew
v to the SOmax value. This will in-

troduce an error ǫv in the SOnew
v value (ǫ = SOnew

v −
SOmax). During the next iteration, the new M ′

v→c value

will be M ′
v→c = SOv − Mc→v = Mv→c − ǫv.

Let us consider the worst case: during an iteration,

SOv is saturated at +SOmax, each CN confirms a pos-
itive Mc→v value, and dv=13 (i.e. SOv is saturated 13

times). At the beginning of the next iteration, SOv =

SOmax. From (1) and (4), we can deduce that SOnew =
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Fig. 5 BER simulation for a rate 2/3

SOold + ∆Mc→v where ∆Mc→v = Mnew
c→v − Mold

c→v. If
∆Mc→v < 0, the SO value decreases. The SO value can

even decrease 13 times and change its sign. To sum-

marize, when SO is saturated, the SO value cannot in-

crease but it can decrease. The saturation introduces a
non-linearity that can produce pseudo-codewords and

an error floor. A solution has to be found to overcome

this problem.

3.2.2 A solution for SO saturation

The solution that we propose was first introduced in

[12] and relies partially on the A Priory Probability

(APP) based decoding algorithm [7]. The APP-variable

decoding algorithm simplifies equation (1) to:

Mv→c = SOv (9)

which greatly reduces the architecture complexity but

introduces significant performance loss. The idea is to

use equation (9) only when there is saturation. This

leads to the APP-SO saturation algorithm, which is de-
scribed as follows:

Algorithm 1 APP-SO saturation algorithm
if SOv = SOmax then

Mv→c = SOv

else

Mv→c = SOv − Mc→v

end if

3.2.3 Effects of SO saturation on BER performance

Fig. 5 shows the simulation results in the same con-

ditions as in Fig. 4. An asterisk symbol in the legend
means that the APP-SO algorithm is used. The results

shows that the APP-SO algorithm, compared to a stan-

dard solution shows perfomance improvement only if

++
−

NP

SatMMEM
c→v

Mold
c→v

SOv SOnew

v

Mnew
c→v

MFIFO
v→c

Fig. 6 NP with saturation of the extrinsic messages
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Fig. 7 BER simulation for a rate 2/3

the extrinsic values are satured (curves 5-6-5* and 5-6-

5).

3.3 Saturation of the extrinsic messages

Figure 6 shows the SO based node processor. One can
see that the newly updated extrinsic Mnew

c→v is used to

compute SOnew
v from equation (4) and Mnew

c→v is also

stored in the extrinsic memory for the calculation of

Mv→c (equation 1) at the next iteration. Any satura-
tion on the value Mnew

c→v responsible for the SO update

would not produce area savings and would degrade per-

formance. This is the reason why we do not saturate

this value. On the other hand, saturation of the Mnew
c→v

message that are stored in a memory would lead to sig-
nificant area saving. Furthermore, the saturation of the

Mnew
c→v stored in the extrinsic memory is much less criti-

cal because it will be used only once during an iteration

to compute an Mv→c and this Mv→c will affect SOnew

only if it is a minimum value (see equation 5).

3.3.1 Effects of extrinsic message saturation on BER

performance

Fig. 7 shows the simulation results in the same con-
ditions as in Fig. 4. Simulations show that the Mc→v

with the same quantification as the LLRin (nLLR =

next) gives result equivalent to higher quantification. A
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Fig. 8 BER simulation for a rate 2/3

reduction of the quantification lower than the LLRin

quantification lead to dramatic performance loss.

3.4 Combining the saturation processes

Simulations show that the combinaison of the SO sat-

uration process and the Mc→v saturation process lead

to better performance that when they are implemented
separately. The combinaison of our saturation process

allows the use of fewer bits than the usual 6-8-6 config-

uration.

3.5 Saturation optimization conclusion

The analysis of the saturation process shows that a bet-

ter trade-off between word size and performance can be

obtained with an efficient saturation of the LLRin,the

SO and the extrinsic values. Simulations show the ro-
bustness of our saturations allowing for the use of fewer

bits than the usual 6-8-6 configuration. Simulations with

channel values quantified on 5 bits, SO on 6 bits and

Mold
c→v on 5 bits gives the same performance as other

known implementation with fewer bits.

4 Optimizing the size of the extrinsic memory

The extrinsic memory size requirements strongly de-

pend on the coding rate. This section focuses on the

design of an optimal implementation for DVB-S2 stan-
dard which provide eleven different code rates for stan-

dard frames.

4.1 Memory size

The memory requirements of each CN is determined by

the Mold
c→v messages needed for the CN computation.

In the case of the normalized Min-Sum algorithm [7],

Rate M WSign WInd WMc→v Memory

1/4 48600 4 2 14 680400
1/3 43200 5 3 16 691200
2/5 38880 6 3 17 660960
1/2 32400 7 3 18 583200
3/5 25920 9 3 21 544320
2/3 21600 10 4 22 475200
3/4 16200 14 4 26 421200
4/5 12960 18 5 31 401760
5/6 10800 22 5 35 378000
8/9 7200 27 5 40 288000
9/10 6480 30 5 43 278640

Table 1 Memory size of extrinsic

the Mold
c→v values are compressed with min, submin,

indmin and signMc→v. In terms of memory, one ad-

dress must be allocated for every CN which means that

the RAM address range (RRAM ) is given by the num-

ber of CNs (M). The RAM word size (WRAM ) is given
by the size of the compressed Mold

c→v values. If we de-

note by Wh the word size of h, then WMc→v = W|min|+

W|submin|+Wind+Wsign. Table 1 presents the required

memory capacity (M×WMc→v) for each rate. To calcu-
late WMc→v, we fix the value of W|min| and W|submin|

to 4. To deal with the eleven code rates of the stan-

dard, a simple implementation would define RRAM with

the maximum M value, and WRAM with the maximum

WMc→v in Table 1. Here, the total memory capacity
would give: 48600 × 43 = 2089800 bits. For rate 1/4,

67% of word bits are wasted but addresses are fully

used. On the other hand, for rate 9/10, word bits are

fully used but 86 % of the addresses are wasted. Theo-
retically, a memory size of 691200 bits would be enough

to cover all the rates. An implementation solution has

to be found for a better utilization of the memory.

4.2 Optimization principle

The idea is to add flexibility to both the address range

and the word size. For this, we benefit from the fact

that the RAM that stores the compressed Mold
c→v value is

needed only once per layer. As the delay to compute the

next layer is of dc cycles, we can use up to dc cycles to

fetch the data in the memory. A word can be split into

two if we take two cycles to fetch the data, and split in

three if we take three cycles. If we consider a single port
RAM to implement the memory, up to ⌊dc/2⌋ cycles can

be used to read data, and ⌊dc/2⌋ cycles to write new

data.

Let us consider the example of a memory bank of
size 48600(RRAM) × 22(WRAM ). In a first configura-

tion, where one cycle is used, we have a memory size of

48600 × 22 which fits to rates 1/4, 1/3, 1/2, 3/5, and
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Rate M WMc→v ncycles RRAM

1/4 48600 14 2 97200
1/3 43200 16 2 86400
2/5 38880 17 2 77760
1/2 32400 18 2 64800
3/5 25920 21 3 77760
2/3 21600 22 3 64800
3/4 16200 26 3 48600
4/5 12960 31 4 51840
5/6 10800 35 4 43220
8/9 7200 40 5 36000
9/10 6480 43 5 32400

Table 2 Memory capacity of the extrinsic message with
WRAM = 9

0 5 10 15 20 25
0

2

4

6

8

10

12

14
x 10

5

Fig. 9 Memory capacity as a function of WRAM

2/3. In a second configuration, where two cycles are

used, and two words of size 22 are fetched at consecu-

tive addresses, we have the equivalent of a memory of
size 24300×44 which fits to rates 3/4, 4/5, 5/6, 8/9 and

9/10. The total memory size for the two-cycle option is

equal to 48600 × 22 = 106920 bits. This constitutes a

memory savings of 50% compared to the straightfor-

ward implementation.

4.3 Results

The previously described process can be used for differ-

ent word sizes. Table 2 gives an example with WRAM =
9. For each rate, the number of cycles is given by:

ncycles = ⌈WMc→v/WRAM⌉

and RRAM is deduced from RRAM = ncycles ×M . The

global RAM range (Rglobal
RAM ) is given by the maximum

RRAM in Table 2 and the total memory capacity is

Rglobal
RAM × WRAM = 97200× 9 = 874800 bits.

Fig. 9 shows the total memory capacity as a function

of the word length WRAM . There are local minimum for

word sizes 1, 9, 14, 18 and 21 bits. As the number of

clock cycle to fetch Mold
c→v is bounded by ⌊dc/2⌋, the

possible solutions are limited to WRAM greater than 7.
A word size of 9 bits gives the best memory optimiza-

tion of 874800 bits. This is only 26 % more than the

theoretical minimum.

4.4 Case of the sum-product algorithm

When using a sum-product algorithm [13] [14] [15] in-

stead of a Min-sum algorithm, the check node update

equation (3) is computed for each Mc→v value and each

Mc→v value are stored. The same process as the pre-
viously described can by used but a simpler and more

efficient implementation can be used. We can consider

a dual port ram which is read every cycle to fetch a

Mold
c→v value and write simultaneously a Mnew

c→v value

to be stored. With the constraint of 11 code rates, 5
bits quantification and dual port ram, the memory re-

quirement is given by the code rate that require the

maximum number of Mc→v values. The code rate 5/6

requires storing 237600 values of 5 bit which give 1.2
MBits memory requirement. Although this size is 26%

higher than the solution that we proposed for the Min-

Sum algorithm, the over cost can worst it, considering

the performance increase especially at low code rate.

Implementation of a FIFO memory with single port
modules for allowing simultaneous read and write op-

erations is presented in [16]. This solution requires one

memory banks for even addresses and another memory

banks for odd addresses and lead to area saving com-
pared to the use of dual port ram.

4.5 Mc→v memory optimization conclusion

The Mc→v memory optimization shows that the imple-

mentation of LDPC decoder for multiple code rate and
single port RAM to store the Mc→v is an issue.

A careful implementation of the Min-sum algorithm

gives result only 26 % more than the theoretical min-

imum compared to a straight forward implementation

with 200% over cost.

The sum-product algorithm lead to a 26% over cost
compared to the Min-Sum algorithm, but considering

performance increase with low code rate, the implemen-

tation of the sum-product can be considered.
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Fig. 10 Finite precision of the NP architecture

5 Finite precision architecture of the layered

decoder

Fig. 10 presents the finite precision architecture of the

NP (Fig. 2). Word size, type (signed or absolute) and

direction are detailed for every signal connection. The

architecture implements the normalized Min-Sum algo-
rithm.

In the Check node core, The Mv→c values arrive

serially in two’s complement representation from the

adder modified to implement algorithm 1. They are
transformed to sign and magnitude representation so

that the sign and magnitude of the messages can be

computed separately. The serial sorting of the incom-

ing magnitude values is implemented, in order to give

Min, SubMin and Index values until all the incoming
messages are read. In the serial Mc→v block, the Min,

SubMin and index values previously sorted are used to

serially compute the new outgoing messages. An XOR

function is computed recursively on the incoming sign
bits in the Signt, until all the incoming messages are

read. Next, an XOR function is computed in XOR

block, between the output of Signt block and the sign

of the outgoing message Mv→c from the FIFO memory

of size dc. The sign and magnitude from XOR block and
serial Mc→v block, respectively, are transformed into a

two’s complement representation ready for subsequent

computations.

In the Mc→v memory block, the Min, Submin, index
and sign of each Mc→v linked to one check node are

stored in a RAM. From the Min, Submin, index and

sign values, the serial Mc→v generator computes the

6 x 45

45 NP
Barrel
Shifter

R
A

M
_S

O

Buffer
Channel

Control

5x45

Fig. 11 Layered decoder architecture

two’s complement representation of the Mc→v value.Min
and Submin are quantified on 4 bits (absolute values)

which gives Mc→v values quantified on 5 bits (with the

sign bit). Note that as signt gives the result of the par-

ity check equation of line and the syndrome can easily

be computed by using the result of signt. The compu-
tation of the syndrome allows deciding an early termi-

nation of the decoding process leading to a significant

reduction of the number of iterations.

Fig. 11 is an overview of the proposed layered de-
coder architecture (see [17] and [18] for a more detailed

description). In this figure, the NP block is made of

45 NP (Fig. 10) working in parallel. The Barrel Shifter

shifts seven words of size 45. The RAMSO block stores

the SO values. Thanks to a systematic syndrome calcu-
lation, it is possible to use a built-in stopping rule while

decoding in a variable-iteration decoder. The addition

of a buffer on the decoder input allows the exploitation

of the variations in the decoding time in the different
frames. A preemptive buffer control as in [19] is used to

reduce the buffer size. Note that the quantification re-

duction described in Section 3 for earea reduction of the

memory also lead to area reductions of the node pro-

cessor and the barrel shifter. The latency in the Check
node core is also reduced due to complexity reduction

of the addition and comparison computation.

6 Results

6.1 Simulations

Fig. 12 shows simulation results for code rates 1/4, 1/2,

2/3, 3/4, 4/5, 5/6 and 5-6-5 configuration. The code

rates 1/2, 2/3, 3/4, 4/5 and 5/6 show results that ful-
fil the standard requirements. The code rate 1/4 shows

poor performances. The code rates 1/4, 1/3 and 2/5

have a check node degree smaller than 7 (4, 5 and 6

respectively) which lead to an error floor with the nor-
malized min-sum algorithm. One can note that code

rate 1/2 with a check node degree of 7 start produc-

ing an error floor that can be corrected with the BCH
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Fig. 12 BER for long frames

XQ5VLX85 LUT LUT RAM BRAM

Node Processor 143 2 0
sorting 37 0 0

gen mc→v 34 0 0
fifo mv→c 12 2 0

mc→v memory 46 0 3
Total 1 node 189 2 3

Total 45 nodes 8586 90 135

Control 667 3 0

block SO RAM 360 0 22

Channel RAM 48 0 25

Barrel shifter 945 0 0

Total 11005 93 182

Percentage [%] 5 1 50

Table 3 Synthesis Results for DVB-S2 LDPC decoder

outer decoder. This error floor problem can be solved
by implementing an A-min* or λ-min algorithm instead

of the normalized Min-Sum in the CNP, with no change

in the rest of the architecture. One can also implement

a Sum-product algorithm as in [8] combined with the
proposed saturation processes.

6.2 Synthesis

The architecture presented in Fig. 11 was synthesized

on a Virtex-V Pro FPGA (XQ5VLX110) from Xilinx,
for validation purposes. The system decodes long frames

of code rate 2/3 and a parallelism of 45. Table 3 gives

the hardware resources required. The clock frequency

is 300 Mhz, the average number of iterations is 20 and
the throughput is 120 Mbit/s, which allows for the de-

coding of two simultaneous High-Definition Television

(HDTV) streams.

Paper [11] [20] [21] This

Parallelism 180 360 180 45
Air Throughput[Mb/s] 180 135 135 90

Extrinsic [bits] 6 6 6 5
SOram [bits] 10 8 8 6
Channel [bits] 6 6 6 5

Capacity[Mbits] 2.8 2.83 3.18 2.0

Table 4 Memory capacity comparison

6.3 Memory capacity comparison

Table 4 shows the number of bits for the main mem-
ory units in the latest published DVB-S2 decoder IPs

[11,20,21]. Note that no information is provided on the

ROM memories that store the matrices for every rate.

In our architecture, a buffer of size two is added to store

the channel LLR values to reduce by two the average
number of iteration as in [19]. Our architecture provides

memory saving of 28% compared to [11], for the 5-6-5

configuration and the memory savings is up to 40% for

the 4-6-4 configuration.

7 Conclusion

In this paper we have presented optimization solutions

for a layered LDPC decoder. A first approach was to an-

alyze the saturation problem in the layered decoder.An
efficient saturation lead meanly to a reduction of mem-

ory area and also a reduction of latency in the com-

puting elements. We developed a finite precision lay-

ered decoder architecture that implements the proposed

saturation processes. This architecture outperforms the
state-of-the-art in terms of memory needs while sat-

isfying the standard requirements in terms of perfor-

mances. In a second approach, we studied the prob-

lematic of implemanting efficiently multiple code rate
decoder. Our solution relie on the word split of the

extrinsic memory for Min-Sum algorithm implementa-

tion. This solution allows the use of single port RAM

and lead to significant memory reduction compared to a

straight forward implementation. Even if we have con-
sidered the DVB-S2 standard in our study, the proposed

techniques can be extended to DVB-T2,-C2 and, more

generally, to any layered LDPC decoder. Future work

will be dedicated to the hardware implementation opti-
mization (area and frequency) of the proposed decoder

architecture and to the evaluation of its performance at

low BER.
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