
HAL Id: hal-00790449
https://hal.science/hal-00790449

Submitted on 20 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Study of discrete duality finite volume schemes for the
Peaceman model

Claire Chainais-Hillairet, Stella Krell, Alexandre Mouton

To cite this version:
Claire Chainais-Hillairet, Stella Krell, Alexandre Mouton. Study of discrete duality finite volume
schemes for the Peaceman model. SIAM Journal on Scientific Computing, 2013, 35 (6), pp.A2928–
A2952. �10.1137/130910555�. �hal-00790449�

https://hal.science/hal-00790449
https://hal.archives-ouvertes.fr


Study of discrete duality finite volume schemes for the Peaceman model I

C. Chainais-Hillaireta, S. Krellb, A. Moutona
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Abstract

In this paper, we are interested in the finite volume approximation of a system describing miscible displacement in

porous media. This system is made of two coupled equations: an anisotropic diffusion equation on the pressure and

a convection-diffusion-dispersion equation on the concentration of invading fluid. The anisotropic diffusion operators

in both equations require a special care while discretizing by a finite volume method. We focus here on the numerical

approximation by some Discrete Duality Finite Volume methods. After the presentation of the scheme, we establish

some a priori estimates satisfied by the numerical solution and prove existence and uniqueness of the solution to the

scheme. We show the efficiency of the schemes through numerical experiments.
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1. Introduction

1.1. Finite volume methods for diffusion operators

Finite volume methods have been extensively studied for a long time in several engineering fields. Indeed, they are

well suited for the numerical approximation of conservation laws appearing for instance in fluid mechanics, petroleum

engineering and many other fields. The theoretical analysis of finite volume schemes (convergence analysis, error

estimates,...) began at the end of the 1980’s and had a rapid expansion during the 1990’s : see for instance the

book by Eymard, Gallouët, Herbin [20] and all the references therein. However, if finite volume schemes were

particularly competitive and popular for the approximation of hyperbolic conservation laws, they were less used for

the approximation of diffusion. Indeed, the classical two-points flux approximation for diffusion operators, firstly

developed and analyzed, has many drawbacks:

• its use for the Laplace operator is limited to admissible meshes (satisfying some orthogonality condition),

• its extension to anisotropic diffusion operator implies a more restrictive assumption on the meshes which makes

it difficult to use,

• its extension to nonlinear diffusion operators like Leray-Lions operators is not possible because the scheme is

based on a two-points approximation of normal gradients and therefore no discrete gradient is underlying.

For all these reasons, different teams began to work at the end of the 1990’s on the development of new finite volume

schemes for diffusion equations. Their aim was to provide some discrete reconstruction of gradients and then schemes

applicable on almost general meshes and for linear anisotropic diffusion operators or nonlinear Leray-Lions operators.

Let us cite for instance the Multi Points Flux Approximation schemes by Aavatsmark, Barkve, Boe and Mannseth[1,

2], the Discrete Duality Finite Volume schemes by Domelevo and Omnes [13, 5], the Mixed Finite Volume schemes
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by Droniou and Eymard [17, 16], the Scheme Using Stabilization and Hybrid Interfaces by Eymard, Gallouët and

Herbin [21, 22].

All these new methods have been compared in 2008 on a benchmark organized by Herbin and Hubert [24] (the

comparison also included finite element methods, discontinuous Galerkin methods, mimetic finite difference methods

and other finite volume methods...). The benchmark was devoted to the anisotropic diffusion equation −divK∇u = f

and included many different two-dimensional test cases. A three-dimensional benchmark was also organized in 2011,

[23].

1.2. A system modeling miscible fluid flows in porous media

In this paper, we want to apply one of the finite volume method dedicated to anisotropic diffusion, the Discrete

Duality Finite Volume method, to a two-dimensional system arising in petroleum engineering. The Peaceman model

describes the single-phase miscible displacement of one fluid by another in a porous medium, in the case where the

fluids are assumed incompressible and the gravity is neglected; it has been introduced in [6, 14]. The reservoir is

described by a bounded domain Ω ⊂ R
2. The unknowns of the problem are p the pressure in the mixture, U its Darcy

velocity and c the concentration of the invading fluid, which are defined on a time interval (0,T ). The porous medium

is characterized by its porosity Φ(x) and its permeability K(x). We denote by µ(c) the viscosity of the fluid mixture, ĉ

the injected concentration, q+ and q− the injection and the production source terms. The model writes:



div(U) = q+ − q− in ]0,T [×Ω,

U = −
K(x)

µ(c)
∇p in ]0,T [×Ω,

(1)

Φ(x)∂tc − div(D(x,U)∇c − cU) + q−c = q+ĉ in ]0,T [×Ω, (2)

where D is the diffusion-dispersion tensor including molecular diffusion and mechanical dispersion. It is given by

D(x,U) = Φ(x)

(
dmI + |U|

(
dlE(U) + dt(I − E(U))

))
, (3)

where I is the identity matrix, dm is the molecular diffusion, dl and dt are the longitudinal and transverse dispersion

coefficients and E(U) =
(

UiU j

|U|2

)
1≤i, j≤d

. The system (1)–(3) is supplemented with an initial condition on c and Neumann

boundary conditions (the boundary ∂Ω is assumed impermeable). Due to the Neumann boundary conditions, the

injection and the production source terms must satisfy a compatibility condition and the pressure is defined up to an

arbitrary constant. The viscosity µ is usually determined by the following mixing rule:

µ(c) = µ(0)

(
1 +

(
M1/4 − 1

)
c

)−4

on [0, 1], (4)

where M =
µ(0)

µ(1)
is the mobility ratio (we extend µ to R by letting µ = µ(0) on ] − ∞, 0[ and µ = µ(1) on ]1,∞[).

The porosity Φ and the permeability K are in general assumed to be bounded from above and from below by positive

constants (or positive multiples of I for the tensor K).

Many different schemes have already been proposed for the Peaceman model since the beginning of the 1980’s.

In [15], Douglas, Ewing and Wheeler proposed a mixed finite element method for the pressure equation (1) and a

Galerkin finite element method for the concentration equation (2). Russel in [29] introduced a modified method of

characteristic for the concentration equation and discretized the pressure equation by a finite element method. Then,

Russel, Ewing and Wheeler combined mixed finite element method for (1) and a modified method of characteristic

for (2), see [19, 18]. We also refer to the work by Jaffré and Roberts [27]. In [30, 31], Wang and his coauthors still

use a mixed finite element method for the pressure equation but develop a Eulerian Lagrangian Localized Adjoint

Method for the concentration equation. In all these papers, the pressure equation is approximated by a finite element

scheme. Indeed, due to the anisotropy in the permeability tensor and in the diffusion-dispersion tensor, the system

cannot be approached by classical finite volume methods and the development of finite volume schemes dedicated to

anisotropy, as explained in the previous section, is new. Therefore the first finite volume methods for the Peaceman
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model have been developed recently. A mixed finite volume method for both equations (1), (2) has been proposed

by Chainais-Hillairet and Droniou and its convergence has been established [9]. In [3], Amaziane and El Ossmani

use a mixed finite element method for (1) but propose a finite volume scheme written on a dual mesh for (2). In this

paper, we will consider the application of the Discrete Duality Finite Volume methods (see [13, 5, 8]) to the Peaceman

model.

1.3. Contents and outline of the paper

Let us first rewrite the Peaceman model under the following synthesized form, as in [9]:

div(U) = q+ − q− in ]0,T [×Ω,

U = −A(·, c)∇p in ]0,T [×Ω,

U · n = 0 on ]0,T [×∂Ω,
∫

Ω

p(·, x) dx = 0 on ]0,T [,

(5)

Φ∂tc − div(D(·,U)∇c) + div(cU) + q−c̄ = q+ĉ in ]0,T [×Ω,

D(·,U)∇c · n = 0 on ]0,T [×∂Ω,

c(0, ·) = c0 on Ω.

(6)

In the sequel, we assume that Ω is a convex polygonal bounded open subset of R2 and that T > 0. The assumptions

on the data are the following:

(q+, q−) ∈ L∞(0,T ; L2(Ω)) are nonnegative functions such that∫

Ω

q+(·, x) dx =

∫

Ω

q−(·, x) dx a.e. on ]0,T [,
(7)

A : Ω × R→M2(R) is a Caratheodory matrix-valued function satisfying:

∃αA > 0 such that A(x, s)ξ · ξ ≥ αA|ξ|
2 for a.e. x ∈ Ω, all s ∈ R and all ξ ∈ R2,

∃ΛA > 0 such that |A(x, s)| ≤ ΛA for a.e. x ∈ Ω and all s ∈ R,

(8)

D : Ω × R2 →M2(R) is a Caratheodory matrix-valued function satisfying:

∃αD > 0 s.t. D(x,W)ξ · ξ ≥ αD(1 + |W|)|ξ|2 for a.e. x ∈ Ω, all W ∈ R2 and all ξ ∈ R2,

∃ΛD > 0 such that |D(x,W)| ≤ ΛD(1 + |W|) for a.e. x ∈ Ω and all W ∈ R2,

(9)

Φ ∈ L∞(Ω) and there exists Φ∗ > 0 such that Φ∗ ≤ Φ ≤ Φ
−1
∗ a.e. in Ω, (10)

ĉ ∈ L∞(]0,T [×Ω) satisfies: 0 ≤ ĉ ≤ 1 a.e. in ]0,T [×Ω, (11)

c0 ∈ L∞(Ω) satisfies: 0 ≤ c0 ≤ 1 a.e. in Ω. (12)

The DDFV schemes are devoted to the numerical approximation of anisotropic diffusion operators as we have in

(5) and (6). They are based on two fundamental ideas: integration of the equations on a primal and a dual meshes, as

suggested by Hermeline [25, 26], reconstruction of discrete gradients on a diamond mesh, as in the work by Coudière,

Vila and Villedieu [11]. Developing these two ideas, Domelevo and Omnes in [13] introduced the DDFV schemes

for the Laplace equation and established the fundamental duality property between discrete gradient and discrete

divergence. Andreianov, Boyer and Hubert extended the DDFV scheme to more general diffusion operators in [5] and

proved its convergence. In Section 2, we present a DDFV scheme for the system (5)–(6). Therefore, we introduce the

different meshes, the discrete operators and we recall the discrete duality formula. As there is a convection term in

(6), we also need to define a discrete convection operator, as in [4] or [10].

In Section 3, we study the stability of the scheme. We prove some a priori estimates on the pressure, the gradient

of the pressure, the Darcy velocity (Lemma 3.2) and also a priori estimates on the concentration and the gradient of

the concentration (Lemma 3.3). It yields the existence and uniqueness of the approximate solution (Theorem 3.4).

Section 4 is devoted to the presentation of some numerical experiments. It shows good results when the permeability
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is continuous or has discontinuities supported by the edges of the diamond mesh. However, as it is more natural that

the discontinuities of the permeability are supported by the edges of the primal mesh, we introduce a modified DDFV

scheme in Section 5. The m-DDFV scheme has been proposed by Hermeline in [26] for 2D linear elliptic problems

with discontinuities and extented by Boyer and Hubert in [8] for 2D nonlinear elliptic problems with discontinuities.

Finally, in Section 5.4, we show numerical experiments obtained with the m-DDFV scheme.

2. Presentation of the numerical scheme

2.1. Meshes and notations

In order to define a DDFV scheme, as for instance in [13, 5], we need to introduce three different meshes – the

primal mesh, the dual mesh and the diamond mesh – and some associated notations.

The mesh construction starts from the partition M, the partition of the computational domain Ω, with disjoint

open polygonal control volumes K ⊂ Ω such that ∪K̄ = Ω̄. This partition M is called the interior primal mesh. We

denote by ∂M the set of boundary edges, which are considered as degenerate control volumes. Then, the primal mesh

is composed of M ∪ ∂M, denoted by M. To construct the two others meshes, we need to associate at each primal

cell K ∈ M, a point xK ∈ K , called the center of the primal cell. Notice that for K is a degenerate control volume,

the point xK is necessarily the midpoint of K . This family of centers is denoted by X = {xK ,K ∈M} and these will

determine the two others meshes.

Let X∗ denote the set of the vertices of the primal control volumes in M. Distinguishing the interior vertices from

the vertices lying on the boundary, we split X∗ into X∗ = X∗
int
∪X∗ext. To any point xK∗ ∈ X∗

int
, we associate the polygon

K∗, whose vertices are {xK ∈ X/xK∗ ∈ K̄ ,K ∈M}. The set of these polygons defines the interior dual mesh denoted

by M
∗. To any point xK∗ ∈ X∗ext, we then associate the polygonK∗, whose vertices are {xK∗ } ∪ {xK ∈ X/xK∗ ∈ K̄ ,K ∈

M}. The set of these polygons is denoted by ∂M∗ called the boundary dual mesh and the dual mesh is M∗ ∪ ∂M∗,

denoted by M∗.

Assumption: Each primal cellK ∈M is star-shaped with respect to xK and each dual cellK∗ ∈M∗ is star-shaped

with respect to xK∗ .

To define the last mesh “the diamond mesh”, we first introduce the notion of edges. For all neighboring primal

cellsK and L, we assume that ∂K ∩∂L is a segment, corresponding to an edge of the mesh M, denoted by σ = K|L.

Let E be the set of such edges. We similarly define the edges E∗ of the dual mesh M∗: σ∗ = K∗|L∗. Remark that if

K∗ ∈ ∂M∗, then we have ∂K∗ = {σ∗, σ}.

xL∗

xK∗

xL

xK τK∗,L∗

nσK

τK,L

nσ∗K∗

Vertices of the primal mesh

Centers of the primal mesh

σ = K|L, edge of the primal mesh

σ∗ = K∗|L∗, edge of the dual mesh

DiamondDσ,σ∗
xL∗

xK∗

xL

xK

dK∗,L

dL∗,L

Figure 2.1: Definition of the diamondsDσ,σ∗

For each couple (σ,σ∗) ∈ E × E∗ such that σ = K|L = (xK∗ , xL∗ ) and σ∗ = K∗|L∗ = (xK , xL), we define the

quadrilateral diamond cellDσ,σ∗ whose diagonals are σ and σ∗. If σ ∈ E∩ ∂Ω, we note that the diamond degenerates
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into a triangle. The set of the diamond cells defines the diamond mesh D. It verifies Ω̄ =
⋃

D∈D

D. We have as many

diamond cells as primal edges.

Finally, the DDFV mesh is made of the T = (M,M∗) and D. Let us now introduce some notations associated to

the meshes T and D. For each primal or dual cell V (V ∈ M or V ∈ M∗), we define mV the measure of V , EV the

set of the edges of V (it coincides with the edge σ = V if V ∈ ∂M), DV the set of diamonds Dσ,σ∗ ∈ D such that

m(Dσ,σ∗ ∩ V) > 0, and dV the diameter of V .

For a diamond Dσ,σ∗ , whose vertices are (xK , xK∗ , xL, xL∗ ), we define, as shown on Figure 2.1: xD the center of

the diamond cell D: xD = σ ∩ σ
∗, mσ the length of the primal edge σ, mσ∗ the length of the dual edge σ∗, mD the

measure of D, dD its diameter, αD the angle between (xK , xL) and (xK∗ , xL∗ ), mDK the measure of D ∩ K and mDK∗
the measure ofD∩K∗. We will also use two direct basis (τK∗,L∗ ,nσK) and (nσ∗K∗ , τK,L), where nσK is the unit normal

to σ, outwardK , nσ∗K∗ is the unit normal to σ∗, outwardK∗, τK∗,L∗ is the unit tangent vector to σ, oriented fromK∗ to

L∗, τK,L is the unit tangent vector to σ∗, oriented from K to L. For σ = [xK∗ , xL∗ ] ∈ ∂M, we define dK∗,L the length

of the segment [xK∗ , xL]and dL∗,L the length of the segment [xL∗ , xL].

We introduce now the size of the mesh, size(T ) = max
D∈D

dD. To measure how flat the diamond cells can be, we note

αT the unique real in ]0, π
2
] such that sin(αT ) := min

D∈D
(| sin(αD)|). We also need some regularity of the mesh, as in [5],

which gives the existence of a constant ζ > 0 such that

∑

D∈DK

mσmσ∗ ≤
mK

ζ
,∀K ∈M, and

∑

D∈DK∗

mσmσ∗ ≤
mK∗

ζ
,∀K∗ ∈M∗. (13)

2.2. Discrete operators and duality formula

We define several types of degrees of freedom to represent scalar, vector and tensor fields in the discrete setting.

We consider :

• R
T is a linear space of scalar fields constant on the cells of M and M∗ :

R
T =

{
uT =

(
(uK )

K∈M
, (uK∗ )K∗∈M∗

)
, with uK ∈ R, ∀K ∈M, and uK∗ ∈ R, ∀K

∗ ∈M∗
}
.

•
(
R

2
)D

is a linear space of vector fields constant on the cells of D :

(
R

2
)D
=

{
ξD =

(
ξD

)
D∈D , with ξD ∈ R

2, ∀D ∈ D
}
.

In this section, we recall the definition of two discrete operators. The discrete gradient has been introduced in [12]

and further with the discrete divergence in [13]. In order to write a discrete duality property (similar to the Green

formula at the discrete level), we also introduce some trace operators and scalar products.

Definition 2.1. The discrete gradient ∇D is a mapping from R
T to

(
R

2
)D

defined for all uT ∈ R
T by ∇DuT =(

∇DuT
)
D∈D

, where forD ∈ D :



∇DuT · τK∗,L∗ =
uL∗ − uK∗

mσ
,

∇DuT · τK,L =
uL − uK

mσ∗
.

⇐⇒ ∇DuT =
1

sin(αD)

(
uL − uK

mσ∗
nσK +

uL∗ − uK∗

mσ
nσ∗K∗

)

As the measure mD of the diamondD verifies : mD =
1

2
mσmσ∗ sin(αD), the discrete gradient onD rewrites:

∇DuT =
1

2mD

[
(uL − uK )mσnσK + (uL∗ − uK∗ )mσ∗nσ∗K∗

]
.
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Applying the Green formula to a regular function ξ : Ω→ R
2, we get:

∫

K

div(ξ(x))dx =
∑

σ∈∂K

∫

σ

ξ(s) · nσKds, ∀K ∈M, (14)

and a similar equality when integrating over K∗ ∈M∗. Therefore, the discrete divergence divT is defined by mimick-

ing (14) at the discrete level.

Definition 2.2. The discrete divergence operator divT is a mapping from
(
R

2
)D

to R
T defined for all ξD ∈

(
R

2
)D

by

divTξD =
(
divMξD, div∂MξD, divM

∗

ξD, div∂M
∗

ξD

)
,

with divMξD =
(
divKξD

)
K∈M, div∂MξD = 0, divM

∗

ξD =
(
divK∗ξD

)
K∗∈M∗ and div∂M

∗

ξD =
(
divK∗ξD

)
K∗∈∂M∗ such

that:

∀ K ∈M, divKξD =
1

mK

∑

D∈DK
D=Dσ,σ∗

mσ ξD · nσK ,

∀ K∗ ∈M∗, divK∗ξD =
1

mK∗

∑

D∈DK∗

D=Dσ,σ∗

mσ∗ ξD · nσ∗K∗ ,

∀ K∗ ∈ ∂M∗, divK∗ξD =
1

mK∗



∑

D∈DK∗

D=Dσ,σ∗

mσ∗ ξD · nσ∗K∗ +
∑

D∈DK∗∩Dext

D=Dσ,σ∗

dK∗,L ξD · nσK


.

Let us now introduce two trace operators, defined respectively on R
T and

(
R

2
)D

. The first one is γT : uT ∈ R
T 7→

γT (uT ) =
(
γσ(uT )

)
σ∈∂M

∈ R∂M, defined by :

γσ(uT ) =
dK∗,L(uK∗ + uL) + dL∗,L(uL∗ + uL)

2mσ
, ∀ σ = [xK∗ , xL∗ ] ∈ ∂M. (15)

The second one is γD : ϕD ∈ (R2)D 7→ (ϕD)D∈Dext
∈ (R2)Dext .

In order to show the duality property between the discrete gradient and the discrete divergence, we define the

scalar products J·, ·KT on R
T and (·, ·)D on

(
R

2
)D

by

JvT , uT KT =
1

2


∑

K∈M

mKuKvK +
∑

K∗∈M∗

mK∗uK∗vK∗

 , ∀uT , vT ∈ R
T ,

(
ξD,ϕD

)
D
=

∑

D∈D

mD ξD · ϕD, ∀ξD,ϕD ∈
(
R

2
)D
.

The corresponding norms are denoted by ‖ · ‖2,T and ‖ · ‖2,D. More generally, we set:

‖uT ‖p,T =


1

2

∑

K∈M

mK |uK |
p +

1

2

∑

K∗∈M∗

mK∗ |uK∗ |
p



1/p

, ∀uT ∈ R
T , ∀1 ≤ p < +∞

‖uT ‖∞,T = max

(
max
K∈M

|uK |, max
K∗∈M∗

|uK∗ |

)
, ∀uT ∈ R

T ,

∥∥∥ξD
∥∥∥

p,D
=


∑

D∈D

mD |ξD|
p


1/p

, ∀ξD ∈
(
R

2
)D
, ∀1 ≤ p < +∞

∥∥∥ξD
∥∥∥
∞,D

= max
D∈D

∣∣∣ξD
∣∣∣ , ∀ξD ∈

(
R

2
)D
.

(16)
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We also define 〈·, ·〉∂Ω on R
Dext × R∂M by

〈φD, v∂M〉∂Ω =
∑

Dσ,σ∗∈Dext

mσφDvσ, ∀ φD ∈ R
Dext ,∀v∂M = (vσ)σ∈∂M ∈ R

∂M.

The basis of the Discrete Duality Finite Volume methods lies on the discrete duality formula recalled in Theo-

rem 2.3 and proved for instance in [13].

Theorem 2.3. For all (ξD, vT ) ∈
(
R

2
)D
× RT , we have

JdivTξD, vT KT = −(ξD,∇
DvT )D + 〈γ

D(ξD) · n, γT (vT )〉∂Ω,

where n is the exterior unit normal to Ω.

2.3. A discrete convection operator

In order to treat the convection terms in the concentration equation, we define a discrete convection operator. This

operator is similar to the one introduced in [4] but is written here for an upwinding of the convection terms.

Definition 2.4. The discrete convection operator divcT is a mapping from
(
R

2
)D
×RT to R

T defined for all ξD ∈
(
R

2
)D

and vT ∈ R
T by

divcT (ξD, vT ) =
(
divcM(ξD, vT ), divc∂M(ξD, vT ), divcM

∗

(ξD, vT ), divc∂M
∗

(ξD, vT )
)
,

with divcM(ξD, vT ) =
(
divcK (ξD, vT )

)
K∈M, divc∂M(ξD, vT ) = 0, divcM

∗

(ξD, vT ) =
(
divcK∗ (ξD, vT )

)
K∗∈M∗ and

divc∂M
∗

(ξD, vT ) =
(
divcK∗ (ξD, vT )

)
K∗∈∂M∗ such that:

∀K ∈M, divcK (ξD, vT ) =
1

mK

∑

Dσ,σ∗∈DK

mσ
((
ξ
D
· nσK

)+
vK −

(
ξ
D
· nσK

)−
vL

)
,

∀K∗ ∈M∗, divcK∗ (ξD, vT ) =
1

mK∗

∑

Dσ,σ∗∈DK∗

mσ∗
((
ξ
D
· nσ∗K∗

)+
vK∗ −

(
ξ
D
· nσ∗K∗

)−
vL∗

)
,

∀K∗ ∈ ∂M∗, divcK∗ (ξD, vT ) =
1

mK∗



∑

D∈DK∗

D=Dσ,σ∗

mσ∗
((
ξ
D
· nσ∗K∗

)+
vK∗ −

(
ξ
D
· nσ∗K∗

)−
vL∗

)

+
∑

D∈DK∗∩Dext

D=Dσ,σ∗

dK∗,L
((
ξ
D
· nσK

)+
vK −

(
ξ
D
· nσK

)−
vL

)

,

where x+ = max(x, 0) and x− = −min(x, 0) for all x ∈ R.

This discrete convection operator satisfies the discrete property stated in Lemma 2.5.

Lemma 2.5. For all uT ∈ R
T and bD ∈

(
R

2
)D

verifying bD · n = 0 for allD ∈ Dext, we have:

JdivcT (bD, uT ), uT KT ≥
1

2
JdivT (bD), (uT )2KT .

Proof. Due to the definition of the scalar product J·, ·, KT , the quantity JdivcT (bD, uT ), uT KT is the sum of a primal

term Tp and a dual term Td. We first consider the primal term:

Tp =
1

2

∑

K∈M

mKdivcK (bD, uT )uK ,

=
1

2

∑

K∈M

∑

Dσ,σ∗∈DK

mσ
(
(bD · nσK)+ uK − (bD · nσK)− uL

)
uK

7



Rewriting Tp as a sum on all the primal edges of the mesh and using the relations |x| = x+ + x−, x = x+ − x− and

(a − b)a =
1

2
((a − b)2 + a2 − b2), we get:

Tp =
1

2

∑

Dσ,σ∗∈D

mσ
(
(bD · nσK)+ uK − (bD · nσK)− uL

)
(uK − uL)

=
1

2

∑

Dσ,σ∗∈D

mσ
(
|bD · nσK |uK (uK − uL) − (bD · nσK)−(u2

K
− u2
L)

)

=
1

4


∑

Dσ,σ∗∈D

mσ|bD · nσK |(uK − uL)2 +
∑

Dσ,σ∗∈D

mσbD · nσK(u2
K
− u2
L)



The first term in the sum is clearly nonnegative and the second term can be rewritten thanks to a discrete integration

by parts leading to

Tp ≥
1

4

∑

K∈M

mKu2
K

divK (bD). (17)

For the dual term, we have:

Td =
1

2

∑

K∗∈M∗

mK∗divcK∗ (bD, uT )uK∗

=
1

2

∑

K∗∈M∗

∑

Dσ,σ∗∈DK∗

mσ∗
(
(bD · nσ∗K∗ )

+ uK∗ − (bD · nσ∗K∗ )
− uL∗

)
uK∗

because the boundary terms vanish due to the hypothesis bD · n = 0 for all D ∈ Dext. Then, Td can be rewritten as a

sum on the dual edges and following the same computations as for Tp, we get

Td ≥
1

4

∑

K∗∈M∗

mK∗u
2
K∗

divK∗ (bD). (18)

Thanks to (17), (18) and the equality

1

4

∑

K∈M

mKu2
K

divK (bD) +
1

4

∑

K∗∈M∗

mK∗u
2
K∗

divK∗ (bD) =
1

2
JdivT (bD), (uT )2KT ,

the proof is ended.

2.4. The numerical scheme

Let (T ,D) be a DDFV mesh of Ω (as presented in Section 2.1) and δt > 0 be a time step. In order to compute a

numerical approximation to (5)–(6) on ]0,T [×Ω, we set NT = T/δt (we always choose time steps such that NT is an

integer) and we define tn = nδt for n ∈ {0, . . . ,NT }.

First, we discretize all the data of the problem. Therefore, we introduce PK (respectively PK∗ ) the L2 projection

over an interior primal cell (respectively a dual cell). We then define c0
T
=

(
(PKc0)K∈M , 0, (PK∗c0)

K∗∈M∗

)
∈ RT and

ΦT =
(
(PKΦ)K∈M , 0, (PK∗Φ)

K∗∈M∗

)
∈ RT . In a similar way, for all n ≥ 1, we define (q+,n

T
, q
−,n

T
, ĉn
T

) ∈ (RT )3 by taking

the mean values of q+, q− and ĉ on the primal and dual cells crossed with the time interval (tn−1, tn):

q
+,n

T
=

1

δt

∫ tn

tn−1

((
PKq+(., t)

)
K∈M , 0,

(
PK∗q

+(., t)
)
K∗∈M∗

)
dt

q
−,n

T
=

1

δt

∫ tn

tn−1

((
PKq−(., t)

)
K∈M , 0,

(
PK∗q

−(., t)
)
K∗∈M∗

)
dt

ĉn
T =

1

δt

∫ tn

tn−1

(
(PK ĉ(., t))K∈M , 0, (PK∗ ĉ(., t))

K∗∈M∗

)
dt.
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At each time step n, the numerical solution will be given by (pn
T
,Un

D
, cn
T

) ∈ RT ×
(
R

2
)D
×RT and the computation

of the pressure is decoupled from the computation of the concentration. From the approximate concentration given

on primal and dual cells cn−1
T

, we reconstruct some approximate values on each diamond cell

cn−1
D =

mDK

2mD
cn−1
K
+

mDK∗

2mD
cn−1
K∗
+

mDL

2mD
cn−1
L +

mDL∗

2mD
cn−1
L∗ .

We introduce the new vector cn−1
D
= (cn−1

D
)D∈D, the approximate tensors

AD(s) =
1

mD

∫

D

A(x, s)dx ∀s ∈ R, DD(W) =
1

mD

∫

D

D(x,W)dx, ∀W ∈ R2,

and AD(cn−1
D

) =
(
AD(cn−1

D )
)
D∈D

and DD

(
Un

D

)
=

(
DD(Un

D)
)
D∈D

.

Then, the scheme for (5) writes ∀1 ≤ n ≤ NT

divT
(
Un

D

)
= q

+,n

T
− q
−,n

T
, (19)

Un
D
= −AD(cn−1

D
)∇Dpn

T , (20)

Un
D · n = 0, ∀D ∈ Dext, (21)

∑

K∈M

mK pn
K
=

∑

K∗∈M∗

mK∗ p
n
K∗
= 0, (22)

and the scheme for (6) writes ∀1 ≤ n ≤ NT

ΦT
cn
T
− cn−1
T

δt
− divT

(
DD

(
Un

D

)
∇Dcn

T

)
+ divcT

(
Un

D
, cn
T

)
+ q
−,n

T
cn
T = q

+,n

T
ĉn
T , (23)

DD

(
Un
D

)
∇Dcn

T · n = 0,∀D ∈ Dext. (24)

The scheme (19)–(24) comes down to a resolution of two linear systems: starting from cn−1
T

, (pn
T
,Un

D
) is obtained by

solving the linear system (19)–(22) and then cn
T

is computed by solving the linear system (23)-(24). The inversibility

of these linear systems, and then existence and uniqueness of a solution to the linear scheme, will be proved in

Section 3.2.

3. A priori estimates and existence and uniqueness result

3.1. A priori estimates

In this Section, we prove a priori estimates satisfied by the solution to the scheme (19)–(24). Therefore, we need

a discrete Poincaré inequality. This inequality is recalled in Theorem 3.1. We refer to [28] or [7] for its proof.

Theorem 3.1 (Poincaré inequality). Let Ω be an open bounded polygonal domain of R2 and T a DDFV mesh of Ω.

There exists C > 0 depending only on Ω and on ζ, such that ∀ uT ∈ R
T with

∑

K∈M

mKuK =
∑

K∗∈M∗

mK∗uK∗ = 0, we

have

‖uT ‖2,T ≤
C

sin(αT )
‖∇DuT ‖2,D.

We first establish a priori estimates on the pressure, the gradient of the pressure and the Darcy’s velocity at the

discrete level.

Lemma 3.2. Let Ω be a convex polygonal domain of R2 and T a DDFV mesh of this domain. Assume (7)–(12) hold

and that the scheme (19)–(24) has a solution (pn
T
,Un

D
, cn
T

)1≤n≤NT
. Then, there exists C > 0 depending only on Ω, ζ,

sin(αT ), αA and ΛA, such that we have for all n ∈ [1, . . . ,NT ]:

∥∥∥pn
T

∥∥∥
2,T
+

∥∥∥∇Dpn
T

∥∥∥
2,D
+

∥∥∥Un
D

∥∥∥
2,D
≤ C‖q+ − q−‖L∞(0,T ;L2(Ω)). (25)
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Proof. We multiply the scheme (19) by pn
T

. Thanks to the Neumann boundary condition (21), the discrete duality

formula (Theorem 2.3) yields:

q
q
+,n

T
− q
−,n

T
, pn
T

y
T
=

r
divT

(
Un

D

)
, pn
T

z
T
= −

(
Un

D
,∇Dpn

T

)
D
.

Then, using (20), hypothesis (8) and Cauchy-Schwarz inequality, we have

αA

∥∥∥∇Dpn
T

∥∥∥2

2,D
≤

q
q
+,n

T
− q
−,n

T
, pn
T

y
T
≤

∥∥∥q
+,n

T
− q
−,n

T

∥∥∥
2,T

∥∥∥pn
T

∥∥∥
2,T

(26)

Applying now the discrete Poincaré inequality (Theorem 3.1), we get simultaneously

∥∥∥∇Dpn
T

∥∥∥
2,D
≤ C

∥∥∥q
+,n

T
− q
−,n

T

∥∥∥
2,T

and
∥∥∥pn
T

∥∥∥
2,T
≤ C

∥∥∥q
+,n

T
− q
−,n

T

∥∥∥
2,T
∀1 ≤ n ≤ NT . (27)

The relation (20) and the hypothesis (8) imply
∥∥∥Un

D

∥∥∥
2,D
≤ ΛA

∥∥∥∇Dpn
T

∥∥∥
2,D

and therefore

∥∥∥Un
D

∥∥∥
2,D
≤ C‖q

+,n

T
− q
−,n

T
‖2,T∀1 ≤ n ≤ NT . (28)

As

max
1≤n≤NT

∥∥∥q
+,n

T
− q
−,n

T

∥∥∥
2,T
≤ ‖q+ − q−‖L∞(0,T,L2(Ω)),

the estimate (25) is a consequence of (27) and (28).

Lemma 3.3 gives a priori estimates on the approximate concentration and its approximate gradient.

Lemma 3.3. Let Ω be a convex polygonal domain of R2 and T a DDFV mesh of this domain. Assume (7)–(12) hold

and that the scheme (19)–(24) has a solution (pn
T
,Un

D
, cn
T

)1≤n≤NT
. Then, there exists C > 0 depending only on Ω, ζ,

sin(αT ), Φ∗ and αD, such that we have for all N ∈ [1, . . . ,NT ] :

∥∥∥cN
T

∥∥∥2

2,T
+

N∑

n=1

δt
∥∥∥∇Dcn

T

∥∥∥2

2,D
+

N∑

n=1

δt
∥∥∥∥|Un

D
|

1
2∇Dcn

T

∥∥∥∥
2

2,D
≤ C

(
‖c0‖

2
L2(Ω)
+ ‖q+‖2

L∞(0,T,L2(Ω))

)
. (29)

Proof. We multiply the scheme (23) by cn
T

:

t
ΦT

cn
T
− cn−1
T

δt
, cn
T

|

T

−

r
divT

(
DD

(
Un

D

)
∇Dcn

T

)
, cn
T

z
T
+

r
divcT

(
Un

D
, cn
T

)
, cn
T

z
T
+

q
q
−,n

T
cn
T , c

n
T

y
T

=
q

q
+,n

T
ĉn
T , c

n
T

y
T

(30)

Let us analyse successively the different terms in this equality. The relation (a − b)a = 1
2
(a2 − b2) + 1

2
(a − b)2 ensures

q
ΦT (cn

T − cn−1
T ), cn

T

y
T
≥

1

2

(q
ΦT , (c

n
T )2

y
T
−

q
ΦT , (c

n−1
T )2

y
T

)

Thanks to the Neumann boundary conditions (24), Theorem 2.3 and hypothesis (9) lead to:

−

r
divT

(
DD

(
Un

D

)
∇Dcn

T

)
, cn
T

z
T
=

(
DD

(
Un

D

)
∇Dcn

T ,∇
Dcn
T

)
D

≥ αD

(∥∥∥∇Dcn
T

∥∥∥2

2,D
+

∥∥∥∥|Un
D
|

1
2∇Dcn

T

∥∥∥∥
2

2,D

)
.

Due to the boundary conditions (21), Lemma 2.5 and (19) imply:

r
divcT

(
Un

D
, cn
T

)
, cn
T

z
T
≥

1

2

r
divT (Un

D
),
(
cn
T

)2
z
T
≥

1

2

r
q
+,n

T
− q
−,n

T
,
(
cn
T

)2
z
T

10



and, as
q

q
−,n

T
cn
T
, cn
T

y
T
=

r
q
−,n

T
,
(
cn
T

)2
z
T

, we obtain:

r
divcT

(
Un

D
, cn
T

)
, cn
T

z
T
+

q
q
−,n

T
cn
T , c

n
T

y
T
≥

1

2

r
q
+,n

T
+ q
−,n

T
,
(
cn
T

)2
z
T
≥ 0.

Finally, thanks to Cauchy-Schwarz inequality and hypotheses (11) , we have

q
q
+,n

T
ĉn
T , c

n
T

y
T
≤

∥∥∥q
+,n

T
ĉn
T

∥∥∥
2,T

∥∥∥cn
T

∥∥∥
2,T
≤

∥∥∥q
+,n

T

∥∥∥
2,T

∥∥∥cn
T

∥∥∥
2,T
.

Therefore, from equality (30), we get:

1

2δt

(q
ΦT , (c

n
T )2

y
T
−

q
ΦT , (c

n−1
T )2

y
T

)
+ αD

(∥∥∥∇Dcn
T

∥∥∥2

2,D
+

∥∥∥∥|Un
D
|

1
2∇Dcn

T

∥∥∥∥
2

2,D

)
≤

∥∥∥q
+,n

T

∥∥∥
2,T

∥∥∥cn
T

∥∥∥
2,T
. (31)

Multiplying by 2δt and summing over n = 1, . . . ,N with 1 ≤ N ≤ NT , we get

q
ΦT , (c

N
T )2

y
T
−

q
ΦT , (c

0
T )2

y
T
+ 2αD

N∑

n=1

δt

(∥∥∥∇Dcn
T

∥∥∥2

2,D
+

∥∥∥∥|Un
D
|

1
2∇Dcn

T

∥∥∥∥
2

2,D

)
≤ 2

N∑

n=1

δt
∥∥∥q
+,n

T

∥∥∥
2,T

∥∥∥cn
T

∥∥∥
2,T
. (32)

But, the hypotheses on Φ (10) ensure:

q
ΦT , (c

N
T )2

y
T
≥ Φ∗‖c

N
T ‖

2
2,Tq

ΦT , (c
0
T )2

y
T
≤ Φ−1

∗ ‖c
0
T ‖

2
2,T ≤ Φ

−1
∗ ‖c0‖

2
L2(Ω)
.

For the right-hand side in (32), we have:

N∑

n=1

δt
∥∥∥q
+,n

T

∥∥∥
2,T

∥∥∥cn
T

∥∥∥
2,T

≤ T‖q+‖L∞(0,T,L2(Ω)) sup
n∈[1,...,NT ]

‖cn
T ‖2,T

≤
T 2

Φ∗
‖q+‖2

L∞(0,T,L2(Ω))
+
Φ∗

4
sup

n∈[1,...,NT ]

‖cn
T ‖

2
2,T .

Therefore, we deduce from (32) that, for all N ∈ [1, . . . ,NT ],

Φ∗‖c
N
T ‖

2
2,T + 2αD

N∑

n=1

δt

(∥∥∥∇Dcn
T

∥∥∥2

2,D
+

∥∥∥∥|Un
D
|

1
2∇Dcn

T

∥∥∥∥
2

2,D

)

≤ Φ−1
∗ ‖c0‖

2
L2(Ω)
+

2T 2C2

Φ∗
‖q+‖2

L∞(0,T,L2(Ω))
+
Φ∗

2
sup

n∈[1,...,NT ]

‖cn
T ‖

2
2,T .

We first focus on the term Φ∗‖c
N
T
‖2

2,T
of the left hand side of the previous inequality, which is bounded by the right

hand side. Taking now the supremum over N ∈ [1, . . . ,NT ] yields the expected inequality (29) of this term. Finally,

for the other terms of the left hand side of the previous inequality, we directly have the expected inequality (29).

3.2. Existence and uniqueness of an approximate solution

In this Section, we prove Theorem 3.4. It consists in the proof of invertibility of the two linear systems (19)–(22)

and (23)-(24) involved at each time step.

Theorem 3.4. Let Ω be a convex polygonal domain of R2 and T a DDFV mesh of this domain. Assume (7)–(12)

hold. Let T > 0 and δt be a time step such that NT = T/δt is an integer. Then, the scheme (19)–(24) admits a unique

solution (pn
T
,Un

D
, cn
T

)1≤n≤NT
.
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Step 1: Existence and uniqueness of (pn
T
,Un

D
)

Let us first consider the system (19)–(22) on (pn
T
,Un

D
). The number of unknowns of the system is Card(M) +

Card(∂M) + Card(M∗) + Card(∂M∗) + Card(D). Equations (19), (20) and (21) provide respectively Card(M) +

Card(M∗) + Card(∂M∗), Card(D) and Card(Dext) equations. As Card(Dext) = Card(∂M), the system (19)–(21) is a

square system.

Inequality (26) gives us the kernel of this square system. Indeed, q
+,n

T
− q
−,n

T
= 0 implies ∇Dpn

T
= 0 and, thanks to

the definition of the discrete gradient (2.1),

∇Dpn
T = 0⇐⇒ pn

K
= P, ∀K ∈M and pn

K∗
= P̃, ∀K∗ ∈M∗.

Therefore, the kernel of the square system (19)–(21) has dimension 2. Let us now multiply the scheme (19) by the

test function vT defined by vK = 1 for all K ∈M and vK∗ = 0 for all K∗ ∈M∗. We obtain :

∑

K∈M

mK (q+,n
K
− q
−,n

K
) =

q
q
+,n

T
− q
−,n

T
, vT

y
T
=

q
divT (Un

D
), vT

y
T
= −(Un

D
,∇DvT )D = 0.

With the test function wT defined by wK = 0 for all K ∈M and wK∗ = 0 for all K∗ ∈M∗, we get similarly

∑

K∗∈M∗

mK∗ (q
+,n

K∗
− q
−,n

K∗
) =

q
q
+,n

T
− q
−,n

T
,wT

y
T
= 0.

The relations
∑

K∈M

mK (q+,n
K
− q
−,n

K
) = 0 and

∑

K∗∈M∗

mK∗ (q
+,n

K∗
− q
−,n

K∗
) = 0 ensure that the right hand-side of the linear

system belongs to the image of the matrix of the system. As these conditions are satisfied, thanks to hypothesis (7),

the system (19)–(22) is invertible. Its solutions are not unique: they are defined up to the constants P and P̃. But, the

values of P and P̃ are fixed by (22). Therefore, the system (19)–(22) admits a unique solution.

Step 2: Existence and uniqueness of cn
T

We now consider the system (23)-(24) on cn
T

. The number of unknowns is Card(M) + Card(∂M) + Card(M∗) +

Card(∂M∗), equal to the number of equations. Inequality (31) written with cn−1
T
= 0 and q

+,n

T
= 0 imply that the kernel

of the linear system is reduced to 0. Therefore, there exists a unique cn
T

solution to (23)-(24).

It concludes the proof of Theorem 3.4.

4. Numerical convergence of the DDFV scheme

In this section, we illustrate the behavior of DDFV scheme by applying it to the system (1)—(3), which describes

the miscible displacement of one fluid by another in a porous medium.

In all the test cases, the spatial domain is Ω = (0, 1000) × (0, 1000) ft2 and the time period is [0, 3600] days.

The injection well is located at the upper-right corner (1000, 1000) with an injection rate q+ = 30 ft2/day and an

injection concentration ĉ = 1.0. The production well is located at the lower-left corner (0, 0) with a production rate

q− = 30 ft2/day. It means that q− and q+ are Dirac masses, which can be taken into account with the scheme. The

porosity of the medium is specified as Φ(x) = 0.1 and the initial concentration is c0(x) = 0. The viscosity of the oil is

µ(0)=1.0 cp. We choose Φdl = 5 ft and Φdt = 0.5 ft.

In order to compute the numerical order of convergence of the scheme, we introduce a sequence of triangular

meshes. For a refinement level i ∈ {1, · · · , 7}, the mesh is obtained by dividing the domain into 2i+1 × 2i+1 equally

sized squares and each square is split into 2 triangles along a diagonal. The number of cells for the mesh i is 22i+3. We

present on Figure 4.1 the meshes obtained for i = 1 and i = 3.

We take as the reference solution the solution computed on the mesh i = 7 and we compute the relative errors in

L1-norm and L2-norm at time T = 3600 days. The time step is δt = 36 days.

Test 1: In this test case, we assume that the viscosity is constant, µ(c) = 1 cp. And we set Φdm = 1 ft2/day. We

compare the results obtained for two different values of the permeability : a constant one K = 80 I and a discontinuous

one K = 80 I on the subdomain (0, 1000) × (0, 500) and K = 20 I on the subdomain (0, 1000) × (500, 1000).
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Figure 4.1: Triangular meshes with a refinement level i = 1 on the left and i = 3 on the right.

In Table 4.1, we first compare the L1-norm and L2-norm of the pressure error. When the permeability K is

continuous, we observe a order of convergence in L1-norm around 2 while it is only less than 1.2 in L2-norm. When

the permeability K is discontinuous, we note that the values of the errors in L1-norm and L2-norm are close and the

order of convergence in L1-norm is now around 1.2. In fact, this loss of convergence has already been observed by

Boyer-Hubert in [8].

refinement K = 80 I K = (801y<500 + 201y>500) I

level error L1 order L1 error L2 order L2 error L1 order L1 error L2 order L2

1 2.72e-02 - 5.15e-02 - 1.63e-01 - 1.30e-01 -

2 7.57e-03 2.14 2.50e-02 1.18 7.95e-02 1.19 6.20e-02 1.21

3 2.21e-03 1.93 1.24e-02 1.09 3.83e-02 1.14 2.98e-02 1.13

4 6.35e-04 1.88 6.18e-03 1.05 1.78e-02 1.15 1.41e-02 1.13

5 1.74e-04 1.91 3.02e-03 1.06 7.64e-03 1.25 6.26e-03 1.19

6 4.08e-05 2.12 1.32e-03 1.21 2.55e-03 1.60 2.31e-03 1.46

Table 4.1: Test 1. Convergence results of the DDFV method on the pressure p at time t = 3600.

In Table 4.2, we compare the different orders of convergence for the concentration. We observe the same kind of

results : order around 1, in L1-norm as in L2-norm, for the continuous permeability and the discontinuous one.

Let us just mention that we obtain similar results using a sequence of square meshes.

Test 2 : In this test case, we assume that the viscosity really depends on c and is given by (4) with M = 41. The

dependence on c of the viscosity induces a strong coupling in the system. We also assume that there is no molecular

diffusion Φdm = 0 ft2/day. We still compare the results obtained for two different values of the permeability : a

constant one K = 80 I and a discontinuous one K = 80 I on the subdomain (0, 1000) × (0, 500) and K = 20 I on the

refinement K = 80 I K = (801y<500 + 201y>500) I

level error L1 order L1 error L2 order L2 error L1 order L1 error L2 order L2

1 4.66e-02 - 6.13e-02 - 4.60e-02 - 6.02e-02 -

2 3.28e-02 0.58 4.49e-02 0.52 3.26e-02 0.57 4.53e-02 0.47

3 2.03e-02 0.75 2.84e-02 0.72 2.02e-02 0.75 2.88e-02 0.71

4 1.11e-02 0.91 1.58e-02 0.89 1.10e-02 0.92 1.60e-02 0.88

5 5.20e-03 1.12 7.52e-03 1.09 5.13e-03 1.12 7.66e-03 1.09

6 1.83e-03 1.53 2.67e-03 1.51 1.80e-03 1.53 2.73e-03 1.51

Table 4.2: Test 1. Convergence results of the DDFV method on the concentration c at time t = 3600.
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subdomain (0, 1000) × (500, 1000).

In Tables 4.3 and 4.4, we compare the different orders of convergence for the pressure and the concentration.

We observe a loss of accuracy for both variables and both values of permeability. Especially we remark that for a

continuous permeability we do not preserve the order 2 for the pressure.

refinement K = 80 I K = (801y<500 + 201y>500) I

level error L1 order L1 error L1 order L1

1 2.78e-01 - 3.71e-01 -

2 2.95e-01 -0.12 2.65e-01 0.56

3 2.67e-01 0.15 1.73e-01 0.66

4 1.95e-01 0.47 1.18e-01 0.57

5 1.01e-01 0.97 7.17e-02 0.74

6 3.49e-02 1.55 3.45e-02 1.07

Table 4.3: Test2. Convergence results of the DDFV method on the pressure p at time t = 3600.

refinement K = 80 I K = (801y<500 + 201y>500) I

level error L1 order L1 error L1 order L1

1 4.96e-01 - 4.69e-01 -

2 4.11e-01 0.31 3.67e-01 0.41

3 3.19e-01 0.40 2.62e-01 0.53

4 2.19e-01 0.56 1.68e-01 0.67

5 1.22e-01 0.87 9.44e-02 0.85

6 4.80e-02 1.36 4.16e-02 1.20

Table 4.4: Test 2. Convergence results of the DDFV method on the concentration c at time t = 3600.

5. An other scheme: the m-DDFV scheme

As shown in Table 4.1 the DDFV scheme for anisotropic diffusion equation has order 2 in the case where the

diffusion tensor is continuous but only order 1 when it is discontinuous. It has already been observed in [8], and

therefore these authors introduce a new DDFV scheme called m-DDFV.

In this part, we focus on a diffusive tensor A(x, c) =
K(x)

µ(c)
such that K is discontinuous across the primal edges.

In [26, 8], the authors have proposed to modify the discrete gradient and the numerical fluxes in order to recover a

scheme of order one. Note that in [8] the tensor is more general and it is discontinuous across primal and dual edges.

First we recall the idea and the definition of the discrete gradient. Then in Section 5.3, we apply this method to our

problem (5)-(6).

5.1. Notations

In this section, we need to introduce additional notations, as shown on Figure 5.1. For any D ∈ D, we define the

half-diamonds D̃K = D ∩ K and D̃L = D ∩ L, such that D = D̃K ∪ D̃L if D ∈ Dint and D = D̃K if D ∈ Dext.

A half-diamond is denoted by D̃ and the set of all the half-diamonds of the mesh is denoted by D̃. For any D ∈ D,

we recall that xD is the center of D and we introduce the half-edges σK = [xK , xD] and σL = [xL, xD], such that

σ = σK ∪ σL. Then, mσK denotes the measure of σK and xσK its center (and we define similarly mσL and xσL ).

We consider the linear spaces
(
R

2
)D̃

of vector fields constant on the cells of D̃ :

(
R

2
)D̃
=

{
ξ
D̃
=

(
ξ
D̃

)
D̃∈D̃
, with ξ

D̃
∈ R2, ∀D̃ ∈ D̃

}
.
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xL∗

xK∗

xL

xK
xD

D̃K

D̃L

σLσK

Figure 5.1: A diamondD with the half-diamonds D̃K and D̃L.

We also define an added scalar product (·, ·)
D̃

on
(
R

2
)D̃

by

(
ξ
D̃
,ϕ

D̃

)
D̃
=

∑

D̃∈D̃

mD̃ ξD̃ · ϕD̃, ∀ξD̃,ϕD̃ ∈
(
R

2
)D̃
,

the corresponding norm is denoted by ‖ · ‖
2,D̃

:

∥∥∥ξ
D̃

∥∥∥
2,D̃
=


∑

D̃∈D̃

mD̃ |ξD̃|
2



1/2

, ∀ξ
D̃
∈

(
R

2
)D̃
.

5.2. The modified discrete gradient

When the anisotropic tensor K is discontinuous across the primal edges, the normal component of K∇u must be

continuous across these primal edges. For instance, we have for σ = K|L = D̃K |D̃L
∫

σ

(
K
|D̃K
∇u
|D̃K

)
· nσKds =

∫

σ

(
K
|D̃L
∇u
|D̃L

)
· nσKds.

We need to impose this consistance at the discret level. Therefore, we introduce a new discrete gradient ∇D̃, piecewise

constant on the half-diamonds. In the definition of this new discrete gradient, we introduce new unknowns uσ which

will be algebrically eliminated in the sequel.

Definition 5.1. The discrete gradient ∇D̃ is a mapping from R
T to

(
R

2
)D̃

defined for all uT ∈ R
T by ∇D̃uT =(

∇D̃uT
)
D̃∈D̃

, where for D̃ ∈ D̃ whose vertices are xK , xK∗ and xL∗ :

∇D̃uT =
1

sin(αD)

(
uσ − uK

mσK
nσK +

uL∗ − uK∗

mσ
nσ∗K∗

)
⇐⇒



∇D̃uT · τK∗,L∗ =
uL∗ − uK∗

mσ
,

∇D̃uT · τK,L =
uσ − uK

mσK
.

For any D̃ ∈ D̃, let us define by KD̃ the mean value of K over D̃: KD̃ =
1

mD̃

∫

D̃

K(s)ds; KD̃ is a definite positive

matrix which approachs K on the half-diamond. To determine the unknowns uσ, we impose, for allD = Dσ,σ∗ ∈ Dint

such thatD = D̃K ∪ D̃L, the following condition:

(KD̃K
∇D̃KuT ) · nσK = (KD̃L

∇D̃LuT ) · nσK , (33)

Furthermore, for all Dσ,σ∗ ∈ Dext we take uσ = uL. We remark that on the boundary the diamond D ∈ Dext coincide

with the half-diamond D̃ and therefore ∇DuT = ∇
D̃uT .
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Proposition 5.2. Let uT ∈ R
T . For allDσ,σ∗ ∈ Dint, there exists a unique uσ solution to (33):

uσ =
mσKmσL((

KD̃K
mσL +KD̃L

mσK
)
nσK

)
· nσK

[
uK

(KD̃K
nσK) · nσK

mσK
+ uL

(KD̃L
nσK) · nσK

mσL

+
uL∗ − uK∗

mσ

( (
KD̃L
−KD̃K

)
nσ∗K∗

)
· nσK

]
.

(34)

Proof. The relation (33) rewrites

((
KD̃K

mσK
+

KD̃L

mσL

)
nσK

)
· nσKuσ = uK

(KD̃K
nσK) · nσK

mσK
+ uL

(KD̃L
nσK) · nσK

mσL
+

uL∗ − uK∗

mσ

( (
KD̃L
−KD̃K

)
nσ∗K∗

)
· nσK .

Since the matrices KD̃ are definite positive, the system is invertible and we get (34).

Thanks to the discrete gradient on half-diamonds, we introduce new numerical velocities as follows.

Definition 5.3. We define a mapping KDfrom
(
R

2
)D̃

to
(
R

2
)D

such that, for all ξ
D̃
∈

(
R

2
)D̃

,

KD(ξ
D̃

) =
(
KD(ξ

D̃
)
)
D∈D
,

where KD(ξ
D̃

) =
1

mD

∑

D̃∈D̃D

mD̃KD̃ξD̃ ∀D ∈ D.

Remark 5.4. 1. if K is smooth on the whole domain, we can replace this definition by

KD(ξ
D̃

) = K(xD)ξD,∀D ∈ D.

2. If K is piecewise constant on the primal cells, with K = KK on the primal cell K , we can rewrite KD(ξ
D̃

) =

KDξD where KD is defined by

(KDnσK) · nσK =
mσ∗ (KKnσK) · nσK(KLnσK) · nσK

mσL (KKnσK) · nσK +mσK (KLnσK) · nσK
,

(KDnσ∗K∗ ) · nσ∗K∗ =
mσL (KLnσ∗K∗ ) · nσ∗K∗ +mσK (KKnσ∗K∗ ,nσ∗K∗ )

mσ∗

−
mσKmσL

mσ∗

((KKnσK) · nσ∗K∗ − (KLnσK) · nσ∗K∗ )
2

mσL (KKnσK) · nσK +mσK (KLnσK) · nσK
,

(KDnσK) · nσ∗K∗ =
mσL (KLnσK) · nσ∗K∗ (KKnσK) · nσK +mσK (KKnσK) · nσ∗K∗ (KLnσK) · nσK

mσL (KKnσK) · nσK +mσK (KLnσK) · nσK
.

(35)

3. Each interior diamondD, whose vertices are xK , xK∗ , xL, xL∗ and whose center is xD, can be splitted into four

triangles (xK xK∗ xD), (xK∗ xLxD), (xLxL∗ xD) and (xL∗ xK xD) which can be called “quarter diamond cells”. In

[8], the diffusive tensor K is assumed to be smooth only on the quarter diamond cells and the discrete gradient

operator is defined as piecewise constant on the quarter diamond cells. In the case where the diffusive tensor

is only discontinuous across primal edges and then smooth on half-diamonds, the discrete gradient operator

introduced here coincides with the discrete gradient operator defined in [8].
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5.3. The m-DDFV scheme

In this section, we give the modified DDFV scheme called m-DDFV scheme. It differs from (19)-(24) in the

equation of the Darcy velocity (37). The scheme for (5) writes ∀1 ≤ n ≤ NT

divT
(
Un

D

)
= q

+,n

T
− q
−,n

T
, (36)

Un
D
= −

KD(∇D̃pn
T

)

µ(cn−1
D

)
, (37)

Un
D · n = 0, ∀D ∈ Dext, (38)

∑

K∈M

mK pn
K
=

∑

K∗∈M∗

mK∗ p
n
K∗
= 0, (39)

and the scheme for (6) writes ∀1 ≤ n ≤ NT

ΦT
cn
T
− cn−1
T

δt
− divT

(
DD

(
Un

D

)
∇Dcn

T

)
+ divcT

(
Un

D
, cn
T

)
+ q
−,n

T
cn
T = q

+,n

T
ĉn
T , (40)

DD

(
Un
D

)
∇Dcn

T · n = 0,∀D ∈ Dext. (41)

5.4. Numerical experiments

Refinement DDFV m-DDFV

level error L1 order L1 error L1 order L1

1 1.63e-01 - 3.36e-02 -

2 7.95e-02 1.19 9.50e-03 2.10

3 3.83e-02 1.14 2.69e-03 1.97

4 1.78e-02 1.15 7.60e-04 1.90

5 7.64e-03 1.25 2.07e-04 1.92

6 2.55e-03 1.60 4.79e-05 2.13

Table 5.1: Test 1. Convergence results of the DDFV and m-DDFV on the pressure p at time t = 3600, with K = (801y<500 + 201y>500) I.

In this Section, we now illustrate the behavior of the m-DDFV scheme by applying it to the Peaceman model

(1)–(3). We study the numerical rates of convergence of this scheme for the pressure and the concentration equations

and we compare them to the numerical rates obtained with the DDFV-scheme.

We first consider the Test 1 introduced in Section 4 with a discontinuous permeability. As the viscosity is constant,

this test case is an example where the pressure equation is decoupled from the concentration equation. In Table 5.1, we

observe that the m-DDFV scheme has an order 2 of convergence for the pressure equation, while the DDFV-scheme

Refinement DDFV m-DDFV

level error L1 order L1 error L1 order L1

1 4.60e-02 - 4.76e-02 -

2 3.26e-02 0.57 3.31e-02 0.61

3 2.02e-02 0.75 2.04e-02 0.76

4 1.10e-02 0.92 1.10e-02 0.92

5 5.13e-03 1.12 5.17e-03 1.12

6 1.80e-03 1.53 1.81e-03 1.53

Table 5.2: Test 1. Convergence results of the DDFV and m-DDFV methods on the concentration c, at time t = 3600, with K = (801y<500 +

201y>500) I.
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has only an order 1. However, we see in Table 5.2 that the values of the errors and the order of convergence obtained

with the DDFV and the m-DDFV schemes are similar for the concentration equation: the order of convergence is

around 1.

Then, we consider the Test 2 introduced in Section 4 with discontinuous permeability. In this test case, the vis-

cosity is no more constant; it induces a strong coupling between the equations for the pressure and the concentration.

We see in Tables 5.3 and 5.4 that the results obtained with the m-DDFV scheme are not really better than the results

given by the DDFV-scheme. Indeed, the values of the error and of the order of convergence are similar for the con-

centration equation as for the pressure equation. It would be certainly valuable to use an higher order scheme for the

concentration equation in order to keep the benefit of the use of a m-DDFV scheme for the pressure equation.

Refinement DDFV m-DDFV

level error L1 order L1 error L1 order L1

1 3.71e-01 - 2.50e-01 -

2 2.65e-01 0.56 2.10e-01 0.29

3 1.73e-01 0.66 1.60e-01 0.42

4 1.18e-01 0.57 1.14e-01 0.51

5 7.17e-02 0.74 7.03e-02 0.71

6 3.45e-02 1.07 3.41e-02 1.06

Table 5.3: Test 2. Convergence results of the DDFV and m-DDFV methods on the pressure p, at time t = 3600, with K = (801y<500 + 201y>500) I.

Refinement DDFV m-DDFV

level error L1 order L1 error L1 order L1

1 4.69e-01 - 4.70e-01 -

2 3.67e-01 0.41 3.71e-01 0.39

3 2.62e-01 0.53 2.64e-01 0.54

4 1.68e-01 0.67 1.68e-01 0.68

5 9.44e-02 0.85 9.45e-02 0.85

6 4.16e-02 1.20 4.16e-02 1.20

Table 5.4: Test 2. Convergence results of the DDFV and m-DDFV methods on the concentration c, at time t = 3600, with K = (801y<500 +

201y>500) I.

In order to compare the results given by the DDFV method and the Mixed Finite Volume Method presented in [9],

we made numerical experiments on the same triangular mesh for Test 2 with the same time step. Figure 5.2 presents

the level sets of the concentration obtained with both schemes at two different times (3 and 10 years). We observe that

both schemes have the same qualitative behavior.

We finally introduce a last test case : Test 3. The only modification in Test 3 with respect to Test 2 is the value of

the permeability. We consider here as in [9] the case where the permeability value is set to 80 except on four square

subdomains where it is equal to 20. We compare the results given by the DDFV method and by the MFV method on

a same squared mesh (with 25600 squares). Figure 5.3 shows the level sets of the concentration obtained with both

schemes. We still observe that both schemes provide similar results.

In conclusion, we have presented a well-posed scheme for the Peaceman model, which is convergent and had

good qualitative properties. From a qualitative point of view, our scheme gives similar results to the results obtained

with the Mixed Finite Volume method. The proof of the convergence of the scheme will be achieved in a forthcoming

paper.
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