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Institut de Minéralogie et de Physique des Milieux Condensés,
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Abstract

A spherical tensor expansion of resonant inelastic x-ray scattering (RIXS) is carried out to express
the RIXS cross-section in terms of a sum of products of fundamental RIXS spectra and tensors
involving incident and scattered x-ray wavevectors and polarization vectors. Specific terms of this
expansion are discussed in detail, in particular magnetic x-ray dichroism and powder samples.

1 Introduction

Resonant inelastic x-ray scattering (RIXS) is a remarkable tool to study electronic and phonon excitations
in solids [1]. By selecting the suitable absorption edge one can choose a specific atomic species and orbital
in a complex compound. The information content of RIXS is enhanced by the fact that the observed
spectra depend on the polarization and direction of the incident and scattered beams. As a matter of
fact, there is so much information in RIXS spectra that it is difficult to know whether a specific set of
experiments exhausts it or not. The main purpose of our paper is precisely to determine a finite set of
fundamental spectra in terms of which all possible experimental spectra can be expressed. More precisely,
the RIXS spectrum obtained for a given wavevector and polarization vector of the incident beam (k and
ǫ) and scattered beam (ks and ǫs) is written as a sum of terms which are a fundamental spectrum [2, 3]
(independent of the incident and scattered beam) multiplied by a given polynomial in k, ǫ, ks and ǫs.

The number of available fundamental spectra decreases when the sample is a powder or when the
polarization of the scattered beam is not measured. For example we show that the RIXS spectrum of
a powder sample for electric dipole excitation and electric dipole emission with undetected scattered
polarization is the sum of only three fundamental spectra.

This approach was used with great success for the photoemission of localized magnetic systems [4,
5, 6] and in x-ray absorption spectroscopy [2, 3, 7]. Partial results were obtained in the fast collision
approximation [8] or for the elastic scattering operator [9, 10, 11] and general results were obtained in
specific coordinate systems [12, 13, 14]. But, as far as we know, the fully general formula is new in
coordinateless spherical tensor form. We showed for the case of x-ray absorption [7] that such geometric
(i.e. coordinateless) expressions are useful (i) to disentangle the properties of the sample from those of the
measurement; (ii) to determine specific experimental arrangements aiming at the observation of specific
sample properties; (iii) to provide the good starting point for a group subduction leading to the angular
dependence of specific crystal symmetries.

Indeed, we show for example that magnetic dichroism might be observe on isotropic (i.e. without
remanent magnetization) samples.
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The range of validity of our final expression is rather broad. We only assume the validity of the
Kramers-Heisenberg formula describing the scattering of light by a quantum system, where we neglect
the Thomson scattering and the non-resonant term. We also assume that only the dipole and quadrupole
transitions play a role, but this is an excellent approximation in the x-ray range [15]. Our result is a
group theoretical consequence of the scattering cross-section. In particular, we do not assume that the
states can be described by some LS or LSJ coupling, we do not make the fast collision approximation,
we do not assume that some radial dipole and quadrupole matrix elements are independent of energy as
in most other works on this subject. We even do not assume that a specific edge is measured. All these
additional assumptions can be made in the final expression if necessary.

We chose to give details of the computation to show that our result, even if it looks rather involved,
can be obtained by straightforward angular-momentum coupling techniques.

2 General case

2.1 The Kramers-Heisenberg formula

The scattering of light by a quantum system is described by the Kramers-Heisenberg formula, which was
obtained before the advent of quantum theory [16]. The first quantum derivation of this formula is due
to Dirac [17].

We start from the expression of the scattering cross-section:

σSCAT =
dσ

dΩdωs
= r2e

ωs
ω

∑

F

∣

∣

∣ǫ∗s · ǫ〈F |ei(k−ks)·r|I〉+ 1

m

∑

N

〈F |ǫ∗s ·Pe−iks·r|N〉〈N |ǫ ·Peik·r|I〉
EI − EN + ~ω + iγ

+
1

m

∑

N

〈F |ǫ ·Peik·r|N〉〈N |ǫ∗s ·Pe−iks·r|I〉
EI − EN − ~ωs + iγ

∣

∣

∣

2

δ(EF + ~ωs − EI − ~ω). (1)

re is the classical electron radius: re = α0~/mc. |I〉, |N〉, |F 〉 are respectively the initial, intermediate
and final states. γ is the total width of the intermediate state |N〉. The incident and scattered photons
are characterized by the pulsation, wavevector and polarization vector ω,k, ǫ and ωs,ks, ǫs, respectively.
Note that ǫ∗s denotes the complex conjugate of ǫs.

In this expression, the first transition amplitude describes elastic scattering and will not be considered
here. EI being negative and large, EI + ~ω can be small, and EI − ~ωs is large. Hence, we can assume
the third matrix element in Eq. 1 can be neglected with respect to the second one (although it could be
treated with similar methods). Therefore, only the second amplitude transition remains in the expression
of the scattering cross-section, yieding the well-known partial Kramers-Heisenberg formula:

σRIXS =
r2e
m2

ωs
ω

∑

F

∣

∣

∣

∑

N

〈F |ǫ∗s ·Pe−iks·r|N〉〈N |ǫ ·Peik·r|I〉
EI − EN + ~ω + iγ

∣

∣

∣

2

δ(EF + ~ωs − EI − ~ω). (2)

2.2 Multipole expansion

First we transform the matrix element describing the absorption from the initial state |I〉 to the inter-
mediate state |N〉, 〈N |ǫ ·Peik·r|I〉.

To calculate 〈N |ǫ ·Peik·r|I〉, eik·r is expanded to first order: eik·r ≃ 1 + ik · r. Hence,

〈N |ǫ ·Peik·r|I〉 ≃ 〈N |ǫ ·P|I〉+ i〈N |k · rǫ ·P|I〉.

The electric dipole matrix element is transformed by using the equation of motion of P which is P =
(m/i~)[r, H0].[15] Thus,

〈N |ǫ ·P|I〉 = (m/i~)(EI − EN )〈N |ǫ · r|I〉.

For the quadrupole matrix element, one uses the identity from Ref. [18],

k · rǫ ·P = −(im/2~)[ǫ · rk · r, H0] + 1/2(k× ǫ) · L,
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where L is the angular momentum operator. One can neglect the angular momentum term (for an
extended justification, see Ref. [15]). Therefore,

〈N |ǫ ·Peik·r|I〉 ≃ − im
~
(EI − EN )

(

〈N |ǫ · r|I〉+ i

2
〈N |ǫ · rk · r|I〉

)

= − im
~
(EI − EN )

1
∑

ℓ=0

fℓ〈N |ǫ · r(k · r)ℓ|I〉,

with f0 = 1 and f1 = i
2 .

Similarly, we transform the matrix element describing the emission from the intermediate state |N〉
to the final state |F 〉, 〈F |ǫ∗s ·Pe−iks·r|N〉:

〈F |ǫ∗s ·Pe−iks·r|N〉 ≃ − im
~
(EN − EF )

(

〈F |ǫ∗s · r|N〉 − i

2
〈F |ǫ∗s · rks · r|N〉

)

= − im
~
(EN − EF )

1
∑

ℓ′=0

f∗
ℓ′〈F |ǫ∗s · r(ks · r)ℓ

′ |N〉.

Finally,

σRIXS =
r2e
~2

ωs
ω

∑

F

∣

∣

∣

∑

N

(EI − EN )(EN − EF )

EI − EN + ~ω + iγ

1
∑

ℓ,ℓ′=0

fℓf
∗
ℓ′〈N |ǫ · r(k · r)ℓ|I〉〈F |ǫ∗s · r(ks · r)ℓ

′ |N〉
∣

∣

∣

2

×δ(EF + ~ωs − EI − ~ω). (3)

In the following, we shall use:

C =
r2e
~2

ωs
ω
,

EIFN =
(EI − EN )(EN − EF )

EI − EN + ~ω + iγ
,

δE = δ(EF + ~ωs − EI − ~ω).

Thus, Eq. 3 becomes:

σRIXS = CδE
∑

F

∣

∣

∣

∑

N

EIFN

1
∑

ℓ,ℓ′=0

fℓf
∗
ℓ′〈N |ǫ · r(k · r)ℓ|I〉〈F |ǫ∗s · r(ks · r)ℓ

′ |N〉
∣

∣

∣

2

. (4)

Eq. 4 is a general expression describing the RIXS intensity for any combination of the absorption and
emission transition operators. Each transition operator can be either pure electric dipole (E1), or pure
electric quadrupole (E2), or a mixture fo both (E1 + E2).

2.3 The Kramers-Heisenberg formula expressed in spherical tensors

In this subsection, the expression of the RIXS cross-section (Eq. 4) is transformed using spherical tensors
and their coupling properties. For a short introduction to spherical tensors and their application to x-ray
spectroscopies, the reader is referred to Ref. [7] for the case of the X-ray absorption cross-section. Let
us first briefly explain the notation. A ℓth rank spherical tensor T is written as T (ℓ). This must not be
confused from T ℓ with is the ℓ-th power of T .

Cartesian vectors, such as ǫ, r or k are written in their usual form, i.e., without brackets. However
one shall keep in mind that Cartesian vectors correspond to first-rank spherical tensors, and as such they
shall indifferently be written as ǫ(1), r(1), k(1).
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2.3.1 Expression of ǫ · r(k · r)ℓ

Here we show that ǫ · r(k · r)ℓ can be expressed as gℓ

{

{ǫ⊗ kℓ}(ℓ+1) ⊗ r(ℓ+1)
}(0)

where gℓ is a constant.

For ℓ = 0, according to Ref. [7] (Eq. 13):

ǫ · r = −
√
3(− 1√

3
ǫ · r) = −

√
3{ǫ⊗ r}0 = −

√
3
{

{ǫ⊗ k0}(1) ⊗ r(1)
}(0)

.

For ℓ = 1, according to Ref. [7] (pp.5):

ǫ · rk · r =
√
5{{ǫ⊗ k}(2) ⊗ {r⊗ r}(2)}(0) =

√
5
{

{ǫ⊗ k1}(2) ⊗ r(2)
}(0)

Thus, ǫ · r(k · r)ℓ = gℓ

{

{ǫ ⊗ kℓ}(ℓ+1) ⊗ r(ℓ+1)
}(0)

, with r(1) = r, g0 = −
√
3, r(2) = {r ⊗ r}(2) and

g1 =
√
5.

Then, Eq.4 becomes:

σRIXS

= CδE
∑

F

∣

∣

∣

∑

N

EIFN

1
∑

ℓ,ℓ′=0

fℓf
∗
ℓ′gℓgℓ′〈N |

{

{ǫ⊗ kℓ}(ℓ+1) ⊗ r(ℓ+1)
}(0)

|I〉〈F |
{

{ǫ∗s ⊗ kℓ
′

s }(ℓ
′+1) ⊗ r(ℓ

′+1)
}(0)

|N〉
∣

∣

∣

2

= CδE
∑

F

∣

∣

∣

∑

N

EIFN

1
∑

ℓ,ℓ′=0

fℓf
∗
ℓ′gℓgℓ′

{

{ǫ⊗ kℓ}(ℓ+1) ⊗ 〈N |r(ℓ+1)|I〉
}(0){

{ǫ∗s ⊗ kℓ
′

s }(ℓ
′+1) ⊗ 〈F |r(ℓ′+1)|N〉

}(0)∣
∣

∣

2

= CδE
∑

F

∣

∣

∣

∑

N

EIFN

1
∑

ℓ,ℓ′=0

hℓh
∗
ℓ′

{

{ǫ⊗ kℓ}(ℓ+1) ⊗ 〈N |r(ℓ+1)|I〉
}(0){

{ǫ∗s ⊗ kℓ
′

s }(ℓ
′+1) ⊗ 〈F |r(ℓ′+1)|N〉

}(0)∣
∣

∣

2

(5)

with hℓ = fℓgℓ: h0 = −
√
3, h1 = i

2

√
5.

If one defines r
(ℓ+1)
NI = 〈N |r(ℓ+1)|I〉 and r

(ℓ′+1)
FN = 〈F |r(ℓ′+1)|N〉, one gets:

σRIXS = CδE
∑

F

∣

∣

∣

∑

N

EIFN

1
∑

ℓ,ℓ′=0

hℓh
∗
ℓ′

{

{ǫ⊗ kℓ}(ℓ+1) ⊗ r
(ℓ+1)
NI

}(0){

{ǫ∗s ⊗ kℓ
′

s }(ℓ
′+1) ⊗ r

(ℓ′+1)
FN

}(0)∣
∣

∣

2

. (6)

2.3.2 Recoupling spherical tensors

Here we use the recoupling identity (Ref.[7], Eq.14), which is:

{P (a) ⊗Q(a)}(0){R(d) ⊗ S(d)}(0) =
a+d
∑

g=|a−d|
(−1)g

{P (a) ⊗R(d)}(g) · {Q(a) ⊗ S(d)}(g)
√

(2a+ 1)(2d+ 1)
, (7)

where the scalar product · of two spherical tensors P (g) andQ(g) is defined by P (g)·Q(g) =
∑g

γ=−g(−1)γP
(g)
γ Q

(g)
−γ .

Eq. 6 becomes:

σRIXS = CδE
∑

F

∣

∣

∣

∑

N

EIFN
∑

g,ℓ,ℓ′

(−1)ghℓh
∗
ℓ′

√

(2ℓ+ 3)(2ℓ′ + 3)

{

{ǫ∗s ⊗ kℓ
′

s }(ℓ
′+1) ⊗ {ǫ⊗ kℓ}(ℓ+1)

}(g)

·
{

r
(ℓ′+1)
FN ⊗ r

(ℓ+1)
NI

}(g)∣
∣

∣

2

,

where g runs from |ℓ− ℓ′| to (ℓ+ ℓ′ + 2), ℓ and ℓ′ run from 0 to 1.
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The first tensor product
{

{ǫ∗s⊗kℓ
′

s }(ℓ
′+1)⊗{ǫ⊗kℓ}(ℓ+1)

}(g)

gathers the characteristics of the incident

beam (ǫ,k) and of the scattered beam (ǫs,ks). The variables dealing with the sample are gathered in

the second tensor product
{

r
(ℓ′+1)
FN ⊗ r

(ℓ+1)
NI

}(g)

.

Then, defining

A
(g)
FI (ℓ, ℓ

′) =
∑

N

EIFN{r(ℓ
′+1)

FN ⊗ r
(ℓ+1)
NI }(g) (8)

=
∑

N

(EI − EN )(EN − EF )

EI − EN + ~ω + iγ
{r(ℓ

′+1)
FN ⊗ r

(ℓ+1)
NI }(g), (9)

one gets

σRIXS = CδE
∑

F

∣

∣

∣

∑

g,ℓ,ℓ′

(−1)ghℓh
∗
ℓ′

√

(2ℓ+ 3)(2ℓ′ + 3)

{

{ǫ∗s ⊗ kℓ
′

s }(ℓ
′+1) ⊗ {ǫ⊗ kℓ}(ℓ+1)

}(g)

· A(g)
FI(ℓ, ℓ

′)
∣

∣

∣

2

. (10)

2.3.3 Expansion of the square

Here we square the amplitude inside the sum over the final states in Eq. 10.
When expanding the square, Eq. 10 becomes:

σRIXS = CδE
∑

F

∑

g1,ℓ1,ℓ
′

1

g2,ℓ2,ℓ
′

2

(−1)g1+ℓ2+ℓ
′

2hℓ1h
∗
ℓ′
1

h∗ℓ2hℓ′2
√

(2ℓ1 + 3)(2ℓ′1 + 3)(2ℓ2 + 3)(2ℓ′2 + 3)

{

{ǫ∗s ⊗ k
ℓ′
1

s }(ℓ′1+1) ⊗ {ǫ⊗ kℓ1}(ℓ1+1)
}(g1)

·A(g1)
FI (ℓ1, ℓ

′
1)

{

{ǫs ⊗ k
ℓ′
2

s }(ℓ′2+1) ⊗ {ǫ∗ ⊗ kℓ2}(ℓ2+1)
}(g2)

· A(g2)
FI (ℓ2, ℓ

′
2)

∗, (11)

where gi runs from |ℓi − ℓ′i| to (ℓi + ℓ′i + 2), with ℓi and ℓ
′
i equal to 0 or 1.

In the Appendix, we show that A
(g2)
FI (ℓ2, ℓ

′
2)

∗ = A
(g2)

IF (ℓ2, ℓ
′
2).

Therefore,

σRIXS = CδE
∑

F

∑

g1,ℓ1,ℓ
′

1

g2,ℓ2,ℓ
′

2

(−1)g1+ℓ2+ℓ
′

2hℓ1h
∗
ℓ′
1

h∗ℓ2hℓ′2
√

(2ℓ1 + 3)(2ℓ′1 + 3)(2ℓ2 + 3)(2ℓ′2 + 3)

{

{ǫ∗s ⊗ k
ℓ′
1

s }(ℓ′1+1) ⊗ {ǫ⊗ kℓ1}(ℓ1+1)
}(g1)

· A(g1)
FI (ℓ1, ℓ

′
1)

{

{ǫs ⊗ k
ℓ′
2

s }(ℓ′2+1) ⊗ {ǫ∗ ⊗ kℓ2}(ℓ2+1)
}(g2)

·A(g2)

IF (ℓ2, ℓ
′
2) (12)

If one defines

X
(g1)
1 =

{

{ǫ∗s ⊗ k
ℓ′
1

s }(ℓ′1+1) ⊗ {ǫ⊗ kℓ1}(ℓ1+1)
}(g1)

, (13)

X
(g2)
2 =

{

{ǫs ⊗ k
ℓ′
2

s }(ℓ′2+1) ⊗ {ǫ∗ ⊗ kℓ2}(ℓ2+1)
}(g2)

, (14)

Πℓ1+1,ℓ2+1,ℓ′
1
+1,ℓ′

2
+1 =

√

(2ℓ1 + 3)(2ℓ′1 + 3)(2ℓ2 + 3)(2ℓ′2 + 3), (15)
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one gets

σRIXS = CδE
∑

F

∑

g1,ℓ1,ℓ
′

1

g2,ℓ2,ℓ
′

2

(−1)g1+ℓ2+ℓ
′

2hℓ1h
∗
ℓ′
1

h∗ℓ2hℓ′2
Πℓ1+1,ℓ2+1,ℓ′

1
+1,ℓ′

2
+1

X
(g1)
1 ·A(g1)

FI (ℓ1, ℓ
′
1) X

(g2)
2 ·A(g2)

IF (ℓ2, ℓ
′
2). (16)

Using the identity P (a) ·Q(a) = (−1)a
√
2a+ 1 {P (a) ⊗Q(a)}(0) (pp.64-65 of Ref. [19]), we have:

X
(g1)
1 · A(g1)

FI (ℓ1, ℓ
′
1) = (−1)g1

√

2g1 + 1 {X(g1)
1 ⊗A

(g1)
FI (ℓ1, ℓ

′
1)}(0), (17)

X
(g2)
2 · A(g2)

IF (ℓ2, ℓ
′
2) = (−1)g2

√

2g2 + 1 {X(g2)
2 ⊗A

(g2)

IF (ℓ2, ℓ
′
2)}(0), (18)

and then:

σRIXS = CδE
∑

F

∑

g1,ℓ1,ℓ
′

1

g2,ℓ2,ℓ
′

2

(−1)ℓ2+ℓ
′

2
−g2hℓ1h

∗
ℓ′
1

h∗ℓ2hℓ′2
√

(2g1 + 1)(2g2 + 1)

Πℓ1+1,ℓ2+1,ℓ′
1
+1,ℓ′

2
+1

{X(g1)
1 ⊗A

(g1)
FI (ℓ1, ℓ

′
1)}(0){X

(g2)
2 ⊗A

(g2)

IF (ℓ2, ℓ
′
2)}(0). (19)

Using Eq. 7, we have:

{X(g1)
1 ⊗A

(g1)
FI (ℓ1, ℓ

′
1)}(0){X

(g2)
2 ⊗A

(g2)

IF (ℓ2, ℓ
′
2)}(0)

=

g1+g2
∑

a=|g1−g2|

(−1)a
√

(2g1 + 1)(2g2 + 1)
{X(g1)

1 ⊗X
(g2)
2 }(a) · {A(g1)

FI (ℓ1, ℓ
′
1)⊗A

(g2)

IF (ℓ2, ℓ
′
2)}(a) (20)

Then,

σRIXS

= CδE
∑

F

∑

g1,ℓ1,ℓ
′

1

g2,ℓ2,ℓ
′

2

(−1)ℓ2+ℓ
′

2
−g2hℓ1h

∗
ℓ′
1

h∗ℓ2hℓ′2
Πℓ1+1,ℓ2+1,ℓ′

1
+1,ℓ′

2
+1

∑

a

(−1)a{X(g1)
1 ⊗X

(g2)
2 }(a) · {A(g1)

FI (ℓ1, ℓ
′
1)⊗A

(g2)

IF (ℓ2, ℓ
′
2)}(a),

with a running from |g1 − g2| to g1 + g2.

In order to simplify the tensor product:

{X(g1)
1 ⊗X

(g2)
2 }(a) =

{

{

{ǫ∗s ⊗ k
ℓ′
1

s }(ℓ′1+1) ⊗ {ǫ⊗ kℓ1}(ℓ1+1)
}(g1) ⊗

{

{ǫs ⊗ k
ℓ′
2

s }(ℓ′2+1) ⊗ {ǫ∗ ⊗ kℓ2}(ℓ2+1)
}(g2)

}(a)

,

one uses the following identity (pp.70 of Ref. [19]):

{

{P (a) ⊗Q(b)}(c) ⊗ {R(d) ⊗ S(e)}(f)
}(k)

=
∑

g,h

Πc,f,g,h







a b c
d e f
g h k







{

{P (a) ⊗R(d)}(g) ⊗ {Q(b) ⊗ S(e)}(h)
}(k)

, (21)

where |a− d| ≤ g ≤ a+ d, |b− e| ≤ h ≤ b+ e and |g − h| ≤ k ≤ g + h.

This yields:

{X(g1)
1 ⊗X

(g2)
2 }(a) =

∑

b,c

Πg1,g2,b,c







ℓ′1 + 1 ℓ1 + 1 g1
ℓ′2 + 1 ℓ2 + 1 g2
b c a







{X}(a),
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with {X}(a) =
{

{

{ǫ∗s ⊗ k
ℓ′
1

s }(ℓ′1+1) ⊗{ǫs ⊗ k
ℓ′
2

s }(ℓ′2+1)
}(b) ⊗

{

{ǫ⊗ kℓ1}(ℓ1+1) ⊗ {ǫ∗ ⊗ kℓ2}(ℓ2+1)
}(c)

}(a)

.

According to the triangular conditions, the 9j-factor is zero if any of the following conditions is not
satisfied

|ℓ′1 − ℓ′2| ≤ b ≤ ℓ′1 + ℓ′2,

|ℓ1 − ℓ2| ≤ c ≤ ℓ1 + ℓ2,

|b− c| ≤ a ≤ b+ c .

2.3.4 Simplification of {X}(a)

In {X}(a), the variables concerning the scattered beam (ǫs,ks) are gathered in the first tensor product,
while those concerning the incident beam are gathered in the second product. Therefore in order to

simplify {X}(a), one shall write it as {X}(a) =
{

{Xem}(b) ⊗ {Xabs}(c)
}(a)

and then simplify {Xem}(b)

and {Xabs}(c). According to Eq. 21, one gets:

{Xabs}(c) =
{

{ǫ⊗ kℓ1}(ℓ1+1) ⊗ {ǫ∗ ⊗ kℓ2}(ℓ2+1)
}(c)

=
∑

u,v

Πℓ1+1,ℓ2+1,u,v







1 ℓ1 ℓ1 + 1
1 ℓ2 ℓ2 + 1
u v c







{

{ǫ⊗ ǫ∗}(u) ⊗ {kℓ1 ⊗ kℓ2}(v)
}(c)

=
∑

u,v

Πℓ1+1,ℓ2+1,u,v







1 ℓ1 ℓ1 + 1
1 ℓ2 ℓ2 + 1
u v c







{A}(c).

{Xem}(b) =
{

{ǫ∗s ⊗ k
ℓ′
1

s }(ℓ′1+1) ⊗ {ǫs ⊗ k
ℓ′
2

s }(ℓ′2+1)
}(b)

=
∑

u′,v′

Πℓ′
1
+1,ℓ′

2
+1,u′,v′







1 ℓ′1 ℓ′1 + 1
1 ℓ′2 ℓ′2 + 1
u′ v′ b







{

{ǫ∗s ⊗ ǫs}(u
′) ⊗ {kℓ

′

1

s ⊗ k
ℓ′
2

s }(v′)
}(b)

=
∑

u′,v′

Πℓ′
1
+1,ℓ′

2
+1,u′,v′







1 ℓ′1 ℓ′1 + 1
1 ℓ′2 ℓ′2 + 1
u′ v′ b







{E}(b).

The 9j-factors vanish if any of the following triangular conditions is not fullfilled:

0 ≤ u ≤ 2,

|ℓ1 − ℓ2| ≤ v ≤ ℓ1 + ℓ2,

0 ≤ u′ ≤ 2,

|ℓ′1 − ℓ′2| ≤ v′ ≤ ℓ′1 + ℓ′2,

2.4 Final expression of σRIXS

Finally, one obtains:

σRIXS

= C
∑

F

∑

g1,g2
ℓ1,ℓ2
ℓ′
1
,ℓ′

2

∑

a,b,c

u,u′

v,v′

(−1)a+ℓ2+ℓ
′

2
−g2hℓ1h

∗
ℓ′
1

h∗ℓ2hℓ′2Πg1,g2,b,c,u,v,u′,v′

{

1 ℓ1 ℓ1 + 1
1 ℓ2 ℓ2 + 1
u v c

}{

1 ℓ′1 ℓ′1 + 1
1 ℓ′2 ℓ′2 + 1
u′ v′ b

}{

ℓ′1 + 1 ℓ1 + 1 g1
ℓ′2 + 1 ℓ2 + 1 g2

b c a

}

{

{E}(b) ⊗ {A}(c)
}(a)

·
{

A
(g1)
FI (ℓ1, ℓ

′
1)⊗A

(g2)

IF (ℓ2, ℓ
′
2)
}(a)

δ(EF + ~ωs − EI − ~ω) (22)
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with

h0 = −
√
3

h1 =
i

2

√
5

C =
r2e
~2

ωs
ω

{A}(c) =
{

{ǫ⊗ ǫ∗}(u) ⊗ {kℓ1 ⊗ kℓ2}(v)
}(c)

,

{E}(b) =
{

{ǫ∗s ⊗ ǫs}(u
′) ⊗ {kℓ

′

1

s ⊗ k
ℓ′
2

s }(v′)
}(b)

,

A
(g)
FI (ℓ, ℓ

′) =
∑

N

(EI − EN )(EN − EF )

EI − EN + ~ω + iγ
{r(ℓ

′+1)
FN ⊗ r

(ℓ+1)
NI }(g),

A
(g)

IF (ℓ, ℓ
′) =

∑

N

(EI − EN )(EN − EF )

EI − EN + ~ω − iγ
{r(ℓ+1)
IN ⊗ r

(ℓ′+1)
NF }(g),

r
(ℓ+1)
NI = 〈N |r(ℓ+1)|I〉,

r
(ℓ′+1)
FN = 〈F |r(ℓ′+1)|N〉.

In Eq. 22 the RIXS cross-section is written as a sum of fundamental spectra,
{

A
(g1)
FI (ℓ1, ℓ

′
1) ⊗

A
(g2)

IF (ℓ2, ℓ
′
2)
}(a)

, which are only sample-dependent for a given couple of transition operators. The fun-

damental spectra are weighted by coefficients which depend only on the experimental conditions, i.e.,
transition operator, type of polarization and experimental geometry, in the absorption as well as in the

emission. The
{

{E}(b) ⊗{A}(c)
}(a)

weights are polynomial in ǫ, ǫs, k and ks. The three 9j-factors (and

the related triangular conditions) ensure that these variables are coupled in the RIXS process in a correct
(physical) way.

Applications of the general expression to particular cases will be given as examples in the next section.

2.5 Summary: Possible values of the different indices

Here we summarize the possible values taken by the different indices in Eq. 22.

• 0 ≤ ℓi ≤ 1 (for i = 1, 2 ): these indices deal with the transition operator in the absorption.
ℓi = 0 for dipole excitation, ℓi = 1 for quadrupole excitation

• 0 ≤ ℓ′i ≤ 1 (for i = 1, 2 ): these indices deal with the transition operator in the emission. ℓ′i =
0 for dipole emission, ℓ′i = 1 for quadrupole emission

• |ℓi − ℓ′i| ≤ gi ≤ ℓi + ℓ′i + 2 ( for i = 1, 2 ) : these indices couple absorption and emission transition
operators.

• 0 ≤ u ≤ 2: u deals with the polarization of the incident beam.

• 0 ≤ u′ ≤ 2: : u′ deals with the polarization of the scattered beam.

• |ℓ1 − ℓ2| ≤ v ≤ ℓ1 + ℓ2: v deals with the direction of the incident beam.

• |u− v| ≤ c ≤ u+ v and |ℓ1− ℓ2| ≤ c ≤ ℓ1+ ℓ2+2: c gathers all characteristics of the incident beam.

• |ℓ′1 − ℓ′2| ≤ v′ ≤ ℓ′1 + ℓ′2: v
′ deals with the direction of the scattered beam.

• |u′ − v′| ≤ b ≤ u′ + v′ and |ℓ′1 − ℓ′2| ≤ b ≤ ℓ′1 + ℓ′2 + 2: b gathers all characteristics of the outgoing
beam.

• |b− c| ≤ a ≤ b+ c and |g1 − g2| ≤ a ≤ g1 + g2 : a couples everything.
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3 Particular cases

In this section we consider several particular cases.

3.1 Conditions due to the type of polarization

When the incident beam is circularly polarized, u = 0, 1, 2. When the incident beam is linearly polarized
light, u = 0 or 2. Note that there is a basic difference between the polarization of the incident beam
and that of the scattered beam. On the one hand, the incident beam is prepared by a synchrotron
radiation source and monochromators. Therefore, ǫ can be tuned as one wishes. On the other hand, the
polarization state of the scattered beam is entirely determined by the incident beam and the sample. It
cannot be tuned. However, we can measure some polarization properties of the scattered beam. If we
want to measure the intensity along the polarization direction ǫs, then we introduce ǫs in the formula. If
we do not measure the polarization state, then we take the trace of the density matrix representing the
polarization state of the scattered beam. In other words, the measured cross-section is equal to the the
sum over two perpendicular directions of the scattered polarization (see Appendix 1). In this case u′ = 1
is zero, since 〈{ǫ⊗ ǫ∗}(1)〉 = 0.

3.2 Electric dipole excitation, electric dipole emission

We consider the case of an electric dipole transition in the absorption followed by an electric dipole
transition in the emission : ℓ1 = 0, ℓ2 = 0, ℓ′1 = 0 and ℓ′2 = 0. Thus, we have:

0 ≤ g1 ≤ 2,

0 ≤ g2 ≤ 2,

0 ≤ a ≤ 4,

0 ≤ b ≤ 2,

0 ≤ c ≤ 2.

Since ℓ1 = 0, ℓ2 = 0, we have v = 0. This implies c = u. Since ℓ′1 = 0 and ℓ′2 = 0, we have v′ = 0 and
b = u′. These conditions allow to calculate the values of some 9j symbols.

• The first 9j-factor is:







1 ℓ1 ℓ1 + 1
1 ℓ2 ℓ2 + 1
u v c







=







1 0 1
1 0 1
c 0 c







= 1
3
√
2c+1

.

• The second 9j-factor is:







1 ℓ′1 ℓ′1 + 1
1 ℓ′2 ℓ′2 + 1
u′ v′ c′







=







1 0 1
1 0 1
b 0 b







= 1
3
√
2b+1

.

Thus, we have:

σRIXS = C
∑

F

∑

g1,g2

∑

a,b,c

(−1)a−g2Πg1,g2,b,c







1 1 g1
1 1 g2
b c a







{

{E}(b) ⊗ {A}(c)
}(a)

·
{

A
(g1)
FI (0, 0)⊗A

(g2)

IF (0, 0)
}(a)

δ(EF + ~ωs − EI − ~ω) (23)

Additionnally,

{E}(b) =
{

{ǫ∗s ⊗ ǫs}(b) ⊗ {k0
s ⊗ k0

s}(0)
}(b)

= {ǫ∗s ⊗ ǫs}(b),

{A}(c) =
{

{ǫ⊗ ǫ∗}(c) ⊗ {k0 ⊗ k0}(0)
}(c)

= {ǫ⊗ ǫ∗}(c).
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3.3 Electric dipole excitation and emission, powder sample

A further simplification arises when the sample is a powder. The ensuing isotropy implies that a = 0.
Thus, we can use







1 1 g1
1 1 g2
b c 0







=
δg1g2δbc(−1)g1+b

√

(2g1 + 1)(2b+ 1)

{

1 1 g1
1 1 b

}

This implies that b = c and g1 = g2. Therefore,

σRIXS = C
∑

g,b

(−1)bΠg,b

{

1 1 g
1 1 b

}

{

{E}(b) ⊗ {A}(b)
}(0)

∑

F

{

A
(g)
FI(0, 0)⊗A

(g)

IF (0, 0)
}(0)

δ(EF + ~ωs − EI − ~ω) (24)

• For the term b = 0:

{

1 1 g
1 1 0

}

=
(−1)g

3
,

with g = 0, 1, 2.

{E}(0) ⊗ {A}(0) =
1

3
.

Thus,

σRIXS(b = 0) = C

2
∑

g=0

(−1)g
√
2g + 1

9

∑

F

{

A
(g)
FI (0, 0)⊗A

(g)

IF (0, 0)
}(0)

δ(EF + ~ωs − EI − ~ω).

• For the term b = 1:

{

1 1 1
1 1 1

}

=

{

1 1 2
1 1 1

}

=
1

6
,

{

1 1 0
1 1 1

}

= −1

3
.

{ǫ⊗ ǫ∗}(1) =
i√
2
ǫ× ǫ∗ = − Pc√

2
k,

where Pc is the rate of circular polarization. Note that Pc is positive for a right circular polarization
in the traditional sense (i.e. for a negative helicity). Pc = 0 if the polarization is linear.

{

{E}(1) ⊗ {A}(1)
}(0)

=
1

2
√
3
PcPc,sks.k =

1

2
√
3
(|ǫ · ǫ∗s|2 − |ǫ · ǫs|2).

This result is interesting. We see that, for an unoriented sample, in particular for a sample without
permanent magnetization direction, some circular dichroism can be observed if we measure the
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circular polarization of the scattered beam. However, we need to avoid the configuration where
the incident and scattered x-ray wavevectors are perpendicular. This remark shows the power of
the geometric (coordinateless) approach. Note that, in this expression Pc,s does not denote the
degree of circular polarization of the scattered beam, but the efficiency of detection of the circularly
polarized beam. Note also that ǫ · ǫ∗s and ǫ · ǫs are the only non-trivial scalars that can be built from
ǫ, ǫs and their conjugates. Therefore, we could expect them to be involved in this formula.

• For the term b = 2:
{

1 1 g
1 1 2

}

=
4

(2− g)!(3 + g)!
,

with g = 0, 1, 2. We have also

{

{E}(2) ⊗ {A}(2)
}(0)

=
1√
5

(1

2
|ǫ∗ · ǫs|2 +

1

2
|ǫ · ǫs|2 −

1

3

)

.

If the polarization of the scattered beam is not detected, then the corresponding term b = 2 is

calculated using the relation: 〈{ǫs ⊗ ǫ∗s}(2)〉 = −k
(2)
s /2 (see Appendix). Thus,

{

{E}(2) ⊗ {A}(2)
}(0)

= − 1

2
√
5

(

|ks · ǫ|2 −
1

3

)

.

3.4 Electric quadrupole excitation, electric dipole emission

Here we consider the case of an electric quadrupole transition in the absorption followed by an electric
dipole transition in the emission: ℓ1 = 1, ℓ2 = 1, ℓ′1 = 0 and ℓ′2 = 0. Thus, we have:

0 ≤ g1 ≤ 3,

0 ≤ g2 ≤ 3,

0 ≤ a ≤ 6,

0 ≤ b ≤ 2,

0 ≤ c ≤ 4.

Since ℓ1 = 1 and ℓ2 = 1, we have 0 ≤ v ≤ 2. Additionally, v 6= 1 since {k1⊗k1}(1) = i√
2
k×k = 0. Thus,

v = 0 or 2.
Since ℓ′1 = 0 and ℓ′2 = 0, we have v′ = 0 and b = u′.

• The first 9j-factor is:







1 ℓ1 ℓ1 + 1
1 ℓ2 ℓ2 + 1
u v c







=







1 1 2
1 1 2
u v c







. It is non-zero if u+ v + c is even.

• The second 9j-factor is:







1 ℓ′1 ℓ′1 + 1
1 ℓ′2 ℓ′2 + 1
u′ v′ b







=







1 0 1
1 0 1
b 0 b







.

• The third 9j-factor is:







ℓ′1 + 1 ℓ1 + 1 g1
ℓ′2 + 1 ℓ2 + 1 g2
b c a







=







1 2 g1
1 2 g2
b c a







.

3.4.1 Powder sample

Isotropy implies that a = 0. This implies that g1 = g2 and b = c = u′.

11



3.4.2 Circularly polarized light

For circularly polarized light we have

{ǫ⊗ ǫ∗}(1) =
i√
2
ǫ × ǫ∗ = − Pc√

2
k̂,

The first 9j-factor is:







1 1 2
1 1 2
1 v a







.

4 Conclusion

We have presented a detailed derivation of the RIXS cross section in geometric spherical tensor form.
Some special cases were studied to illustrate the ability of this expression to describe global properties of
the sample (such as being powder).

We have also clarified the meaning of the scattered beam polarization vector as a way to interpret a
measurement of that beam.

This general formula is ideally suited for a group subduction corresponding to particular symmetry
groups. This will be illustrated in a forthcoming publication.

5 Appendix

One of the most powerful features of geometric expressions is that they can be calculated in a specific
coordinate system adapted to a particular problem, and then be valid in any system. We illustrate this
by describing the average of the coupling of ǫ and ǫ∗: we show that

〈{ǫ⊗ ǫ∗}(0)〉 = − 1√
3
,

〈{ǫ⊗ ǫ∗}(1)〉 = 0,

〈{ǫ⊗ ǫ∗}(2)〉 = −k(2)

√
6

= −
√

2π

15
Y2(k).

We take a reference frame where k is along Oz. The linear polarization vector is ǫ = (cosψ, sinψ, 0) and

the corresponding spherical tensor components are ǫ
(1)
±1 = ∓e±iψ/

√
2, ǫ

(1)
0 = 0. Therefore, it is easy to

calculate

{ǫ⊗ ǫ∗}(2)±2 =
e±2iψ

2
,

{ǫ⊗ ǫ∗}(2)±1 = 0,

{ǫ⊗ ǫ∗}(2)0 = − 1√
6
.

The average over two perpendicular polarizations (ψ and ψ + π/2) or the average over all ψ gives us

〈{ǫ⊗ ǫ∗}(2)±2〉 = 0,

〈{ǫ⊗ ǫ∗}(2)±1〉 = 0,

〈{ǫ⊗ ǫ∗}(2)0 〉 = − 1√
6
.

In that reference frame we also have k
(2)
m = δm,0

√

2/3. Thus, 〈{ǫ ⊗ ǫ∗}(2)〉 = −k(2)/2. Moreover, this
relation is true in all reference frames because it is a relation between two tensors.
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We can also consider elliptically-polarized x-rays. The most general polarization vector in a frame
where k is along Oz is

ǫ =





cosχ cosψ + i sinχ sinψ
cosχ sinψ − i sinχ cosψ

0



 ,

for which the degree of circular polarization is sin 2χ. In particular, χ = π/4 for a fully circularly polarized
x-ray. Then,

{ǫ⊗ ǫ∗}(1)±1 = 0,

{ǫ⊗ ǫ∗}(1)0 = − 1√
2
sin 2χ,

and

{ǫ⊗ ǫ∗}(2)±2 =
1

2
cos 2χe±2iψ,

{ǫ⊗ ǫ∗}(2)±1 = 0,

{ǫ⊗ ǫ∗}(2)0 = − 1√
6
.

Therefore, by using left and right fully circularly polarized beams, we obtain the same average as with
linear polarization.

6 Complex conjugate

We want to calculate the complex conjugate of A
(g)
FI (ℓ, ℓ

′). The operators x, y and z are Hermitian.
Therefore

〈N |x|I〉 = 〈N |x†|I〉 = 〈I|x|N〉∗,

and 〈N |x|I〉∗ = 〈I|x|N〉. The same is true for y and z. For the corresponing spherical tensors, we have

〈N |r(1)1 |I〉∗ = −(1/
√
2)
(

〈N |x|I〉+ i〈N |y|I〉
)∗

= −(1/
√
2)
(

〈I|x|N〉 − i〈I|y|N〉
)

= −〈I|r(1)−1 |N〉∗.

An analogous calculation for the other components of r(1) gives us 〈N |r(1)λ |I〉∗ = (−1)λ〈I|r(1)−λ|N〉. For
ℓ = 2, we have

〈N |r(2)µ |I〉∗ =
∑

λλ′

(1λ1λ′|2µ)〈N |r(1)λ r
(1)
λ′ |I〉∗ =

∑

λλ′

(1λ1λ′|2µ)
∑

K

〈N |r(1)λ |K〉∗〈K|r(1)λ′ |I〉∗

=
∑

λλ′

(1λ1λ′|2µ)(−1)λ+λ
′
∑

K

〈K|r(1)−λ|N〉〈I|r(1)−λ′ |K〉.

The Clebsch-Gordan coefficient implies that λ+λ′ = µ. We replace λ and λ′ by −λ′ and −λ, respectively,
and we obtain

〈N |r(2)µ |I〉∗ = (−1)µ
∑

λλ′

(1−λ′1−λ|2µ)
∑

K

〈I|r(1)λ |K〉〈K|r(1)λ′ |N〉

= (−1)µ
∑

λλ′

(1−λ′1−λ|2µ)〈I|r(1)λ r
(1)
λ′ |N〉.

Now, we use the symmetry (ℓ1m1ℓ2m2|ℓ3m3) = (ℓ2 −m2ℓ1 −m1|ℓ3 −m3) to obtain

〈N |r(2)µ |I〉∗ = (−1)µ
∑

λλ′

(1λ1λ′|2− µ)〈I|r(1)λ r
(1)
λ′ |N〉 = (−1)µ〈I|r(2)−µ|N〉.
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A recursive use of this argument leads to 〈N |r(ℓ)m |I〉∗ = (−1)µ〈I|r(ℓ)−m|N〉 for any ℓ.
We proceed with

Xγ = {r(ℓ
′)

FN ⊗ r
(ℓ)
NI}(g)γ =

∑

m′m

(ℓ′m′ℓm|gγ)〈F |r(ℓ
′)

m′ |N〉〈N |r(ℓ)m |I〉.

The complex conjugate of Xγ is

X∗
γ =

∑

m′m

(ℓ′m′ℓm|gγ)〈F |r(ℓ
′)

m′ |N〉∗〈N |r(ℓ)m |I〉∗ =
∑

m′m

(ℓ′m′ℓm|gγ)(−1)m+m′〈N |r(ℓ
′)

−m′ |F 〉〈I|r(ℓ)−m|N〉.

The same reasoning as for the complex conjugate of 〈N |r(2)µ |I〉 gives us
(

{r(ℓ
′)

FN ⊗ r
(ℓ)
NI}(g)γ

)∗
= (−1)γ{r(ℓ)IN ⊗ r

(ℓ′)
NF }

(g)
−γ .

Finally,

A
(g)
FI,γ(ℓ, ℓ

′)∗ = (−1)γ
∑

N

(EI − EN )(EN − EF )

EI − EN + ~ω − iγ
{r(ℓ+1)
IN ⊗ r

(ℓ′+1)
NF }(g)−γ . (25)

Therefore, if we define

A
(g)

IF (ℓ, ℓ
′) =

∑

N

(EI − EN )(EN − EF )

EI − EN + ~ω − iγ
{r(ℓ+1)
IN ⊗ r

(ℓ′+1)
NF }(g), (26)

we have A
(g)
FI,γ(ℓ, ℓ

′)∗ = (−1)γA
(g)

IF,−γ(ℓ, ℓ
′).

In applications, we compute only 〈N |r(ℓ)λ |I〉 and not 〈I|r(ℓ)λ |N〉 that we need to calculate A
(g)
FI,γ(ℓ, ℓ

′)∗.

However, we can easily obtain it by 〈N |r(ℓ)λ |I〉 = (−1)λ〈I|r(ℓ)−λ|N〉∗.

We also have to calculate the complex conjugate of
{

{ǫ∗s⊗kℓ
′

s }(ℓ
′+1)⊗{ǫ⊗kℓ}(ℓ+1)

}(g)

γ
. The calculation

is very similar. Consider a vector z = a + ib, where a = (ax, ay, az) and b = (bx, by, bz) are real. We
have

(

z
(1)
1

)∗
= − 1√

2

(

ax + ibx + i(ay + iby)
)∗

= − 1√
2

(

ax − ibx − iay − by)
)

= − 1√
2

(

ax − ibx − i(ay − iby)
)

= −(z∗)(1)−1.

The calculation of the other components gives us
(

z
(1)
λ

)∗
= (−)λ(z∗)(1)−λ. Therefore, (ǫλ)

∗ = (−1)λ(ǫ∗)−λ

and
(

(ǫ∗s)λ
)∗

= (−1)λ(ǫs)−λ. The vector k is real and (k
(ℓ)
m )∗ = (−1)mk

(ℓ)
−m. By repeating the proof for

A
(g)
FI(ℓ, ℓ

′) we have

(

{ǫ⊗ kℓ}(ℓ+1)
m

)∗
= (−1)m

∑

λµ

(1−λ ℓ−µ|ℓ+ 1m)ǫ∗λk
(ℓ)
µ .

Since we do not interchange 1λ and ℓµ, we must use the symmetry relation

(ℓ1m1ℓ2m2|ℓ3m3) = (−1)ℓ1+ℓ2−ℓ3(ℓ1 −m1ℓ2 −m2|ℓ3−m3), (27)

to get

(

{ǫ⊗ kℓ}(ℓ+1)
m

)∗
= (−1)m

∑

λµ

(1λℓµ|ℓ+ 1−m)ǫ∗λk
(ℓ)
µ = (−1)m{ǫ∗ ⊗ kℓ}(ℓ+1)

−m .
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Here, the symmetry relation does not bring any additional sign because ℓ3 = ℓ1 + ℓ2. Similarly,
(

{ǫ∗s ⊗

kℓ
′

s }
(ℓ′+1)
m′

)∗
= (−1)m

′{ǫs ⊗ kℓ
′

s }
(ℓ′+1)
−m′ . We now do the same calculation for

{

{ǫ∗s ⊗ kℓ
′

s }(ℓ
′+1) ⊗ {ǫ ⊗

kℓ}(ℓ+1)
}(g)

γ
, but here, the sign (−1)ℓ+ℓ

′−g must be retained and we get

({

{ǫ∗s ⊗ kℓ
′

s }(ℓ
′+1) ⊗ {ǫ⊗ kℓ}(ℓ+1)

}(g)

γ

)∗
= (−1)γ(−1)ℓ+ℓ

′−g
{

{ǫs ⊗ kℓ
′

s }(ℓ
′+1) ⊗ {ǫ∗ ⊗ kℓ}(ℓ+1)

}(g)

−γ
.

Finally, the complex conjugate of X =
{

{ǫ∗s ⊗ kℓ
′

s }(ℓ
′+1) ⊗ {ǫ⊗ kℓ}(ℓ+1)

}(g)

·A(g)
FI (ℓ, ℓ

′) is

X∗ = (−1)ℓ+ℓ
′−g

{

{ǫs ⊗ kℓ
′

s }(ℓ
′+1) ⊗ {ǫ∗ ⊗ kℓ}(ℓ+1)

}(g)

· A(g)

IF (ℓ, ℓ
′).
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