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Abstract We study the problem of an elastic shell-like inclusion with high
rigidity in a three-dimensional domain by means of the asymptotic expansion
method. The analysis is carried out in a general framework of curvilinear coor-
dinates. After defining a small real adimensional parameter e, we characterize
the limit problems when the rigidity of the inclusion has order of magnitude é
and 6% with respect to the rigidities of the surrounding bodies. Moreover, we
prove the strong convergence of the solution of the initial three-dimensional
problem towards the solution of the simplified limit problem.
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1 Introduction

The modeling of complex structures obtained assembling simpler elements
with very different geometric and/or material characteristics is a source of a
variety of problems of practical importance. The successful application of the
asymptotic methods to obtain a mathematical justification of the most used
models of plates and shells has stimulated the research toward a rational sim-
plification of the modeling of complex structures obtained joining elements
of different dimensions and/or materials of highly contrasted properties. The
first modeling of junctions between elements of different dimension is due to
[6], [9]- The thin inclusion of a third material between two other ones de-
noted 2% and 2~ when the rigidity properties of the inclusion are highly
contrasted with respect to those of the surrounding materials has also been
deeply investigated and one can refer without claim of completeness to [11,
3,4,8]. New motivations appear in [7], where the authors, in order to justify
some methods used in the FEM approximation, have studied the asymptotic
behavior of a shell-like inclusion of E%,—rigidity (p =1o0r p=3)in a three-
dimensional domain using a Naghdi linear shell model [5], [10]. In a slightly
different geometrical and mechanical context, Bessoud et al. [2] have studied
the behavior of a e-thin three-dimensional layer of é—rigidity. More precisely,
they assume that the thin layer can be written as wx] — ¢, e[ where w is a pro-
jectable two-dimensional surface, and that all the materials are linearly elastic
anisotropic. Then the limit problem is a Ventcel-type transmission problem
between two three-dimensional linearly elastic anisotropic bodies 27 and 2~
on their common boundary w. When w is planar and in the isotropic case, the
associated surface energy term can be interpreted as the membranal energy of
a Kirchhoff-Love plate.

In the present paper, we study the situation where the shell-like thin layer
is obtained by the translation along the normal direction of a general two-
dimensional surface. Using a system of curvilinear coordinates we deduce the
formal limit problem for the two cases p = 1 and p = 3. When p = 1 we find in
section 5 that the thin layer behaves as a membrane shell and in section 6 when
p = 3 it behaves as a flexural shell. In this way we recover the limit problems
analogous to those of [7] where the authors a priori assume a shell-like energy
in the thin layer. The formal limit problems so obtained are justified in section
8 by proving strong convergence results in a suitable functional framework us-
ing the Korn type results of section 7. Let us remark that in our asymptotic
approach thanks to our choice of the boundary conditions, there is no need to
take care of the space of inextensional or pure bending displacements of w as in
[7] and in the usual asymptotic analysis of shell models by themselves (see e. g;
[5],[1],[12] and the references therein). Indeed the limit shell behaviour of w is
taken into account only in unusual transmission conditions and so completely
controlled by the surrounding bodies. These unusual transmission conditions
imply that the global displacement of the assembly is continuous across the
interface w. The difference between the case p = 1 and p = 3 appears in the
interface jump stress conditions.



2 Geometrical preliminaries
2.1 Three-dimensional curvilinear coordinates

This section is aimed at laying down an appropriate ground for the rest of
the article. In the sequel, Greek indices range in the set {1,2}, Latin indices
range in the set {1,2,3}, and the summation convention with respect to the
repeated indices is adopted.

Let us consider a three-dimensional Euclidian space identified by R® and
such that the three vectors e; form an orthonormal basis. Let {2 be a non-
empty open subset of R3. A mapping © € C3(£2;R3) is an immersion if the
three vectors 9;0(x) are linearly independent for all x = (x;) € 2. The image
©(2) is always an open set immersed in R3. The three coordinates z; of a
point x € {2 represent the curvilinear coordinates of the point @(x) € ©(12),
while the three coordinates ©;(z) of the point ©(z) € @(2) are the Cartesian
coordinates.

The three vectors g;(z) := 0;0(z) form the covariant basis at @(x) and the
three vectors g7 (z), defined by the nine independent relations g;(z) - g’(z) =
8 for all x € (2, (8] denotes the Kronecker symbol) form the contravariant
basis at ©(z). The immersion © induces a Riemannian metric on {2, defined
respectively by its covariant components g;;(z) := g;(x)-g;(z), and contravari-
ant components ¢*¢(x) := gF(z) - g’(z). The contravariant components of this
metric can be analogously defined by (¢*(x)) = (g:;(x))~* for all z € 2.

This metric induces a Levi-Civita connection in the manifold (2 defined by
the Christoffel symbols of the second kind I/} := g? - 0ig; = ;.

Let there be given a vector field defined over ©(f2). We can rewrite this
vector field as a linear combination v = v;g’ of the vector fields g’ : 2 — R3,
where v; = v - g; are the covariant components of the vector field v. The
covariant derivatives v;; € C°(£2) of the covariant components v; € C*(£2) are
defined by v;|; := djv; — I};vp. The covariant derivatives T%|[x € C°(£2) of
the second-order tensor field with contravariant components T € C1(£2) are
defined by T || := Op T + I}, T + I}, T*.

With every displacement field v, we associate the linearized change of met-
ric tensor defined as follows:

1
eij(v) := 5 (vilj + vje)-

2.2 Curvilinear coordinates on a surface

Let w be a non-empty open subset in R2. The coordinates of T € w are denoted
by Z,. A mapping 0 € C3(w;R?) is an immersion if the two vectors 9,0(7)
are linearly independent at each point T = (z,) € w. The image S := 0(w) is
a surface immersed in R3, equipped with x, curvilinear coordinates.

The two vectors a,(Z) := 0,0(T) form the covariant basis of the tangent
plane to the surface S at 6(Z), and the two vectors a’(Z) defined by the
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relations a, (7) -a®(Z) = 62, form the contravariant basis of the tangent plane
to the surface S at 6(z). The unit normal vector to S at () is defined by
a3(7) = a3(Z) := %

The covariant components of the first fundamental form of the surface
are defined by ans(Z) := a,(¥) - ag(¥), and its contravariant components are
defined by a®?(z) := a®(7) - a°(2).

The covariant components of the second fundamental form of the surface
are defined by b, 3(7) := 0,a5(7)-a3(T), and its mixed components are defined
by b7 () = a7 (#)bas (3).

The Christoffel symbols on the surface S of the second kind are given by
I75(%) = a’ () - Dpap(T).

Any vector field on a surface can be written as a linear combination 1 =
n;a of the vector field a’ : w — R3, where the functions 1; = 1 - a; are the
covariant components of the vector field i. The covariant derivatives 1,3 €
C°(w) of the covariant components 7, € C'(w) are defined by 7,5 := 07 —
I'7 517 The covariant derivatives T°8|, € C°(w) of the second-order tensor field
with contravariant components 7% € C!(w) are defined by T*#|, := 9, 7" +
e TP 4+ 18 T, The covariant derivatives of the curvature tensor defined by
means of its mixed components are defined by bjla := 9abj + 5,05 — I'75D7.
For more details about differential geometry of surfaces, see e. g. [5].

With every displacement field 1, we associate the linearized change of met-

ric tensor field defined by

o

1
Yap(n) = 5(%77& + 0anp) — Lagho — bapms

and the linearized change of curvature tensor field, defined by

T

/J‘aﬁ("?) = Oapll3 — Fgﬁaoni% - bgboﬁni’) + 07 (86770 - Fﬁgn‘r)""
050ty — I3:10) + (0abf + T5,b5 — [3507 )0,

The symmetric tensor fields (7,3) and (pag) play a key role in the theory of
linearly elastic shells (see, e.g., P.G. Ciarlet [5]).

3 Position of the problem

Let 2% and 2~ be two disjoint open domains with smooth boundaries 002+
and 927 Let w := {9027 N9N2~}° be the interior of the common part of
the boundaries which is assumed to be a non empty domain in R? having a
positive two-dimensional measure and let 6 € C%(w; R3) be an immersion.

Let 0 < € < 1 be an adimensional small real parameter. Let us consider
2me = wx] — ¢,¢[ and ST := w x {&e}. Let 2° denote the generic point
in the set 27 with %, = Zo. We consider a shell-like domain with mid-
dle surface 6(w) and thickness 2¢, whose reference configuration is the image
©™=(2™°) C R3 of the set 2" through the mapping given by

O™ (%) := (%) + 25a3(F), for all 2° = (Z,25) € 2.



Fig. 1 Initial and reference configuration of the assembly

We denote by 21° (resp. £27°) the translation of 27 (resp £27) in the
direction es (resp.-es ) of the quantity € and we set 2° = 27*US=UN™* U
Steynte.

Moreover, we suppose that there exists an immersion ©° : 2° - R? defined
as follows:

+.e —+,c
e° .— (C)] on Qm,a ’ gi,s(si,a) _ @m’6(5i75),
®@™¢ on {2

ALE . . AEe . a1
where @%¢ : 27 — R3 are immersions over £~ defining the curvilinear

coordinates on 2. Let us stress that the physical domain of the assembly
is obtained by inserting in the direction as the shell within the two bodies,
see Fig. 1. The structure is clamped on I§ and the complementary part of the
boundary is free. Obviously we can consider other type of boundary conditions.
The structure is also submitted to applied body forces f{ so that the work of
the external loading is given by the linear form

LE(v®) := / frvida®.
N*.e

We suppose that the materials are linearly elastic and isotropic with Lamé’s
constants At and pt° for 2%°, A™¢ and p™* for ™. As usual we assume
that 3AH° + 2u%° > 0, p™° > 0, 3A™° 4+ 2u™° > 0, ™ > 0.

The physical variational problem in curvilinear coordinates defined over
the variable domain {2° can be written as

A7E(uf,ve) + ATE(us, ve) + A™E(us,ve) = LF(vE) for all v© € Ve,
(1)

{Find u® € Ve = {ve € H(2%;R3); Vie = 0} such that



The bilinear forms A*(-,-) and A™*(-,-) are defined by
AR v i [ A ()l (v) Vg da,
N*.e
Al v i [ AR () (v VT

Here, AUkGE = \egideghte 4 2 (gihe gite 4 g2 gIk€) are the contravariant
components of the elasticity tensor and g° = det(g;;)-

If we suppose that ff € L2?(02%°), then Lax-Milgram’s lemma ensures
existence of a unique solution for problem (1).

In order to study the asymptotic behavior of the solution of problem (1)
when ¢ tends to zero, we rewrite the problem on a fixed domain {2 independent
of £ By using the approach of [5], we consider the bijection 7€ : 2 € 2+ 2° €
(2 given by

7w (x1, 22, 23) = (x1,22,23 — (1 —¢€)), for all z € ﬁ;,
e (x1, 22, x3) = (1, X2,Ex3), for all z € 27,
7€ (21,9, w3) = (21,72, 73 + (1 —€)), for all z € 2,

where QF = {z +e3, x € 2%}, 2™ := wx] — 1,1[ and ST := w x {£1}.
In order to simplify the notation, we still denote by 2% the set Qtj,f., and set
N=02"US UN™UStUNT. Consequently, one has 95 = 9, and 95 =
%83 in 2™,

With the unknowns u® and the test functions v® appearing in formula-
tion (1), we associate respectively the scaled unknowns u and the scaled test
functions v transformed by 7¢ by means of the following relations:

u(e)(z) :

v(z):

= uc(z9), for all 2° = 7°(x) € 17,
VE(J?E), for all ¢ = n°(z) € 12°.

For ¢ sufficiently small, we associate with the functions A7*“¢, ¢ 5 Iy
—t, A P —+
27° 5 R the functions Ali]ké, g%, I+ 7 — R defined by

AR () = AR (29), for all 2° = 7°(z) € [

gt (x) := gt (2%), for all 2 = 7°(z) € o

If(x) = I (af), for all z¢ = ¢ (z) € ﬁi’s,

and we associate with the functions Aijk6e, gme, IS 2" = R the func-
tions A7 (e), g™ (e), I};(e): 2" — R defined by

AR () () = Aw’ff € (z), for all 2° = 7°(z) € 27,

7”( )(x) = g™=(29), for all 2¢ = n¢(z) € 2",
rfi(e)(x) —Fp’( ), for all 2¢ = n°(z) € 2"°
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We assume that the rigidity of the shell-like layer has order of magnitude Eip
with p > 1. From the previous assumptions it then follows that:

AH(e) /g (E) = (2)
1

= SAUF(0)y/a + =B + 5 B2 4 O(e27P),

where a := det(aqg),

A;)zn,Ba‘r (O) = Amaaﬂaar + Mm(aaaaﬁr + aaraﬁa),
ARPB(0) := A"a, ARPTR(0) i= e, AB(0) = A 420,

and the order symbol O(g27P) is meant with respect to the norm of C°(02™).
The covariant components of the linearized change of the metric tensor

eij(e;v) € L2(02™), transformed by 7 and associated with the displacement
field v € H'(£2™;R3), are defined as follows:

1
eap(g;v) = 5(5‘511@ + 0avp) — Ihs(e)vp,
1.1
eas(e;v) = §(g33va + 0ov3) — I'35(e)vs,
1
633(E;V) = *83’[)3.
€
As in [5] one can prove that in 2™ the functions I} (¢) satisfy :

I3s(e) = I'g5 —exsbfla + O(e?),
(6) = bag — Z:‘xgbgbgg,

o ) (3)
Igy(e) = —b7 — casblb? + O(?),
F33(5) = F§)3(5) =0,

where the order symbols O(g) and O(g?) are meant with respect to the norm
of CO(™).

For later use we define v,5(v) and pog(v) in 2™ with the same formulae
employed in section 2.2 for the surface w:

1
Yas(V) = 5(98va + Oavs) — I'{svs — bapvs, (4)

Pap(V) := Onpvs — I'3505v3 — b bopvs + b%,(08vs — FggvT)Jr 5)
+05(0avr — I'3:v5) + (0abf + 17,05 — 17507 )v-.

For simplicity we assumed that the shell-like inclusion is free of charges, then it
follows that L¢(v®) = L(v). According to the previous assumptions, problem



(1) can be reformulated on the fixed domain {2 independent of e. We obtain
the following scaled problem:

(6)

Find u(e) € V :={v e H'(;R?); v, =0} such that
A~ (u(e),v) + At (u(e),v) + eA™(u(e),v) = L(v) forall vevV,

where
A= [ AT (@)en (6
A" (u(e),v) == /{m AR (2)ero(g5u(e))eis (65 v) /g™ (€) da.

In the sequel, only if necessary, we denote by v*, resp v, the restriction of
the function v to 2%, resp 2.

4 Asymptotic expansion

We can now perform an asymptotic analysis of the rescaled problem (6). We
distinguish the two cases when the rigidity of the shell-like layer has its order
of magnitude equal to é or E% with respect to the rigidities of the surrounding
three-dimensional bodies.

Since the rescaled problem (6) has a polynomial structure with respect to
the small parameter €, we can look for a formal development of the solution:

u(e) =u’ +eul + 2w + .., (7)
withu?eV, geN.

The above formal asymptotic expansion of the scaled unknowns and the
asymptotic behavior of functions I/ (¢) induce the formal asymptotic expan-
sion for the scaled linearized strains in 2 of the form:

1
-1, .0 1 2 2
eij(e) = geij +e;; +ee; ete + ..

where
_ 1
€as =0, 0 1= 5 (D5 + Do) — Igul — bagul,
-1 ._ 0
€,3 ‘= 583u(w 633 = 5(63’1,4(1)[ —+ 8aug) + bgug, (8)
1
633 = 83”3, 683 = a;:{ué,

1
Cap = 5 (Opug + Oaup) — Igu, — bagus + z3(bG|atg + b3bssus),
ek i= 5 (05 + D) + Dl + b bTud, (©)

1o o2
egg 1= O3u3.



The functions e;;(e; v) likewise admit in 2™ a formal asymptotic expansion
of the form:

1
eij(e;v) = ge;jl(v) + e?j(v) + 5e}j (v) + 5ze?j(v) +...,

where
_ 1
€ap(V) = (i’ ed5(v) = = (9pva + Oavp) — I'5v0 — bapus,
—1
Cas (V) = 50800 4 0, (v) = =003 + bZ0s, (10)
es3 (V) := Osvs, ey (v) := 0,
enp(V) = 3b3|avs + 2363 bspvs,
ea3(V) = 23b3b7 v, (11)
e3s(v) :=0.

~—~  ~—

Hence, by substituting (2), (3), (7)-(11) in (6) and by identifying the terms
with identical power, we can characterize the formal limit problems for p = 1
and p = 3.

5 The limit problem for p =1
The formulation of the limit problem when the rigidity of the shell is % is
stated in the following theorem:

Theorem 1 The leading term u° of the asymptotic expansion (7) satisfies the
following variational problem:

Fi 0 eV,
{ ind u’ € Vyy such that (12)

A= v) + AT (0, v) + AT, (u®, v) = L(v) for all v € Vi,
with
Vi = {v € L*(2;R3); vt € HY(Q%;R?), v € HY(Q™),

L2(Q™R?) 3 93v™ = 0,vig. = Vi&s, Vir, = 0},

and where
AT (1 v) ::/ a®?77el_(u°)ed 5(v)Va dz,
2)\771 m
aaﬂUT = Waaﬁao"r + 2Mm(aaaaﬂ7 + aa‘raﬁa)’

are respectively the bilinear form associated with the membrane behavior of the
shell and the contravariant components of the elasticity tensor of the shell.
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Proof For convenience we split the proof in three parts numbered form (i) to

(iid).

(i) The variational problem corresponding to the order =2 in the problem
(6) is:

/ AR (0)eter (V)va de =0 forall v e V.

The matrix (a®?) being positive definite this implies that dzu® = 0 in 2.
Thus the leading term u® is independent of the transverse variable x3 in 2™
and consequently ei_j1 =0.

(ii) The relations ei_j1 = 0 (obtained in step (7)) lead to the following
variational problem associated with the order e !:

Azgké( )ekle (v)\/a dr=0 forallvelV.
Qm
It turns out that

Aaﬂ33(0

0 . m
T A3383(() Cap in 27

0 _ 0 _
eq3 =0 and ez =

(i7i) The variational problem associated with the order &°

Azkeeu(uo)eij(v)v gt dx +/ AT erp(u)ei; (v)Vg~ dat
o+ -

+ /Q [AR(0)(e0,¢%, (v) + ey (v) + B e,et(v)}va di = L(v),

for all v € V. By choosing test function v such that v is independent of 3,
then e;jl(v) =0 in 2™ and the above variational problem reduces to:

Aﬁkéew Jei; (V) gt dz + AR e (uO Jei;j (V) g~ dx
o+ o (13)

+/ ATF0)edged; (v)Va du = L(v) for all v € Vay.
in

From steps (i) and (ii), we can easily prove that

AT (0)eD,e, (v)/a da = / 070 (u0)el,5(v)V/a d.

( m _( m
Hence (13) shows that u® is the solution of the limit problem (12). O
Remark 1. One can note that the space Vs is isomorphic to VM = {V €

HY(02;R3); Viw € H'(w;R?) x H? (w), v|p, =0}, where Q:=0tUwun.
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Since u” and v are independent of x3, €7 (u°) = 7, (u") and €2 5(v) = Yaps(V).

Consequently, by integrating along the xs-coordinate, we can write

m(ud,v) = 2 / T (00 (v)V/a .

Jw

We obtain in the simplified model a membrane transmission condition at the
interface between the two three-dimensional bodies. This condition can be
interpreted as a curvilinear generalization of the Ventcel-type transmission
condition obtained in [2]. Indeed, one has

Elasticity problems in 2% Transmission conditions in w

[0*3] = n*P|5 on w,
[0%3] = n*Pbas on w,

{aiﬁ'j = f'in 2%,
[ul =0 on w,

u=0 on Iy,

where 0/ := A*ep(uF) and n®f = aq Yor(U),) are respectively the
contravariant components of the stress tensor and of the membrane stress
tensor of the shell, [¢*?] := 0® — " represents the stress jump at the interface
w between 27 and 27, [u] represents the displacement jump at w between
27 and 27 .

i) afor

6 The limit problem for p = 3

We state in Theorem 2 below the formulation of the limit problem when the

rigidity of the shell is E%

Theorem 2 The leading term u® of the asymptotic expansion (7) satisfies the
following variational problem.:

. 0
{and u” € Vg such that (14)

A= (0 v) + AT (% v) + AR (u®, v) = L(v) for all v € Vp,
where
Ve = {v e H'(;R3); v € HX(2™), Yap(v™) =0, d5v™ =0, v, =0},
and

AT (u,v) ::/ 22 a7 por (W) pas(V)Va dx

m

is the bilinear form associated with the flexural behavior of the shell.

Proof The proof is divided into four steps numbered form (7) to (iv) and fol-
lows [5], chap. 3.
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(i) The variational problems at order e~* and =3 are respectively analo-
gous to those of steps (i) and (i7) of Theorem 1. Hence, one has:

83110 = 0,
A833(0) (15)

633 =0 and egg = 77143333(0) €ap

in 2™. For v € V such that ei_jl(v) = 0, the variational problem at order ¢ =2

takes the following form:

[ aes v de =0,
0 _
Thus e,z = 0.
(1) Since €03 = Yap(u’) = 0, from (152) it turns out that:

€33 = O3u3 =0 and ey = ((r“)gu(ll + 0aud) + bZul = 0.

o
Hence

ul (r) =k (T) — 23(0qul + 207u2)(T) and wi(x) =us(Z) in ™.

e}

From the assumption on the asymptotic expansion (7) it follows that ud €
H?(£2™). Since e; = 0, the variational problem at order £~? reduces to

AR )ekee Yv)vadr =0 forall vev.
om

By similar computations as in Theorem 1, we deduce that

AT(0)

A3333(()) “B° (16)

els =0 and el; = —
Using (9) one can express ;5 in terms of U and u’. An easy computation
. —1 0
gives e}yﬁ = egﬁ(u ) — x3pap(u’).

(i7i) The variational problem at order e~! takes the form (we recall that
e =€ =0):

o {AF(0) (epeed; (W) + €rees; (W))Va+ B eje (W)} de =0 (17)
for al w e V.
Let choose again w such that ei_jl(w) = 0. Then from (16),

[ A Ol wvado = [ a0el e wva di -

m

= / a®?7el_(u')ed 5(w)va dz = 0.

Q‘m,
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Therefore €)_(u') = 0 and so el = —z3p,,(u’).

(iv) The problem at order €° takes the following form:

/ A”Mekg Neij(v)v/ gt dm+/ AR e (uO Jeij (V) g~ da+
n+

+/ AZE0) (erees; (v) + ekoes (V) + €es; (V) Va dat
Qm

+ / B (el el (v) + et (v)) di

"’/7 Bk 2€ke€ Yv)de = L(v) forall veV.
Q

m

By subtracting equation (17) one obtains:

/ Aijk ere(u e” v)\/ gt dx + Ai_jkéekp Jeij (V) g~ dx+
o+

2-
[ AT O elalely () = e () + el (v) e (w)
+eue! (V)va) det
B (el ) — et ) + e (v)} do

T BzJM QEMQ 1(v) dx = L(v) forall v,w € V.
QWL

Given an arbitrary test function v € Vg, let choose w € V such that
Wo = x3(2bLv; + 0qv3) and ws = 0in 2.

Since efjl(v) =0 and e} 45(v) — €05(W) = —23pap(V), €Q5(V) — e;é(w) =0in
2™ it follows the desired result. O
Remark 1. Note that the space Vi is isomorphic to Vi := {ve HY(2;R3); Vi, €
HY(w;R?) x H*(w), vir, =0, Yas(vjw) = 0in w}. Since u’ and v are inde-
pendent of x3, p,-(u’) and p,.(v) are also independent of z3. Consequently,
by integrating along the x3-coordinate, we get

2 ~
AP(.v) = 3 [ a7 o () pas(v)Va d.

The simplified model is characterized by a flexural transmission condition at
the interface between the two three-dimensional bodies as follows:

Elasticity problems in 2% Transmission conditions on w
3
ol = fiin 0F [[U:3ﬂ = (bgm??)|5 + b2 (m*?|5) on w,
{u :iOJ on Iy 7 [o°°] = bgbaﬁmaﬁ - maﬁlaﬁ on w,
’ [ul =0 on w,
where m®? := £a®#?7p,(v|,) are the contravariant components of the mo-

ment tensor of the shell.
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7 Two Korn’s type results

In the whole paper, we denote by | - ||s,2 the norm in the Sobolev space
H?*(2,RY) for every d > 1 and || - ||o.o will stand for the norm in L?(£2,R9).
Obviously, the same holds in 2%, 2™, w.

Let us recall that V = {v € H'(2;R3); v, = 0}. In order to study
convergence of the solutions of problems (6) for p € {1,3}, we establish the
two following Korn type inequalities in curvilinear coordinates.

Proposition 1 There exists a constant C' > 0 such that for € small enough
and for all v e V:

1/2
1
Mo < € {lesB o + lesBo- + ZlesEvlion

Proof Assume that the announced inequality is false. Then there exist €, — 0
and (v¥)22, € V such that

[vFl1e=1 for all k,
eij(vF) =0 in L2(0%),
—eij(er; vh) — 0in L2(2™).

Therefore there exist v € V' and a subsequence (not relabeled) such that
vk~ vin HY(02;R?),

and thus v¥ — v in L?(2;R®). Moreover, from the convergence e;;(vF) — 0
in L2(2%) we deduce that v¥ — v = 0 in H'(£27;R?). Besides, one has

it~ St o
Osvk = ei, (2ea3(er; vF) — Oavh + 2755 (ex)vE) — 0 in L2(02M).

Thus, &3v = 0 in 2™. Then, from the continuity of the trace on S*, we
deduce that v = 0 in £2™. Finally the convergence e;;(v¥) — 0 in L?(£27)
and the continuity of the trace on S~ imply that v = 0 in {27. Hence we have
that v¥ — 0 = v in H'(£2%;R?). In order to conclude one has to prove that
vF — 0 =vin H'(2™;R?). We remark at first that e;;(ex; vF) — 0in L?(02™)
implies that 01vF, 0yvh and 91v5 + G2vF tend to zero strongly in L(£2™). As
in the classical proof of Korn’s inequality, one deduces that d;v5 and 9vf
tend to zero strongly in L2(£2™). To prove that d,v tends to zero strongly in
L%(£2™) it is enough to prove that d,sv§ tends to zero in H~1(2™). Let us
remark that

1 1
DoVl = Opeas(er; vF) + Oneps(er; vF) — aageag(ak;vk) - a@g(Fgﬁ(ak)v’;)
+ I35 (ek)0pv + Ts(ek)0avh + (051 J5(en) + Ol gs(er))vl. (18)

From the previous considerations, one immediately deduces that all the terms
in the right-hand side go to zero in H~1(£2™;R?) except i@g(ﬂfﬂ(sk)vg). By
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using (3) and the previous results, one sees that it is enough to prove that
Eikﬁgvk tends to zero in H~1(§2™;R3). This in turn follows from the definition

of eq3(ex; v¥) and the convergence of v% to zero in L2(2™). Hence the sequence
(vF)2e, converges strongly to 0 in H'(£2;R?) which is contradictory with the
assumption [|v*]l o = 1 for all k. O

Let us define the space V:
V= {ve L*(R%); v& e H'(0FR?), v € H'(Q™),
O3v™ € L2 (2" RY), vigs =V{gs, Vin, =0},
equipped with the norm || - ||y defined by

[vllv := {llei; (I o+ +lless (WG o- +1vIE.a +
+ 10av8l13 |l + 105V I15 o }/2.
We can easily prove that V is complete and that Vj; C V is a closed sub-

space; therefore the uniqueness of the solution for problem (12) is guaranteed.
Let us also remark that V C V.

Proposition 2 There exists a constant C > 0 such that for € small enough,

1/2
Wl < € {lless I s + lles(WIE - + eV on ) for all ve V.

Proof Assume that the announced inequality is false. Then there exists €, — 0
and (vF)%2, € V such that

|vFly =1  forall k,
eij(VvF) =0 in L2(0%),
eij(ex; vF) = 0in L2(02™).

Up to extraction of a subsequence (not relabeled), there exists v € V such
that

vk v in H'(02F;R3),

vk — w3 in L2(0™),

vk — v, in H1(92m),

O3vF — 93v in L2(0Q™;R3).
The convergence e;;(vF) — 0 in L2(£2%) implies that v =0 in 27 and v —
v =0in H'(£227;R?). Besides, one has

1

—O3vk = ez3(ep; vF) = 0 in L2(0Q™),
€k

030F + £,0a0% = ek (2ea3(er; VF) + 2055 (e )vk) — 0 in L2(02™). (19)
Hence for all ¢ € D(£2™), one has:
O3vqp dz = — lim (v(ﬁ@ggo + skvgaag@) dx
k—o0 nm

= lim / (D30F + €404 080 dz = 0.

k—o0 nom
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Thus, &3v = 0 in 2™, and by the continuity of the trace on S+, we deduce
that v = 0 in 2™. Finally the convergence e;;(v¥) — 0 in L?(£27) and the
continuity of the trace on S~ imply that v = 0 in {27. Hence we have that
vk — 0 =v in H'(02%F;R?). Moreover, since

| iR ae<o| @R [ o i)

it follows that v5 — 0 strongly in L%(£2™). Let us now prove that dzv — 0
in L2(02™). From (19), it is enough to establish that £;0,v% tends to zero in
L?(0™). This can be deduced from (18) and the previous results. In order
to conclude one has to prove that vt — 0 in H'(£2™). For this we apply

the classical Korn inequality to (z%)%, where zF = (2F) := (vF,v5,0). We
set €;j(z) == 2(0iz; + 0;j2;). Since €u5(z") = eap(en; vF) + Fgﬂ(sk)vllf and

€as(zF) = 1050k, it follows that €;;(zF) — 0 in L?*(2™) and so z¥ — 0 in
H'(£2™). Hence the sequence (v¥)%2, converges strongly to 0 in V which is

contradictory with the hypothesis ||v*|y = 1 for all k. ]

8 Convergence results
8.1 Strong convergence for p =1

For every function v defined almost everywhere over 2™ = wx| — 1,1[, we
define the average

1
v(z):= 7/ v(Z,x3)dzs for all T € w.
~1

We recall for later use that the weak convergence in L?(£2™;R3) implies the
weak convergence of the average in L?(w;R3)

Let u(e) € V.C V be the solution of (6) for p = 1. Thanks to the assump-
tions on the loading, the coercivity of the bilinear forms A* and A™ | the
classical Korn inequality and Proposition 2, one obtains the following a priori
estimates:

[uie)ly = C,

20

ety & u(E)lo.0m < . 20

Theorem 3 The sequence (u(e)).>o converges strongly in V to u® € Vi, the
unique solution of problem (12).

Proof For convenience, the proof is divided into seven parts, numbered from
(1) to (vii).

(7) From (20) we deduce that there exist a subsequence (not relabeled),
u €V and e;; € L?(2™) such that

u(e) ~u in V,

eij(e;ule)) — e;5 in L2(0Q™). (21)
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Let us explicitly remark that u(¢) — u in ¥V means that:

u(e) = u in H'(02%F;R3),
uz(e) = ug in L2(2™),
Ua(E) = uy  in HL(Q™),
dzu(e) — Gzu in L2(02™;R3).

(#1) We prove that dsu = 0 in £2™. From (20) and (21), one has

3us(e) = eesz(g;u(e)) — 0 = d3us in L2(0Q™),
D3q (€) + e0nus(e) = 2e{eas(e;ule)) + I'%5(e)us(e)} — 0 in L2(0Q™).

Thus, with the same arguments as in the proof of Proposition 2, we obtain
D3y = 0 in L2(£2™) and u € Vy,.

(734) The limits e,p satisly the relation e,5 = vap(u). Indeed using the
d}?ﬁnition of the average of ens(e;u(e)), of vap(u(e)) and of I'75(¢), we deduce
that

leas(e;u(e)) —ap(u(e))llow < Cellule)flo.om
which tends to zero as € — 0. On the other hand, by definition of V, y45(u(e)) —

Yap(u) in L2(2™) which implies that vas(u(e)) — Yas (W) = Yap(u) in L?(w)
and thus €,5 = Vas(u) in L?(w).

(tv) The limits eqp satisfy dzeqs = 0. For this let us now remark that

Fzeap(esu(e)) = %(@a@sua(s) + 0aOsup(€)) = 03(Igs(e)up(e)).  (22)

Thanks to (i), (21) and (3), the right-hand side converges to zero weakly in
H=1(02™) as ¢ — 0. The continuity of the operator 93 : L?(£2™) — H~1(02)
implies that dseqs = 0 and so

eap = Yap(u) in L*(02™). (23)

From (8 ) and (4) we finally obtain eqs = € 5(u).

(v) By multiplying problem (6) by ¢ and by letting ¢ — 0, we get

Aa533 (0)

€q3 — 0 and €33 = 7143T3(0)6QB

(24)

By choosing in (6) test functions v independent of 3 in 2™ and by applying
the limit as € — 0, we obtain:

At (u,v)+A (u, V)+/ (AO"B"T (0)easen, (v)+A7™33(0)egzel, (v)) dz = L(v).

m

From (23) and (24), we infer that

m

AT (u,v) + A (u,v) + / a®?77ed s (u)el  (v)va dx = L(v).
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Hence, by virtue of the uniqueness of the solution, we deduce that u = u®.

(vi) Let us prove the strong convergence of e;;(;u(e)) to e;; in L*(£2™).
For this we remark that

/Q A () — er)ess () - ) Vo dat
+/'MW@mmmf%m%m@wwm%me

+ /7”” A%k’f(ekl(fé u(e)) — ekg)(eij (e;u(e)) — eij)\/ﬁ dx

tends to zero. From the coercivity, we obtain the claimed strong convergence.
Moreover, from the classical Korn inequality, we deduce the strong conver-
gence of u®(e) to u®* in H'(2F;R?).

(vii) In order to conclude the proof of the strong convergence of u(e) to u’
in V, we have only to prove that u,(g) — u2 in H(£2™). For this let us apply
the classical Korn inequality to t(e) = (u;(€)) := (u1(e),ua(e),0) and 0° =
(@) = (uf,ul,0). We set €;;(z) := %(&zj + 0;2;) and we remark that from
(vi) it follows easily : en5(t(e )) — eaﬁ( ) in L2(£2™). Hence, one has only to
prove that €,3(Ud ( )) = €a3(0%) = 105ud in L2(£2™). From (i) and (ii) we have
that uq(¢) — u? in L2(2™) and 83u = 0. Thus €u3(u(e)) = 105ua(e) = 0
in H=1(02™). Therefore we need only to prove that also dg3us(e) — 0 in

~1(2™). One has

Optn) = Oa(Eap (B(E) + 0p(ceon(E5(E) + €T (e () +
—0a(zep(eu(e)) + eI (€)uo (<)
—wwww»mﬂ<mw

From (iv) it follows that 03(eas(u’)) = 0 and hence the announced strong
convergence holds. O

8.2 Strong convergence for p =3

Let u(e) € V be the solution of (6) for p = 3. Thanks to the assumptions
on the loading, the coercivity of the bilinear forms and Proposition 1 we can
write the following a priori estimates:

[u(e)lhe <C
: , (25)
= lleij (g u(e)[g.om < C.

Theorem 4 The sequence (u(€)).~o converges strongly in H'(£2;R3) to u® €
Vi, the unique solution of problem (14).



19

Proof For the sake of clarity, the proof is divided into five steps numbered
from (i) to (v).

(7) From the a priori bound (251) it follows that there exist u € V and a
subsequence not relabeled such that u(e) — u in H'(£2;R?). Estimate (252)
implies that 1d5uz(e) — 0 in L?(£2™) and that eq3(e;u(e)) — 0 in L?(£2™).
Therefore

1
g(?gua(s) — —0qug — 20%u, in L*(2™),

and Osu = 0 in 2™. From estimate (252) we get that eqg(e;u(e)) — 0 =
Yap(u) in L2(2™). Thusu € {v € H'(£2,R3) : 05v = 0, v45(v) = 0in 2™, v|p, =
0}. At last, estimate (252) yields the existence of z;; € L?*(£2™) such that
Leij(esu(e)) — 2 in LA(02™).

(i) In order to prove that uz € H2(£2™), let us define

1 1
ul (6)(T) == 1/ T3uq(€)das = 2%:_ [1(1 — 22)D3uq(¢)ds.

€J-1

Then, using (i) it follows that

1t
ul (¢) —>§/ (23 — 1) (Oaus + 205Uy )drs =
—1
2 o : 2
= 75(8(11@, + 2b%u,y) in L7 (w).

Actually, this convergence holds weakly in H'(w). Indeed, one has

5(0uub (@) + 05uk(e) = 5 [ as@uus(e) + Dy (e))das =

1 1 { 1
_ / 73~ cap(ciu(e))drs + 5 / (1 — 22)(I%503u0 (¢) + bapdsus(e))das+
—1

-1
1

! 1
_/ x%bgb[,@u;g(a)dxg + g/ :Ug(Fgﬁ(a) — Fgﬁ)ug(a)d:pg.
1 1

The first term in the right-hand side converges weakly to fil T3Zapdx3 in
L?(w) and the second term tends to —%Fgﬁ (Opus + 2b7u,) in L?(w). The last
terms converge evidently in L?(w). By the classical Korn inequality it follows
that the sequence (u,(¢))s>0 is bounded in H'(w), hence — 2 (9auz +2b%u,) €
H'(w) and so d,u3 € H'(w). Thus uz € H*(w) and since dzus = 0, one has
ug € H?(£2™) so that u € Vp.

(iii) By multiplying (6) by €2 and by letting € — 0, we deduce that

AQBSS (0)

233 = _mz“ﬁ and z,3 =0.
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Afterwards, by multiplying (6) by ¢, by letting e — 0 and by choosing test
functions such that d3v3 = 0, we obtain:

1
fim [ L A373(0)ens (e u(e))ens (6 v) da = — / a0 2560 (v) da.
e—0 om & nm
(26)

Let us now remark that
Oseqp(e;ule)) = e{dneps(c;ule)) + Opeas(e;u(e)) — Oapus(e)+
+05(I'35(e)uc(€)) + Oal(lG3(e)uq ()} — Os(I 5 (e)up(e))

From (27) and recalling that bj|a = b7|s it follows that in H~'(£2™) one has

(27)

1
Oszap = lim gaseaa(é; u(e)) = —pas(u).

However, since uz € H%(£2™) the equality pag(u) = —03245 holds in L?(02™).
Given any n € H'(w, R?) x H?(w) such that y,s(n) =0 let v € H*(2™ R3)
defined by vy = 1o — 230, and vs = n3, where 0, := 0413 + 2097, and 6 =
(6;) := (61,02, 0). Since then e,3(g;v) = $(—100 + 0ans) — I'3(e) (o — x36,),
2a3 = 0 and €2_(v) = —x3€2_(0), we obtain from (26)

1 1
lim — / AW (0)eqs(e, (<) by dr =

e—0 52 m
= | a7 zapeq,(v) do = _/ 0?77 z0pw50, () du
5 . (28)
=_Z aaﬁw(l - 1’%)832043627(0) dx
2 _Qm
1 2

— [ (1= D)a pap(u)el (6) da.
2 Jom

(iv) When v € Vy one has
eap(e;v) = ex3(bglave + bl bapus) + O(e?),
eas(e;v) = %&11}3 + v, + O(e),
ess(e;v) = 0.

Hence if we choose in (6) v € Vg, by passing to the limit we get:

At (u,v)+A" (u,v) + / a®P77 zopw3 (V] pvp + bibrvs) da+
f m

e—=0 €

+lim = / Aa3"3(0)603(6;u(e))(%@avg 1 60,) do = L(v).

Let £, := Onv3 +2b7 v, and € = (&) := (£1,&2,0). Then, by using (28) and the

relation € (&) — b¥|,v, — blburv3 = pyr(V), We obtain that

At(u,v) + A (u,v) + g /w a®Po7 pop(0)por (V) dT = L(V),
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so that u = u’, the one and only one solution of problem (14).

(v) It remains to prove the strong convergence. Let (¢"),~0 C V be defined
as follows:

oo T

¢3(x) = Fw(T) for all =z € 2™,

0N

{w(x) 22(b70,ud(F) + b9b7ul (7)) for all = € 2™,

where (w"),>0 is a sequence in D(w) which satisfies in L?(w)

Let @b € V be such that

VYo (z) = —23(00ud(T) + 26712 (7)) for all z € 2™,
P3(x) =0 for all z € (Zm.

Then u(e) —u® — ey — 2¢" € V and

eap(e;u’ — et — 29") = —ex3p05(u°) + O(c?)
eaps(e; u’ — ey — 2¢") = 0(e?)

eap(e;n’ — e — e29") = exzw”

where the order symbol O(g?) is meant with respect to the norm of L?(02™).
Setting A(-,-) := AT(-,-) + A= (-,+) + €A™(-,-), by virtue of the coercivity we
obtain :

A(u(e) —u’—eyp—2¢", u(e) ~u’ —eyp —£*¢") > Cllu(e) —u’—eyp —*¢"|[5..
By letting ¢ — 0 and by using a standard diagonalization argument, one
has

lim lim A(u(e) —u® — ey — 29", u(e) — u® — exp — %9") =

n—0e—0

= L(u") - AT (0", u°) — 4™ (u’,u”) — / 23077 Py (W) prr () dar = 0,

which completes the proof. a
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