
HAL Id: hal-00790346
https://hal.science/hal-00790346

Submitted on 27 Feb 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Asymptotic analysis of shell-like inclusions with high
rigidity

Anne-Laure Bessoud, Françoise Krasucki, Michèle Serpilli

To cite this version:
Anne-Laure Bessoud, Françoise Krasucki, Michèle Serpilli. Asymptotic analysis of shell-like inclusions
with high rigidity. Journal of Elasticity, 2011, 103 (2), pp.153-172. �10.1007/s10659-010-9278-1�.
�hal-00790346�

https://hal.science/hal-00790346
https://hal.archives-ouvertes.fr


Journal of Elasticity manuscript No.
(will be inserted by the editor)

Asymptotic analysis of shell-like inclusions with high
rigidity

Anne-Laure Bessoud
· Françoise Krasucki · Michele Serpilli

Received: date / Accepted: date

Abstract We study the problem of an elastic shell-like inclusion with high
rigidity in a three-dimensional domain by means of the asymptotic expansion
method. The analysis is carried out in a general framework of curvilinear coor-
dinates. After de�ning a small real adimensional parameter ε, we characterize
the limit problems when the rigidity of the inclusion has order of magnitude 1

ε
and 1

ε3 with respect to the rigidities of the surrounding bodies. Moreover, we
prove the strong convergence of the solution of the initial three-dimensional
problem towards the solution of the simpli�ed limit problem.
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1 Introduction

The modeling of complex structures obtained assembling simpler elements
with very di�erent geometric and/or material characteristics is a source of a
variety of problems of practical importance. The successful application of the
asymptotic methods to obtain a mathematical justi�cation of the most used
models of plates and shells has stimulated the research toward a rational sim-
pli�cation of the modeling of complex structures obtained joining elements
of di�erent dimensions and/or materials of highly contrasted properties. The
�rst modeling of junctions between elements of di�erent dimension is due to
[6], [9]. The thin inclusion of a third material between two other ones de-
noted Ω+ and Ω− when the rigidity properties of the inclusion are highly
contrasted with respect to those of the surrounding materials has also been
deeply investigated and one can refer without claim of completeness to [11,
3,4,8]. New motivations appear in [7], where the authors, in order to justify
some methods used in the FEM approximation, have studied the asymptotic
behavior of a shell-like inclusion of 1

εp -rigidity (p = 1 or p = 3) in a three-
dimensional domain using a Naghdi linear shell model [5], [10]. In a slightly
di�erent geometrical and mechanical context, Bessoud et al. [2] have studied
the behavior of a ε-thin three-dimensional layer of 1

ε -rigidity. More precisely,
they assume that the thin layer can be written as ω×]− ε, ε[ where ω is a pro-
jectable two-dimensional surface, and that all the materials are linearly elastic
anisotropic. Then the limit problem is a Ventcel-type transmission problem
between two three-dimensional linearly elastic anisotropic bodies Ω+ and Ω−

on their common boundary ω. When ω is planar and in the isotropic case, the
associated surface energy term can be interpreted as the membranal energy of
a Kirchho�-Love plate.
In the present paper, we study the situation where the shell-like thin layer
is obtained by the translation along the normal direction of a general two-
dimensional surface. Using a system of curvilinear coordinates we deduce the
formal limit problem for the two cases p = 1 and p = 3. When p = 1 we �nd in
section 5 that the thin layer behaves as a membrane shell and in section 6 when
p = 3 it behaves as a �exural shell. In this way we recover the limit problems
analogous to those of [7] where the authors a priori assume a shell-like energy
in the thin layer. The formal limit problems so obtained are justi�ed in section
8 by proving strong convergence results in a suitable functional framework us-
ing the Korn type results of section 7. Let us remark that in our asymptotic
approach thanks to our choice of the boundary conditions, there is no need to
take care of the space of inextensional or pure bending displacements of ω as in
[7] and in the usual asymptotic analysis of shell models by themselves (see e. g;
[5],[1],[12] and the references therein). Indeed the limit shell behaviour of ω is
taken into account only in unusual transmission conditions and so completely
controlled by the surrounding bodies. These unusual transmission conditions
imply that the global displacement of the assembly is continuous across the
interface ω. The di�erence between the case p = 1 and p = 3 appears in the
interface jump stress conditions.
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2 Geometrical preliminaries

2.1 Three-dimensional curvilinear coordinates

This section is aimed at laying down an appropriate ground for the rest of
the article. In the sequel, Greek indices range in the set {1, 2}, Latin indices
range in the set {1, 2, 3}, and the summation convention with respect to the
repeated indices is adopted.

Let us consider a three-dimensional Euclidian space identi�ed by R3 and
such that the three vectors ei form an orthonormal basis. Let Ω be a non-
empty open subset of R3. A mapping Θ ∈ C3(Ω;R3) is an immersion if the
three vectors ∂iΘ(x) are linearly independent for all x = (xi) ∈ Ω. The image
Θ(Ω) is always an open set immersed in R3. The three coordinates xi of a
point x ∈ Ω represent the curvilinear coordinates of the point Θ(x) ∈ Θ(Ω),
while the three coordinates Θi(x) of the point Θ(x) ∈ Θ(Ω) are the Cartesian
coordinates.

The three vectors gi(x) := ∂iΘ(x) form the covariant basis atΘ(x) and the
three vectors gj(x), de�ned by the nine independent relations gi(x) · gj(x) =
δji for all x ∈ Ω, (δji denotes the Kronecker symbol) form the contravariant
basis at Θ(x). The immersion Θ induces a Riemannian metric on Ω, de�ned
respectively by its covariant components gij(x) := gi(x)·gj(x), and contravari-
ant components gk`(x) := gk(x) · g`(x). The contravariant components of this
metric can be analogously de�ned by (gk`(x)) = (gij(x))

−1 for all x ∈ Ω.
This metric induces a Levi-Civita connection in the manifold Ω de�ned by

the Christo�el symbols of the second kind Γ p
ij := gp · ∂igj = Γ p

ji.
Let there be given a vector �eld de�ned over Θ(Ω). We can rewrite this

vector �eld as a linear combination v = vig
i of the vector �elds gi : Ω → R3,

where vi = v · gi are the covariant components of the vector �eld v. The
covariant derivatives vi‖j ∈ C0(Ω) of the covariant components vi ∈ C1(Ω) are
de�ned by vi‖j := ∂jvi − Γ p

ijvp. The covariant derivatives T ij‖k ∈ C0(Ω) of
the second-order tensor �eld with contravariant components T ij ∈ C1(Ω) are
de�ned by T ij‖k := ∂kT

ij + Γ i
`jT

`k + Γ j
`kT

`i.
With every displacement �eld v, we associate the linearized change of met-

ric tensor de�ned as follows:

eij(v) :=
1

2
(vi‖j + vj‖i).

2.2 Curvilinear coordinates on a surface

Let ω be a non-empty open subset in R2. The coordinates of x̃ ∈ ω are denoted
by xα. A mapping θ ∈ C3(ω;R3) is an immersion if the two vectors ∂αθ(x̃)
are linearly independent at each point x̃ = (xα) ∈ ω. The image S := θ(ω) is
a surface immersed in R3, equipped with xα curvilinear coordinates.

The two vectors aα(x̃) := ∂αθ(x̃) form the covariant basis of the tangent
plane to the surface S at θ(x̃), and the two vectors aβ(x̃) de�ned by the
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relations aα(x̃) ·aβ(x̃) = δβα, form the contravariant basis of the tangent plane
to the surface S at θ(x̃). The unit normal vector to S at θ(x̃) is de�ned by
a3(x̃) = a3(x̃) := a1(x̃)∧a2(x̃)

|a1(x̃)∧a2(x̃)| .
The covariant components of the �rst fundamental form of the surface

are de�ned by aαβ(x̃) := aα(x̃) · aβ(x̃), and its contravariant components are
de�ned by aαβ(x̃) := aα(x̃) · aβ(x̃).

The covariant components of the second fundamental form of the surface
are de�ned by bαβ(x̃) := ∂αaβ(x̃)·a3(x̃), and its mixed components are de�ned
by bτα(x̃) := aτβ(x̃)bαβ(x̃).

The Christo�el symbols on the surface S of the second kind are given by
Γ τ
αβ(x̃) := aτ (x̃) · ∂αaβ(x̃).
Any vector �eld on a surface can be written as a linear combination η =

ηia
i of the vector �eld ai : ω → R3, where the functions ηi = η · ai are the

covariant components of the vector �eld η. The covariant derivatives ηα|β ∈
C0(ω) of the covariant components ηα ∈ C1(ω) are de�ned by ηα|β := ∂βηα −
Γ τ
αβητ . The covariant derivatives Tαβ |τ ∈ C0(ω) of the second-order tensor �eld

with contravariant components Tαβ ∈ C1(ω) are de�ned by Tαβ |τ := ∂τT
αβ +

Γα
στT

βσ+Γ β
τσT

ασ. The covariant derivatives of the curvature tensor de�ned by
means of its mixed components are de�ned by bτβ |α := ∂αb

τ
β + Γ τ

ασb
σ
β − Γσ

αβb
τ
σ.

For more details about di�erential geometry of surfaces, see e. g. [5].
With every displacement �eld η, we associate the linearized change of met-

ric tensor �eld de�ned by

γαβ(η) :=
1

2
(∂βηα + ∂αηβ)− Γσ

αβησ − bαβη3

and the linearized change of curvature tensor �eld, de�ned by

ραβ(η) := ∂αβη3 − Γσ
αβ∂ση3 − bσαbσβη3 + bσα(∂βησ − Γ τ

βσητ )+

+bτβ(∂αητ − Γσ
ατησ) + (∂αb

τ
β + Γ τ

ασb
σ
β − Γσ

αβb
τ
σ)ητ

The symmetric tensor �elds (γαβ) and (ραβ) play a key role in the theory of
linearly elastic shells (see, e.g., P.G. Ciarlet [5]).

3 Position of the problem

Let Ω+ and Ω− be two disjoint open domains with smooth boundaries ∂Ω+

and ∂Ω−. Let ω := {∂Ω+ ∩ ∂Ω−}◦ be the interior of the common part of
the boundaries which is assumed to be a non empty domain in R2 having a
positive two-dimensional measure and let θ ∈ C2(ω;R3) be an immersion.

Let 0 < ε < 1 be an adimensional small real parameter. Let us consider
Ωm,ε := ω×] − ε, ε[ and S±,ε := ω × {±ε}. Let xε denote the generic point
in the set Ω

m,ε with xε
α = xα. We consider a shell-like domain with mid-

dle surface θ(ω) and thickness 2ε, whose reference con�guration is the image
Θm,ε(Ω

m,ε
) ⊂ R3 of the set Ωm,ε through the mapping given by

Θm,ε(xε) := θ(x̃) + xε
3a3(x̃), for all xε = (x̃, xε

3) ∈ Ω
m,ε

.
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Fig. 1 Initial and reference con�guration of the assembly

We denote by Ω+,ε (resp. Ω−,ε) the translation of Ω+ (resp Ω−) in the
direction e3 (resp.-e3 ) of the quantity ε and we set Ωε = Ω−,ε∪S−,ε∪Ωm,ε∪
S+,ε ∪Ω+,ε.

Moreover, we suppose that there exists an immersionΘε : Ω
ε → R3 de�ned

as follows:

Θε :=

{
Θ±,ε on Ω

±,ε

Θm,ε on Ω
m,ε , Θ±,ε(S±,ε) = Θm,ε(S±,ε),

where Θ±,ε : Ω
±,ε → R3 are immersions over Ω

±,ε de�ning the curvilinear
coordinates on Ω

±,ε. Let us stress that the physical domain of the assembly
is obtained by inserting in the direction a3 the shell within the two bodies,
see Fig. 1. The structure is clamped on Γ ε

0 and the complementary part of the
boundary is free. Obviously we can consider other type of boundary conditions.
The structure is also submitted to applied body forces fε

i so that the work of
the external loading is given by the linear form

Lε(vε) :=

∫

Ω±,ε

fε
i v

ε
i dx

ε.

We suppose that the materials are linearly elastic and isotropic with Lamé's
constants λ±,ε and µ±,ε for Ω±,ε, λm,ε and µm,ε for Ωm,ε. As usual we assume
that 3λ±,ε + 2µ±,ε > 0, µ±,ε > 0, 3λm,ε + 2µm,ε > 0, µm,ε > 0.

The physical variational problem in curvilinear coordinates de�ned over
the variable domain Ωε can be written as
{
Find uε ∈ V ε := {vε ∈ H1(Ωε;R3); vε

|Γ ε
0
= 0} such that

A−,ε(uε,vε) +A+,ε(uε,vε) +Am,ε(uε,vε) = Lε(vε) for all vε ∈ V ε.

(1)
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The bilinear forms A±,ε(·, ·) and Am,ε(·, ·) are de�ned by

A±,ε(uε,vε) :=

∫

Ω±,ε

Aijk`,ε
± eεk`(u

ε)eεij(v
ε)
√
g±,ε dxε,

Am,ε(uε,vε) :=

∫

Ωm,ε

Aijk`,ε
m eεk`(u

ε)eεij(v
ε)
√
gm,ε dxε.

Here, Aijk`,ε := λεgij,εgk`,ε + µε(gik,εgj`,ε + gi`,εgjk,ε) are the contravariant
components of the elasticity tensor and gε := det(gεij).

If we suppose that fε
i ∈ L2(Ω±,ε), then Lax-Milgram's lemma ensures

existence of a unique solution for problem (1).
In order to study the asymptotic behavior of the solution of problem (1)

when ε tends to zero, we rewrite the problem on a �xed domain Ω independent
of ε. By using the approach of [5], we consider the bijection πε : x ∈ Ω 7→ xε ∈
Ω

ε given by




πε(x1, x2, x3) = (x1, x2, x3 − (1− ε)), for all x ∈ Ω
+

tr,

πε(x1, x2, x3) = (x1, x2, εx3), for all x ∈ Ω
m
,

πε(x1, x2, x3) = (x1, x2, x3 + (1− ε)), for all x ∈ Ω
−
tr,

where Ω±
tr := {x ± e3, x ∈ Ω±}, Ωm := ω×] − 1, 1[ and S± := ω × {±1}.

In order to simplify the notation, we still denote by Ω± the set Ω±
tr, and set

Ω = Ω− ∪ S− ∪ Ωm ∪ S+ ∪ Ω+. Consequently, one has ∂ε
α = ∂α and ∂ε

3 =
1
ε∂3 in Ωm.

With the unknowns uε and the test functions vε appearing in formula-
tion (1), we associate respectively the scaled unknowns u and the scaled test
functions v transformed by πε by means of the following relations:

u(ε)(x) := uε(xε), for all xε = πε(x) ∈ Ω
ε
,

v(x) := vε(xε), for all xε = πε(x) ∈ Ω
ε
.

For ε su�ciently small, we associate with the functions Aijk`,ε
± , g±,ε, Γ p,ε

ij :

Ω
±,ε → R the functions Aijk`

± , g±, Γ p
ij : Ω

± → R de�ned by

Aijk`
± (x) := Aijk`,ε

± (xε), for all xε = πε(x) ∈ Ω
±,ε

,

g±(x) := g±,ε(xε), for all xε = πε(x) ∈ Ω
±,ε

,

Γ p
ij(x) := Γ p,ε

ij (xε), for all xε = πε(x) ∈ Ω
±,ε

,

and we associate with the functions Aijk`,ε
m , gm,ε, Γ p,ε

ij : Ω
m,ε → R the func-

tions Aijk`
m (ε), gm(ε), Γ p

ij(ε) : Ω
m → R de�ned by

Aijk`
m (ε)(x) := Aijk`,ε

m (xε), for all xε = πε(x) ∈ Ω
m,ε

,

gm(ε)(x) := gm,ε(xε), for all xε = πε(x) ∈ Ω
m,ε

,

Γ p
ij(ε)(x) := Γ p,ε

ij (xε), for all xε = πε(x) ∈ Ω
m,ε

.
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We assume that the rigidity of the shell-like layer has order of magnitude 1
εp

with p ≥ 1. From the previous assumptions it then follows that:




Aαβσ3
m (ε) = Aα333

m (ε) = 0

Aijk`
m (ε)

√
gm(ε) =

= 1
εpA

ijk`
m (0)

√
a+ 1

εp−1B
ijk`,1
m + 1

εp−2B
ijk`,2
m +O(ε2−p),

(2)

where a := det(aαβ),

Aαβστ
m (0) := λmaαβaστ + µm(aασaβτ + aατaβσ),

Aαβ33
m (0) := λmaαβ , Aα3σ3

m (0) := µmaασ, A3333
m (0) := λm + 2µm,

and the order symbol O(ε2−p) is meant with respect to the norm of C0(Ωm).

The covariant components of the linearized change of the metric tensor
eij(ε;v) ∈ L2(Ωm), transformed by πε and associated with the displacement
�eld v ∈ H1(Ωm;R3), are de�ned as follows:

eαβ(ε;v) :=
1

2
(∂βvα + ∂αvβ)− Γ p

αβ(ε)vp,

eα3(ε;v) :=
1

2
(
1

ε
∂3vα + ∂αv3)− Γσ

α3(ε)vσ,

e33(ε;v) :=
1

ε
∂3v3.

As in [5] one can prove that in Ωm the functions Γ p
ij(ε) satisfy :





Γσ
αβ(ε) = Γσ

αβ − εx3b
σ
β |α +O(ε2),

Γ 3
αβ(ε) = bαβ − εx3b

σ
αbσβ ,

Γσ
α3(ε) = −bσα − εx3b

τ
αb

σ
τ +O(ε2),

Γ 3
α3(ε) = Γ p

33(ε) = 0,

(3)

where the order symbols O(ε) and O(ε2) are meant with respect to the norm
of C0(Ωm).
For later use we de�ne γαβ(v) and ραβ(v) in Ωm with the same formulae
employed in section 2.2 for the surface ω:

γαβ(v) :=
1

2
(∂βvα + ∂αvβ)− Γ σ

αβvσ − bαβv3, (4)

,
ραβ(v) := ∂αβv3 − Γσ

αβ∂σv3 − bσαbσβv3 + bσα(∂βvσ − Γ τ
βσvτ )+

+bτβ(∂αvτ − Γσ
ατvσ) + (∂αb

τ
β + Γ τ

ασb
σ
β − Γσ

αβb
τ
σ)vτ .

(5)

For simplicity we assumed that the shell-like inclusion is free of charges, then it
follows that Lε(vε) = L(v). According to the previous assumptions, problem
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(1) can be reformulated on the �xed domain Ω independent of ε. We obtain
the following scaled problem:

{
Find u(ε) ∈ V :=

{
v ∈ H1(Ω;R3); v|Γ0

= 0
}

such that
A−(u(ε),v) +A+(u(ε),v) + εAm(u(ε),v) = L(v) for all v ∈ V,

(6)

where

A±(u(ε),v) :=
∫

Ω±
Aijk`

± ek`(u(ε))eij(v)
√
g± dx,

Am(u(ε),v) :=

∫

Ωm

Aijk`
m (ε)ek`(ε;u(ε))eij(ε;v)

√
gm(ε) dx.

In the sequel, only if necessary, we denote by v±, resp vm, the restriction of
the function v to Ω±, resp Ωm.

4 Asymptotic expansion

We can now perform an asymptotic analysis of the rescaled problem (6). We
distinguish the two cases when the rigidity of the shell-like layer has its order
of magnitude equal to 1

ε or 1
ε3 with respect to the rigidities of the surrounding

three-dimensional bodies.
Since the rescaled problem (6) has a polynomial structure with respect to

the small parameter ε, we can look for a formal development of the solution:

u(ε) = u0 + εu1 + ε2u2 + . . . , (7)

with uq ∈ V, q ∈ N.

The above formal asymptotic expansion of the scaled unknowns and the
asymptotic behavior of functions Γ p

ij(ε) induce the formal asymptotic expan-
sion for the scaled linearized strains in Ωm of the form:

eij(ε) =
1

ε
e−1
ij + e0ij + εe1ij + ε2e2ij + . . . ,

where




e−1
αβ := 0,

e−1
α3 :=

1

2
∂3u

0
α,

e−1
33 := ∂3u

0
3,





e0αβ :=
1

2
(∂βu

0
α + ∂αu

0
β)− Γσ

αβu
0
σ − bαβu

0
3,

e0α3 :=
1

2
(∂3u

1
α + ∂αu

0
3) + bσαu

0
σ,

e033 := ∂3u
1
3,

(8)





e1αβ :=
1

2
(∂βu

1
α + ∂αu

1
β)− Γσ

αβu
1
σ − bαβu

1
3 + x3(b

σ
β |αu0

σ + bσαbσβu
0
3),

e1α3 :=
1

2
(∂3u

2
α + ∂αu

1
3) + bσαu

1
σ + x3b

τ
αb

σ
τu

0
σ,

e133 := ∂3u
2
3.

(9)
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The functions eij(ε;v) likewise admit in Ωm a formal asymptotic expansion
of the form:

eij(ε;v) =
1

ε
e−1
ij (v) + e0ij(v) + εe1ij(v) + ε2e2ij(v) + . . . ,

where




e−1
αβ(v) := 0,

e−1
α3 (v) :=

1

2
∂3vα,

e−1
33 (v) := ∂3v3,





e0αβ(v) :=
1

2
(∂βvα + ∂αvβ)− Γσ

αβvσ − bαβv3,

e0α3(v) :=
1

2
∂αv3 + bσαvσ,

e033(v) := 0,

(10)





e1αβ(v) := x3b
σ
β |αvσ + x3b

σ
αbσβv3,

e1α3(v) := x3b
τ
αb

σ
τ vσ,

e133(v) := 0.
(11)

Hence, by substituting (2), (3), (7)-(11) in (6) and by identifying the terms
with identical power, we can characterize the formal limit problems for p = 1
and p = 3.

5 The limit problem for p = 1

The formulation of the limit problem when the rigidity of the shell is 1
ε is

stated in the following theorem:

Theorem 1 The leading term u0 of the asymptotic expansion (7) satis�es the
following variational problem:

{
Find u0 ∈ VM such that
A−(u0,v) +A+(u0,v) +Am

M (u0,v) = L(v) for all v ∈ VM ,
(12)

with

VM :=
{
v ∈ L2(Ω;R3); v± ∈ H1(Ω±;R3), vmα ∈ H1(Ωm),

L2(Ωm;R3) 3 ∂3v
m = 0,v±

|S± = vm
|S± , v|Γ0

= 0
}
,

and where

Am
M (u0,v) :=

∫

Ωm

aαβστe0στ (u
0)e0αβ(v)

√
a dx,

aαβστ :=
2λmµm

λm + 2µm
aαβaστ + 2µm(aασaβτ + aατaβσ),

are respectively the bilinear form associated with the membrane behavior of the
shell and the contravariant components of the elasticity tensor of the shell.
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Proof For convenience we split the proof in three parts numbered form (i) to
(iii).

(i) The variational problem corresponding to the order ε−2 in the problem
(6) is:

∫

Ωm

Aijk`
m (0)e−1

k` e
−1
ij (v)

√
a dx = 0 for all v ∈ V.

The matrix (aαβ) being positive de�nite this implies that ∂3u
0 = 0 in Ωm.

Thus the leading term u0 is independent of the transverse variable x3 in Ωm

and consequently e−1
ij = 0.

(ii) The relations e−1
ij = 0 (obtained in step (i)) lead to the following

variational problem associated with the order ε−1:
∫

Ωm

Aijk`
m (0)e0k`e

−1
ij (v)

√
a dx = 0 for all v ∈ V.

It turns out that

e0α3 = 0 and e033 = −Aαβ33(0)

A3333(0)
e0αβ in Ωm.

(iii) The variational problem associated with the order ε0 is:
∫

Ω+

Aijk`
+ ek`(u

0)eij(v)
√
g+ dx+

∫

Ω−
Aijk`

− ek`(u
0)eij(v)

√
g− dx+

+

∫

Ωm

{Aijk`
m (0)(e0k`e

0
ij(v) + e1k`e

−1
ij (v)) +Bijk`,1

m e0k`e
−1
ij (v)}√a dx = L(v),

for all v ∈ V . By choosing test function v such that vm is independent of x3,
then e−1

ij (v) = 0 in Ωm and the above variational problem reduces to:
∫

Ω+

Aijk`
+ ek`(u

0)eij(v)
√
g+ dx+

∫

Ω−
Aijk`

− ek`(u
0)eij(v)

√
g− dx

+

∫

Ωm

Aijk`
m (0)e0k`e

0
ij(v)

√
a dx = L(v) for all v ∈ VM .

(13)

From steps (i) and (ii), we can easily prove that
∫

Ωm

Aijk`
m (0)e0k`e

0
ij(v)

√
a dx =

∫

Ωm

aαβστe0στ (u
0)e0αβ(v)

√
a dx.

Hence (13) shows that u0 is the solution of the limit problem (12). ut

Remark 1. One can note that the space VM is isomorphic to V̂M :=
{
v ∈

H1(Ω̂;R3); v|ω ∈ H1(ω;R2)×H
1
2 (ω), v|Γ0

= 0
}
, where Ω̂ := Ω+ ∪ ω ∪Ω−.
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Since u0 and v are independent of x3, e0στ (u0) = γστ (u
0) and e0αβ(v) = γαβ(v).

Consequently, by integrating along the x3-coordinate, we can write

Am
M (u0,v) = 2

∫

ω

aαβστγστ (u
0)γαβ(v)

√
a dx̃.

We obtain in the simpli�ed model a membrane transmission condition at the
interface between the two three-dimensional bodies. This condition can be
interpreted as a curvilinear generalization of the Ventcel-type transmission
condition obtained in [2]. Indeed, one has

Elasticity problems in Ω± Transmission conditions in ω

{
−σij

±‖j = f i in Ω±,
u = 0 on Γ0,





[[σα3]] = nαβ |β on ω,
[[σ33]] = nαβbαβ on ω,
[[u]] = 0 on ω,

where σij
± := Aijk`

± ek`(u
±) and nαβ := aαβστγστ (u|ω) are respectively the

contravariant components of the stress tensor and of the membrane stress
tensor of the shell, [[σi3]] := σi3

+ −σi3
− represents the stress jump at the interface

ω between Ω+ and Ω−, [[u]] represents the displacement jump at ω between
Ω+ and Ω− .

6 The limit problem for p = 3

We state in Theorem 2 below the formulation of the limit problem when the
rigidity of the shell is 1

ε3 .

Theorem 2 The leading term u0 of the asymptotic expansion (7) satis�es the
following variational problem:

{
Find u0 ∈ VF such that
A−(u0,v) +A+(u0,v) +Am

F (u0,v) = L(v) for all v ∈ VF ,
(14)

where

VF :=
{
v ∈ H1(Ω;R3); vm3 ∈ H2(Ωm), γαβ(v

m) = 0, ∂3v
m = 0, v|Γ0

= 0
}
,

and
Am

F (u0,v) :=

∫

Ωm

x2
3 aαβστρστ (u

0)ραβ(v)
√
a dx

is the bilinear form associated with the �exural behavior of the shell.

Proof The proof is divided into four steps numbered form (i) to (iv) and fol-
lows [5], chap. 3.
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(i) The variational problems at order ε−4 and ε−3 are respectively analo-
gous to those of steps (i) and (ii) of Theorem 1. Hence, one has:

∂3u
0 = 0,

e0α3 = 0 and e033 = −Aαβ33(0)

A3333(0)
e0αβ

(15)

in Ωm. For v ∈ V such that e−1
ij (v) = 0, the variational problem at order ε−2

takes the following form:
∫

Ωm

aαβστe0στe
0
αβ(v)

√
a dx = 0.

Thus e0αβ = 0.

(ii) Since e0αβ = γαβ(u
0) = 0, from (152) it turns out that:

e033 = ∂3u
1
3 = 0 and e0α3 =

1

2
(∂3u

1
α + ∂αu

0
3) + bσαu

0
σ = 0.

Hence

u1
α(x) = u1

α(x̃)− x3(∂αu
0
3 + 2bταu

0
τ )(x̃) and u1

3(x) = u1
3(x̃) in Ωm.

From the assumption on the asymptotic expansion (7) it follows that u0
3 ∈

H2(Ωm). Since e0ij = 0, the variational problem at order ε−2 reduces to
∫

Ωm

Aijk`
m (0)e1k`e

−1
ij (v)

√
a dx = 0 for all v ∈ V.

By similar computations as in Theorem 1, we deduce that

e1α3 = 0 and e133 = −Aαβ33(0)

A3333(0)
e1αβ . (16)

Using (9) one can express e1αβ in terms of u1 and u0. An easy computation
gives e1αβ = e0αβ(u

1)− x3ραβ(u
0).

(iii) The variational problem at order ε−1 takes the form (we recall that
e−1
ij = e0ij = 0):
∫

Ωm

{Aijk`
m (0)(e1k`e

0
ij(w) + e2k`e

−1
ij (w))

√
a+Bijk`,1

m e1k`e
−1
ij (w)} dx = 0 (17)

for all w ∈ V .
Let choose again w such that e−1

ij (w) = 0. Then from (16),
∫

Ωm

Aijk`
m (0)e1k`e

0
ij(w)

√
a dx =

∫

Ωm

aαβστe1στe
0
αβ(w)

√
a dx =

=

∫

Ωm

aαβστe0στ (u
1)e0αβ(w)

√
a dx = 0.
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Therefore e0στ (u
1) = 0 and so e1στ = −x3ρστ (u

0).

(iv) The problem at order ε0 takes the following form:
∫

Ω+

Aijk`
+ ek`(u

0)eij(v)
√
g+ dx+

∫

Ω−
Aijk`

− ek`(u
0)eij(v)

√
g− dx+

+

∫

Ωm

Aijk`
m (0)(e1k`e

1
ij(v) + e2k`e

0
ij(v) + e3k`e

−1
ij (v))

√
a dx+

+

∫

Ωm

Bijk`,1
m (e1k`e

0
ij(v) + e2k`e

−1
ij (v)) dx

+

∫

Ωm

Bijk`,2
m e1k`e

−1
ij (v) dx = L(v) for all v ∈ V.

By subtracting equation (17) one obtains:
∫

Ω+

Aijk`
+ ek`(u

0)eij(v)
√
g+ dx+

∫

Ω−
Aijk`

− ek`(u
0)eij(v)

√
g− dx+

+

∫

Ωm

Aijk`
m (0){(e1k`(e1ij(v)− e0ij(w)) + e2k`(e

0
ij(v)− e−1

ij (w))

+e3k`e
−1
ij (v))

√
a} dx+

+

∫

Ωm

Bijk`,1
m {(e1k`(e0ij(v)− e−1

ij (w)) + e2k`e
−1
ij (v))} dx

+

∫

Ωm

Bijk`,2
m e1k`e

−1
ij (v) dx = L(v) for all v,w ∈ V.

Given an arbitrary test function v ∈ VF , let choose w ∈ V such that

wα = x3(2b
τ
αvτ + ∂αv3) and w3 = 0 in Ωm.

Since e−1
ij (v) = 0 and e1αβ(v)− e0αβ(w) = −x3ραβ(v), e0αβ(v)− e−1

αβ(w) = 0 in
Ωm, it follows the desired result. ut
Remark 1.Note that the space VF is isomorphic to V̂F :=

{
v ∈ H1(Ω̂;R3); v|ω ∈

H1(ω;R2) ×H2(ω), v|Γ0
= 0, γαβ(v|ω) = 0 in ω

}
. Since u0 and v are inde-

pendent of x3, ρστ (u0) and ρστ (v) are also independent of x3. Consequently,
by integrating along the x3-coordinate, we get

Am
F (u0,v) =

2

3

∫

ω

aαβστρστ (u
0)ραβ(v)

√
a dx̃.

The simpli�ed model is characterized by a �exural transmission condition at
the interface between the two three-dimensional bodies as follows:

Elasticity problems in Ω± Transmission conditions on ω

{
−σij

±‖j = f i in Ω±,
u = 0 on Γ0,





[[σα3]] = (bασm
σβ)|β + bασ(m

σβ |β) on ω,
[[σ33]] = bσαbσβm

αβ −mαβ |αβ on ω,
[[u]] = 0 on ω,

where mαβ := 1
3a

αβστρστ (v|ω) are the contravariant components of the mo-
ment tensor of the shell.
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7 Two Korn's type results

In the whole paper, we denote by ‖ · ‖s,Ω the norm in the Sobolev space
Hs(Ω,Rd) for every d ≥ 1 and ‖ · ‖0,Ω will stand for the norm in L2(Ω,Rd).
Obviously, the same holds in Ω±, Ωm, ω.
Let us recall that V =

{
v ∈ H1(Ω;R3); v|Γ0

= 0
}
. In order to study

convergence of the solutions of problems (6) for p ∈ {1, 3}, we establish the
two following Korn type inequalities in curvilinear coordinates.

Proposition 1 There exists a constant C > 0 such that for ε small enough
and for all v ∈ V :

‖v‖1,Ω ≤ C

{
‖eij(v)‖20,Ω+ + ‖eij(v)‖20,Ω− +

1

ε2
‖eij(ε;v)‖20,Ωm

}1/2

.

Proof Assume that the announced inequality is false. Then there exist εk → 0
and (vk)∞k=1 ∈ V such that

‖vk‖1,Ω = 1 for all k,
eij(v

k) → 0 in L2(Ω±),
1
εk
eij(εk;v

k) → 0 in L2(Ωm).

Therefore there exist v ∈ V and a subsequence (not relabeled) such that

vk ⇀ v in H1(Ω;R3),

and thus vk → v in L2(Ω;R3). Moreover, from the convergence eij(v
k) → 0

in L2(Ω+) we deduce that vk → v = 0 in H1(Ω+;R3). Besides, one has
1
ε2k
∂3v

k
3 = 1

εk
e33(εk;v

k) → 0 in L2(Ωm),

∂3v
k
α = εk

(
2eα3(εk;v

k)− ∂αv
k
3 + 2Γσ

α3(εk)v
k
σ

) → 0 in L2(Ωm).

Thus, ∂3v = 0 in Ωm. Then, from the continuity of the trace on S+, we
deduce that v = 0 in Ωm. Finally the convergence eij(v

k) → 0 in L2(Ω−)
and the continuity of the trace on S− imply that v = 0 in Ω−. Hence we have
that vk → 0 = v in H1(Ω±;R3). In order to conclude one has to prove that
vk → 0 = v inH1(Ωm;R3). We remark at �rst that eij(εk;vk) → 0 in L2(Ωm)
implies that ∂1vk1 , ∂2vk2 and ∂1v

k
2 + ∂2v

k
1 tend to zero strongly in L2(Ωm). As

in the classical proof of Korn's inequality, one deduces that ∂1v
k
2 and ∂2v

k
1

tend to zero strongly in L2(Ωm). To prove that ∂αvk3 tends to zero strongly in
L2(Ωm) it is enough to prove that ∂αβv

k
3 tends to zero in H−1(Ωm). Let us

remark that

∂αβv
k
3 = ∂βeα3(εk;v

k) + ∂αeβ3(εk;v
k)− 1

εk
∂3eαβ(εk;v

k)− 1

εk
∂3(Γ

p
αβ(εk)v

k
p)

+ Γ σ
α3(εk)∂βv

k
σ + Γσ

β3(εk)∂αv
k
σ + (∂βΓ

σ
α3(εk) + ∂αΓ

σ
β3(εk))v

k
α. (18)

From the previous considerations, one immediately deduces that all the terms
in the right-hand side go to zero in H−1(Ωm;R3) except 1

εk
∂3(Γ

p
αβ(εk)v

k
p). By
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using (3) and the previous results, one sees that it is enough to prove that
1
εk
∂3v

k tends to zero in H−1(Ωm;R3). This in turn follows from the de�nition
of eα3(εk;vk) and the convergence of vk3 to zero in L2(Ωm). Hence the sequence
(vk)∞k=1 converges strongly to 0 in H1(Ω;R3) which is contradictory with the
assumption ‖vk‖1,Ω = 1 for all k. ut
Let us de�ne the space V:

V :=
{
v ∈ L2(Ω;R3); v± ∈ H1(Ω±;R3), vmα ∈ H1(Ωm),

∂3v
m ∈ L2(Ωm;R3), v±

|S± = vm
|S± , v|Γ0

= 0
}
,

equipped with the norm ‖ · ‖V de�ned by

‖v‖V := {‖eij(v)‖20,Ω+ + ‖eij(v)‖20,Ω− + ‖v‖20,Ω +

+ ‖∂αvβ‖20,Ωm‖+ |∂3v‖20,Ωm}1/2.
We can easily prove that V is complete and that VM ⊂ V is a closed sub-

space; therefore the uniqueness of the solution for problem (12) is guaranteed.
Let us also remark that V ⊂ V .
Proposition 2 There exists a constant C > 0 such that for ε small enough,

‖v‖V ≤ C
{
‖eij(v)‖20,Ω+ + ‖eij(v)‖20,Ω− + ‖eij(ε;v)‖20,Ωm

}1/2

for all v ∈ V.

Proof Assume that the announced inequality is false. Then there exists εk → 0
and (vk)∞k=1 ∈ V such that

‖vk‖V = 1 for all k,
eij(v

k) → 0 in L2(Ω±),
eij(εk;v

k) → 0 in L2(Ωm).

Up to extraction of a subsequence (not relabeled), there exists v ∈ V such
that

vk ⇀ v in H1(Ω±;R3),
vk3 ⇀ v3 in L2(Ωm),
vkα ⇀ vα in H1(Ωm),
∂3v

k ⇀ ∂3v in L2(Ωm;R3).

The convergence eij(v
k) → 0 in L2(Ω+) implies that v = 0 in Ω+ and vk →

v = 0 in H1(Ω+;R3). Besides, one has
1

εk
∂3v

k
3 = e33(εk;v

k) → 0 in L2(Ωm),

∂3v
k
α + εk∂αv

k
3 = εk

(
2eα3(εk;v

k) + 2Γσ
α3(εk)v

k
σ

) → 0 in L2(Ωm). (19)

Hence for all ϕ ∈ D(Ωm), one has:
∫

Ωm

∂3vαϕ dx = − lim
k→∞

∫

Ωm

(vkα∂3ϕ+ εkv
k
3∂αϕ) dx

= lim
k→∞

∫

Ωm

(∂3v
k
α + εk∂αv

k
3 )ϕ dx = 0.
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Thus, ∂3v = 0 in Ωm, and by the continuity of the trace on S+, we deduce
that v = 0 in Ωm. Finally the convergence eij(v

k) → 0 in L2(Ω−) and the
continuity of the trace on S− imply that v = 0 in Ω−. Hence we have that
vk → 0 = v in H1(Ω±;R3). Moreover, since

∫

Ωm

|vk3 |2 dx ≤ C(

∫

S+

|vk3 (x̃, 1)|2 dx̃+

∫

Ωm

|∂3vk3 |2 dx),

it follows that vk3 → 0 strongly in L2(Ωm). Let us now prove that ∂3v
k
α → 0

in L2(Ωm). From (19), it is enough to establish that εk∂αvk3 tends to zero in
L2(Ωm). This can be deduced from (18) and the previous results. In order
to conclude one has to prove that vkα → 0 in H1(Ωm). For this we apply
the classical Korn inequality to (zk)∞k=1 where zk = (zki ) := (vk1 , v

k
2 , 0). We

set êij(z) := 1
2 (∂izj + ∂jzi). Since êαβ(z

k) = eαβ(εk;v
k) + Γ p

αβ(εk)v
k
p and

êα3(z
k) = 1

2∂3v
k
α, it follows that êij(z

k) → 0 in L2(Ωm) and so zk → 0 in
H1(Ωm). Hence the sequence (vk)∞k=1 converges strongly to 0 in V which is
contradictory with the hypothesis ‖vk‖V = 1 for all k. ut

8 Convergence results

8.1 Strong convergence for p = 1

For every function v de�ned almost everywhere over Ωm = ω×] − 1, 1[, we
de�ne the average

v(x̃) :=
1

2

∫ 1

−1

v(x̃, x3)dx3 for all x̃ ∈ ω.

We recall for later use that the weak convergence in L2(Ωm;R3) implies the
weak convergence of the average in L2(ω;R3)

Let u(ε) ∈ V ⊂ V be the solution of (6) for p = 1. Thanks to the assump-
tions on the loading, the coercivity of the bilinear forms A± and Am , the
classical Korn inequality and Proposition 2, one obtains the following a priori
estimates:

‖u(ε)‖V ≤ C ,
‖eij(ε;u(ε))‖0,Ωm ≤ C.

(20)

Theorem 3 The sequence (u(ε))ε>0 converges strongly in V to u0 ∈ VM , the
unique solution of problem (12).

Proof For convenience, the proof is divided into seven parts, numbered from
(i) to (vii).

(i) From (20) we deduce that there exist a subsequence (not relabeled),
u ∈ V and eij ∈ L2(Ωm) such that

u(ε) ⇀ u in V,
eij(ε;u(ε)) ⇀ eij in L2(Ωm).

(21)
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Let us explicitly remark that u(ε) ⇀ u in V means that:

u(ε) ⇀ u in H1(Ω±;R3),
u3(ε) ⇀ u3 in L2(Ωm),
uα(ε) ⇀ uα in H1(Ωm),
∂3u(ε) ⇀ ∂3u in L2(Ωm;R3).

(ii) We prove that ∂3u = 0 in Ωm. From (20) and (21), one has

∂3u3(ε) = εe33(ε;u(ε)) → 0 = ∂3u3 in L2(Ωm),
∂3uα(ε) + ε∂αu3(ε) = 2ε{eα3(ε;u(ε)) + Γσ

α3(ε)uσ(ε)} → 0 in L2(Ωm).

Thus, with the same arguments as in the proof of Proposition 2, we obtain
∂3uα = 0 in L2(Ωm) and u ∈ VM .

(iii) The limits eαβ satisfy the relation eαβ = γαβ(u). Indeed using the
de�nition of the average of eαβ(ε;u(ε)), of γαβ(u(ε)) and of Γσ

αβ(ε), we deduce
that

‖eαβ(ε;u(ε))− γαβ(u(ε))‖0,ω ≤ Cε‖u(ε)‖0,Ωm

which tends to zero as ε → 0. On the other hand, by de�nition of V, γαβ(u(ε)) ⇀
γαβ(u) in L2(Ωm) which implies that γαβ(u(ε)) ⇀ γαβ(u) = γαβ(u) in L2(ω)
and thus eαβ = γαβ(u) in L2(ω).

(iv) The limits eαβ satisfy ∂3eαβ = 0. For this let us now remark that

∂3eαβ(ε;u(ε)) =
1

2
(∂β∂3uα(ε) + ∂α∂3uβ(ε))− ∂3(Γ

p
αβ(ε)up(ε)). (22)

Thanks to (ii), (21) and (3), the right-hand side converges to zero weakly in
H−1(Ωm) as ε → 0. The continuity of the operator ∂3 : L2(Ωm) → H−1(Ω)
implies that ∂3eαβ = 0 and so

eαβ = γαβ(u) in L2(Ωm). (23)

From (8 ) and (4) we �nally obtain eαβ = e0αβ(u).

(v) By multiplying problem (6) by ε and by letting ε → 0, we get

eα3 = 0 and e33 = −Aαβ33(0)

A3333(0)
eαβ . (24)

By choosing in (6) test functions v independent of x3 in Ωm and by applying
the limit as ε → 0, we obtain:

A+(u,v)+A−(u,v)+
∫

Ωm

(
Aαβστ (0)eαβe

0
στ (v)+Aστ33(0)e33e

0
στ (v)

)
dx = L(v).

From (23) and (24), we infer that

A+(u,v) +A−(u,v) +
∫

Ωm

aαβστe0αβ(u)e
0
στ (v)

√
a dx = L(v).
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Hence, by virtue of the uniqueness of the solution, we deduce that u = u0.

(vi) Let us prove the strong convergence of eij(ε;u(ε)) to eij in L2(Ωm).
For this we remark that

∫

Ω+

Aijk`
+ (ek`(u(ε))− ek`)(eij(u(ε))− eij)

√
g+ dx+

+

∫

Ω−
Aijk`

− (ek`(u(ε))− ek`)(eij(u(ε))− eij)
√
g− dx+

+

∫

Ωm

Aijk`
m (ek`(ε;u(ε))− ek`)(eij(ε;u(ε))− eij)

√
gm dx

tends to zero. From the coercivity, we obtain the claimed strong convergence.
Moreover, from the classical Korn inequality, we deduce the strong conver-
gence of u±(ε) to u0,± in H1(Ω±;R3).

(vii) In order to conclude the proof of the strong convergence of u(ε) to u0

in V, we have only to prove that uα(ε) → u0
α in H1(Ωm). For this let us apply

the classical Korn inequality to û(ε) = (ûi(ε)) := (u1(ε), u2(ε), 0) and û0 =
(û0

i ) := (u0
1, u

0
2, 0). We set êij(z) :=

1
2 (∂izj + ∂jzi) and we remark that from

(vi) it follows easily : êαβ(û(ε)) → eαβ(u
0) in L2(Ωm). Hence, one has only to

prove that êα3(û(ε)) → êα3(û
0) = 1

2∂3u
0
α in L2(Ωm). From (i) and (ii) we have

that uα(ε) → u0
α in L2(Ωm) and ∂3u

0
α = 0. Thus êα3(û(ε)) =

1
2∂3uα(ε) → 0

in H−1(Ωm). Therefore we need only to prove that also ∂β3uα(ε) → 0 in
H−1(Ωm). One has

∂β3uα(ε) = ∂3(êαβ(û(ε)) + ∂β(εeα3(ε;u(ε)) + εΓσ
α3(ε)uσ(ε))+

−∂α(εeβ3(ε;u(ε)) + εΓ σ
β3(ε)uσ(ε))

−→ ∂3(eαβ(u
0)) in H−1(Ωm)

From (iv) it follows that ∂3(eαβ(u
0)) = 0 and hence the announced strong

convergence holds. ut

8.2 Strong convergence for p = 3

Let u(ε) ∈ V be the solution of (6) for p = 3. Thanks to the assumptions
on the loading, the coercivity of the bilinear forms and Proposition 1 we can
write the following a priori estimates:

‖u(ε)‖1,Ω ≤ C

1
ε2 ‖eij(ε;u(ε)‖20,Ωm ≤ C.

(25)

Theorem 4 The sequence (u(ε))ε>0 converges strongly in H1(Ω;R3) to u0 ∈
VF , the unique solution of problem (14).



19

Proof For the sake of clarity, the proof is divided into �ve steps numbered
from (i) to (v).

(i) From the a priori bound (251) it follows that there exist u ∈ V and a
subsequence not relabeled such that u(ε) ⇀ u in H1(Ω;R3). Estimate (252)
implies that 1

ε∂3u3(ε) → 0 in L2(Ωm) and that eα3(ε;u(ε)) → 0 in L2(Ωm).
Therefore

1

ε
∂3uα(ε) → −∂αu3 − 2bσαuσ in L2(Ωm),

and ∂3u = 0 in Ωm. From estimate (252) we get that eαβ(ε;u(ε)) → 0 =
γαβ(u) in L2(Ωm). Thus u ∈ {

v ∈ H1(Ω,R3) : ∂3v = 0, γαβ(v) = 0 inΩm, v|Γ0
=

0
}
. At last, estimate (252) yields the existence of zij ∈ L2(Ωm) such that

1
εeij(ε;u(ε)) ⇀ zij in L2(Ωm).

(ii) In order to prove that u3 ∈ H2(Ωm), let us de�ne

u1
α(ε)(x̃) :=

1

ε

∫ 1

−1

x3uα(ε)dx3 =
1

2ε

∫ 1

−1

(1− x2
3)∂3uα(ε)dx3.

Then, using (i) it follows that

u1
α(ε) →

1

2

∫ 1

−1

(x2
3 − 1)(∂αu3 + 2bσαuσ)dx3 =

= −2

3
(∂αu3 + 2bσαuσ) in L2(ω).

Actually, this convergence holds weakly in H1(ω). Indeed, one has

1

2
(∂αu

1
β(ε) + ∂βu

1
α(ε)) =

1

2ε

∫ 1

−1

x3(∂αuβ(ε) + ∂βuα(ε))dx3 =

=

∫ 1

−1

x3
1

ε
eαβ(ε;u(ε))dx3 +

1

2ε

∫ 1

−1

(1− x2
3)(Γ

σ
αβ∂3uσ(ε) + bαβ∂3u3(ε))dx3+

−
∫ 1

−1

x2
3b

σ
αbσβu3(ε)dx3 +

1

ε

∫ 1

−1

x3(Γ
σ
αβ(ε)− Γ σ

αβ)uσ(ε)dx3.

The �rst term in the right-hand side converges weakly to
∫ 1

−1
x3zαβdx3 in

L2(ω) and the second term tends to − 2
3Γ

σ
αβ(∂σu3 +2bτσuτ ) in L2(ω). The last

terms converge evidently in L2(ω). By the classical Korn inequality it follows
that the sequence (u1

α(ε))ε>0 is bounded in H1(ω), hence − 2
3 (∂αu3+2bσαuσ) ∈

H1(ω) and so ∂αu3 ∈ H1(ω). Thus u3 ∈ H2(ω) and since ∂3u3 = 0, one has
u3 ∈ H2(Ωm) so that u ∈ VF .

(iii) By multiplying (6) by ε2 and by letting ε → 0, we deduce that

z33 = −Aαβ33(0)

A3333(0)
zαβ and zα3 = 0.
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Afterwards, by multiplying (6) by ε, by letting ε → 0 and by choosing test
functions such that ∂3v3 = 0, we obtain:

lim
ε→0

∫

Ωm

1

ε
Aα3σ3(0)eα3(ε;u(ε))eσ3(ε;v) dx = −

∫

Ωm

aαβστzαβe
0
στ (v) dx.

(26)
Let us now remark that

∂3eαβ(ε;u(ε)) = ε{∂αeβ3(ε;u(ε)) + ∂βeα3(ε;u(ε))− ∂αβu3(ε)+

+∂β(Γ
σ
α3(ε)uσ(ε)) + ∂α(Γ

σ
β3(ε)uσ(ε))} − ∂3(Γ

p
αβ(ε)up(ε))

(27)

From (27) and recalling that bτβ |α = bτα|β it follows that in H−1(Ωm) one has

∂3zαβ = lim
ε→0

1

ε
∂3eαβ(ε;u(ε)) = −ραβ(u).

However, since u3 ∈ H2(Ωm) the equality ραβ(u) = −∂3zαβ holds in L2(Ωm).
Given any η ∈ H1(ω,R2)×H2(ω) such that γαβ(η) = 0 let v ∈ H1(Ωm,R3)
de�ned by vα = ηα − x3θα and v3 = η3, where θα := ∂αη3 + 2bσαησ and θ =
(θi) := (θ1, θ2, 0). Since then eσ3(ε;v) =

1
2 (− 1

εθα+ ∂αη3)−Γσ
α3(ε)(ησ −x3θσ),

zα3 = 0 and e0στ (v) = −x3e
0
στ (θ), we obtain from (26)

lim
ε→0

1

ε2

∫

Ωm

Aα3σ3(0)eα3(ε,u(ε))
1

2
θσ dx =

=

∫

Ωm

aαβστzαβe
0
στ (v) dx = −

∫

Ωm

aαβστzαβx3e
0
στ (θ) dx

= −1

2

∫

Ωm

aαβστ (1− x2
3)∂3zαβe

0
στ (θ) dx

=
1

2

∫

Ωm

(1− x2
3)a

αβστραβ(u)e
0
στ (θ) dx.

(28)

(iv) When v ∈ VF one has




eαβ(ε;v) = εx3(b
σ
β |αvσ + bσαbσβv3) +O(ε2),

eα3(ε;v) =
1

2
∂αv3 + bσαvσ +O(ε),

e33(ε;v) = 0.

Hence if we choose in (6) v ∈ VF , by passing to the limit we get:

A+(u,v)+A−(u,v) +
∫

Ωm

aαβστzαβx3

(
bµτ |σvµ + bµσbµτv3

)
dx+

+ lim
ε→0

1

ε2

∫

Ωm

Aα3σ3(0)eσ3(ε;u(ε))
(1
2
∂αv3 + bταvτ

)
dx = L(v).

Let ξα := ∂αv3+2bταvτ and ξ = (ξi) := (ξ1, ξ2, 0). Then, by using (28) and the
relation e0στ (ξ)− bµτ |σvµ − bµσbµτv3 = ρστ (v), we obtain that

A+(u,v) +A−(u,v) +
2

3

∫

ω

aαβστραβ(u)ρστ (v) dx̃ = L(v),
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so that u = u0, the one and only one solution of problem (14).

(v) It remains to prove the strong convergence. Let (φη)η>0 ⊂ V be de�ned
as follows:

{
φη
α(x) = x2

3(b
σ
α∂σu

0
3(x̃) + bσαb

τ
σu

0
τ (x̃)) for all x ∈ Ωm,

φη
3(x) =

x2
3

2 wη(x̃) for all x ∈ Ωm,

where (wη)η>0 is a sequence in D(ω) which satis�es in L2(ω)

wη → Aαβ33(0)

A3333(0)
ραβ(u

0).

Let ψ ∈ V be such that
{
ψα(x) = −x3(∂αu

0
3(x̃) + 2bταu

0
τ (x̃)) for all x ∈ Ωm,

ψ3(x) = 0 for all x ∈ Ωm.

Then u(ε)− u0 − εψ − ε2φη ∈ V and

eαβ(ε;u
0 − εψ − ε2φη) = −εx3ραβ(u

0) +O(ε2)
eαβ(ε;u

0 − εψ − ε2φη) = O(ε2)
eαβ(ε;u

0 − εψ − ε2φη) = εx3w
η

where the order symbol O(ε2) is meant with respect to the norm of L2(Ωm).
Setting A(·, ·) := A+(·, ·) + A−(·, ·) + εAm(·, ·), by virtue of the coercivity we
obtain :

A(u(ε)−u0−εψ−ε2φη,u(ε)−u0−εψ−ε2φη) ≥ C‖u(ε)−u0−εψ−ε2φη‖2V .

By letting ε → 0 and by using a standard diagonalization argument, one
has

lim
η→0

lim
ε→0

A(u(ε)− u0 − εψ − ε2φη,u(ε)− u0 − εψ − ε2φη) =

= L(u0)−A+(u0,u0)−A−(u0,u0)−
∫

Ωm

x2
3a

αβστραβ(u
0)ρστ (u

0) dx = 0,

which completes the proof. ut
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