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Asymptotic analysis of shell-like inclusions with high rigidity

Introduction

The modeling of complex structures obtained assembling simpler elements with very dierent geometric and/or material characteristics is a source of a variety of problems of practical importance. The successful application of the asymptotic methods to obtain a mathematical justication of the most used models of plates and shells has stimulated the research toward a rational simplication of the modeling of complex structures obtained joining elements of dierent dimensions and/or materials of highly contrasted properties. The rst modeling of junctions between elements of dierent dimension is due to [START_REF] Ciarlet | Junctions between three-dimensional and twodimensional linearly elastic structures[END_REF], [START_REF] Dret | Problemes Variationnels dans les Multi-Domaines[END_REF]. The thin inclusion of a third material between two other ones denoted Ω + and Ω -when the rigidity properties of the inclusion are highly contrasted with respect to those of the surrounding materials has also been deeply investigated and one can refer without claim of completeness to [START_REF] Pham Huy | Phénomène de transmission à travers des couches minces de conductivité élevée[END_REF][START_REF] Brezis | Reinforcement problems for elliptic equations and variational inequalities[END_REF][START_REF] Caillerie | The eect of a thin inclusion of high rigidity in an elastic body[END_REF][START_REF] Geymonat | Mathematical analysis of a bounded joint with a soft thin adhesive[END_REF]. New motivations appear in [START_REF] Chapelle | Modeling of the inclusion of a reinforcing sheet within a 3D medium[END_REF], where the authors, in order to justify some methods used in the FEM approximation, have studied the asymptotic behavior of a shell-like inclusion of 1 ε p -rigidity (p = 1 or p = 3) in a threedimensional domain using a Naghdi linear shell model [START_REF] Ciarlet | Mathematical Elasticity, vol. III: Theory of shells, Studies in mathematics and its applications[END_REF], [START_REF] Naghdi | Foundations of elastic shell theory[END_REF]. In a slightly dierent geometrical and mechanical context, Bessoud et al. [START_REF] Bessoud | Multi-materials with strong interface: variational modelings[END_REF] have studied the behavior of a ε-thin three-dimensional layer of 1 ε -rigidity. More precisely, they assume that the thin layer can be written as ω×] -ε, ε[ where ω is a projectable two-dimensional surface, and that all the materials are linearly elastic anisotropic. Then the limit problem is a Ventcel-type transmission problem between two three-dimensional linearly elastic anisotropic bodies Ω + and Ω - on their common boundary ω. When ω is planar and in the isotropic case, the associated surface energy term can be interpreted as the membranal energy of a Kirchho-Love plate. In the present paper, we study the situation where the shell-like thin layer is obtained by the translation along the normal direction of a general twodimensional surface. Using a system of curvilinear coordinates we deduce the formal limit problem for the two cases p = 1 and p = 3. When p = 1 we nd in section 5 that the thin layer behaves as a membrane shell and in section 6 when p = 3 it behaves as a exural shell. In this way we recover the limit problems analogous to those of [START_REF] Chapelle | Modeling of the inclusion of a reinforcing sheet within a 3D medium[END_REF] where the authors a priori assume a shell-like energy in the thin layer. The formal limit problems so obtained are justied in section 8 by proving strong convergence results in a suitable functional framework using the Korn type results of section 7. Let us remark that in our asymptotic approach thanks to our choice of the boundary conditions, there is no need to take care of the space of inextensional or pure bending displacements of ω as in [START_REF] Chapelle | Modeling of the inclusion of a reinforcing sheet within a 3D medium[END_REF] and in the usual asymptotic analysis of shell models by themselves (see e. g; [START_REF] Ciarlet | Mathematical Elasticity, vol. III: Theory of shells, Studies in mathematics and its applications[END_REF], [START_REF] Bathe | The nite element analysis of shells-fundamentals[END_REF], [START_REF] Sanchez-Hubert | Coques Elastiques Minces. Propriétés Asymptotiques[END_REF] and the references therein). Indeed the limit shell behaviour of ω is taken into account only in unusual transmission conditions and so completely controlled by the surrounding bodies. These unusual transmission conditions imply that the global displacement of the assembly is continuous across the interface ω. The dierence between the case p = 1 and p = 3 appears in the interface jump stress conditions.

2 Geometrical preliminaries 2.1 Three-dimensional curvilinear coordinates This section is aimed at laying down an appropriate ground for the rest of the article. In the sequel, Greek indices range in the set {1, 2}, Latin indices range in the set {1, 2, 3}, and the summation convention with respect to the repeated indices is adopted.

Let us consider a three-dimensional Euclidian space identied by R 3 and such that the three vectors e i form an orthonormal basis. Let Ω be a nonempty open subset of R 3 . A mapping Θ ∈ C 3 (Ω; R 3 ) is an immersion if the three vectors ∂ i Θ(x) are linearly independent for all x = (x i ) ∈ Ω. The image Θ(Ω) is always an open set immersed in R 3 . The three coordinates x i of a point x ∈ Ω represent the curvilinear coordinates of the point Θ(x) ∈ Θ(Ω), while the three coordinates Θ i (x) of the point Θ(x) ∈ Θ(Ω) are the Cartesian coordinates.

The three vectors g i (x) := ∂ i Θ(x) form the covariant basis at Θ(x) and the three vectors g j (x), dened by the nine independent relations g i (x) • g j (x) = δ j i for all x ∈ Ω, (δ j i denotes the Kronecker symbol) form the contravariant basis at Θ(x). The immersion Θ induces a Riemannian metric on Ω, dened respectively by its covariant components g ij (x) := g i (x)•g j (x), and contravariant components g k (x) := g k (x) • g (x). The contravariant components of this metric can be analogously dened by

(g k (x)) = (g ij (x)) -1 for all x ∈ Ω.
This metric induces a Levi-Civita connection in the manifold Ω dened by the Christoel symbols of the second kind

Γ p ij := g p • ∂ i g j = Γ p ji .
Let there be given a vector eld dened over Θ(Ω). We can rewrite this vector eld as a linear combination v = v i g i of the vector elds

g i : Ω → R 3 , where v i = v • g i are the covariant components of the vector eld v. The covariant derivatives v i j ∈ C 0 (Ω) of the covariant components v i ∈ C 1 (Ω) are dened by v i j := ∂ j v i -Γ p ij v p .
The covariant derivatives T ij k ∈ C 0 (Ω) of the second-order tensor eld with contravariant components

T ij ∈ C 1 (Ω) are dened by T ij k := ∂ k T ij + Γ i j T k + Γ j k T i .
With every displacement eld v, we associate the linearized change of metric tensor dened as follows:

e ij (v) := 1 2 (v i j + v j i ).

Curvilinear coordinates on a surface

Let ω be a non-empty open subset in R 2 . The coordinates of x ∈ ω are denoted by

x α . A mapping θ ∈ C 3 (ω; R 3 ) is an immersion if the two vectors ∂ α θ( x) are linearly independent at each point x = (x α ) ∈ ω. The image S := θ(ω) is a surface immersed in R 3 , equipped with x α curvilinear coordinates.
The two vectors a α ( x) := ∂ α θ( x) form the covariant basis of the tangent plane to the surface S at θ( x), and the two vectors a β ( x) dened by the relations a α ( x) • a β ( x) = δ β α , form the contravariant basis of the tangent plane to the surface S at θ( x). The unit normal vector to S at θ( x) is dened by

a 3 ( x) = a 3 ( x) := a 1 ( x)∧a 2 ( x) |a1( x)∧a2( x)| .
The covariant components of the rst fundamental form of the surface are dened by a αβ ( x) := a α ( x) • a β ( x), and its contravariant components are dened by

a αβ ( x) := a α ( x) • a β ( x).
The covariant components of the second fundamental form of the surface are dened by b αβ ( x) := ∂ α a β ( x)•a 3 ( x), and its mixed components are dened by b τ α ( x) := a τ β ( x)b αβ ( x).

The Christoel symbols on the surface S of the second kind are given by

Γ τ αβ ( x) := a τ ( x) • ∂ α a β ( x).
Any vector eld on a surface can be written as a linear combination η = η i a i of the vector eld a i : ω → R 3 , where the functions η i = η • a i are the covariant components of the vector eld η. The covariant derivatives η α|β ∈ C 0 (ω) of the covariant components η α ∈ C 1 (ω) are dened by 

η α|β := ∂ β η α - Γ τ αβ η τ . The covariant derivatives T αβ | τ ∈ C 0 (ω)
| α := ∂ α b τ β + Γ τ ασ b σ β -Γ σ αβ b τ σ .
For more details about dierential geometry of surfaces, see e. g. [START_REF] Ciarlet | Mathematical Elasticity, vol. III: Theory of shells, Studies in mathematics and its applications[END_REF].

With every displacement eld η, we associate the linearized change of metric tensor eld dened by

γ αβ (η) := 1 2 (∂ β η α + ∂ α η β ) -Γ σ αβ η σ -b αβ η 3
and the linearized change of curvature tensor eld, dened by

ρ αβ (η) := ∂ αβ η 3 -Γ σ αβ ∂ σ η 3 -b σ α b σβ η 3 + b σ α (∂ β η σ -Γ τ βσ η τ )+ +b τ β (∂ α η τ -Γ σ ατ η σ ) + (∂ α b τ β + Γ τ ασ b σ β -Γ σ αβ b τ σ )η τ
The symmetric tensor elds (γ αβ ) and (ρ αβ ) play a key role in the theory of linearly elastic shells (see, e.g., P.G. Ciarlet [START_REF] Ciarlet | Mathematical Elasticity, vol. III: Theory of shells, Studies in mathematics and its applications[END_REF]).

Position of the problem

Let Ω + and Ω -be two disjoint open domains with smooth boundaries ∂Ω + and ∂Ω -. Let ω := {∂Ω + ∩ ∂Ω -} • be the interior of the common part of the boundaries which is assumed to be a non empty domain in R 2 having a positive two-dimensional measure and let θ ∈ C 2 (ω; R 3 ) be an immersion. Let 0 < ε < 1 be an adimensional small real parameter. Let us consider Ω m,ε := ω×] -ε, ε[ and S ±,ε := ω × {±ε}. Let x ε denote the generic point in the set Ω m,ε with x ε α = x α . We consider a shell-like domain with middle surface θ(ω) and thickness 2ε, whose reference conguration is the image

Θ m,ε (Ω m,ε ) ⊂ R 3 of the set Ω m,ε through the mapping given by Θ m,ε (x ε ) := θ( x) + x ε 3 a 3 ( x), for all x ε = ( x, x ε 3 ) ∈ Ω m,ε .

Fig. 1 Initial and reference conguration of the assembly

We denote by Ω +,ε (resp. Ω -,ε ) the translation of Ω + (resp Ω -) in the direction e 3 (resp.-e 3 ) of the quantity ε and we set

Ω ε = Ω -,ε ∪ S -,ε ∪ Ω m,ε ∪ S +,ε ∪ Ω +,ε .
Moreover, we suppose that there exists an immersion Θ ε : Ω ε → R 3 dened as follows:

Θ ε := Θ ±,ε on Ω ±,ε Θ m,ε on Ω m,ε , Θ ±,ε (S ±,ε ) = Θ m,ε (S ±,ε ),
where Θ ±,ε : Ω ±,ε → R 3 are immersions over Ω ±,ε dening the curvilinear coordinates on Ω ±,ε . Let us stress that the physical domain of the assembly is obtained by inserting in the direction a 3 the shell within the two bodies, see Fig. 1. The structure is clamped on Γ ε 0 and the complementary part of the boundary is free. Obviously we can consider other type of boundary conditions. The structure is also submitted to applied body forces f ε i so that the work of the external loading is given by the linear form

L ε (v ε ) := Ω ±,ε f ε i v ε i dx ε .
We suppose that the materials are linearly elastic and isotropic with Lamé's constants λ ±,ε and µ ±,ε for Ω ±,ε , λ m,ε and µ m,ε for Ω m,ε . As usual we assume that 3λ ±,ε + 2µ ±,ε > 0, µ ±,ε > 0, 3λ m,ε + 2µ m,ε > 0, µ m,ε > 0.

The physical variational problem in curvilinear coordinates dened over the variable domain Ω ε can be written as

Find u ε ∈ V ε := {v ε ∈ H 1 (Ω ε ; R 3 ); v ε |Γ ε 0 = 0} such that A -,ε (u ε , v ε ) + A +,ε (u ε , v ε ) + A m,ε (u ε , v ε ) = L ε (v ε ) for all v ε ∈ V ε . ( 1 
)
The bilinear forms

A ±,ε (•, •) and A m,ε (•, •) are dened by A ±,ε (u ε , v ε ) := Ω ±,ε A ijk ,ε ± e ε k (u ε )e ε ij (v ε ) g ±,ε dx ε , A m,ε (u ε , v ε ) := Ω m,ε A ijk ,ε m e ε k (u ε )e ε ij (v ε ) √ g m,ε dx ε . Here, A ijk ,ε := λ ε g ij,ε g k ,ε + µ ε (g ik,ε g j ,ε + g i ,ε g jk,ε
) are the contravariant components of the elasticity tensor and

g ε := det(g ε ij ). If we suppose that f ε i ∈ L 2 (Ω ±,ε
), then Lax-Milgram's lemma ensures existence of a unique solution for problem [START_REF] Bathe | The nite element analysis of shells-fundamentals[END_REF].

In order to study the asymptotic behavior of the solution of problem (1) when ε tends to zero, we rewrite the problem on a xed domain Ω independent of ε. By using the approach of [START_REF] Ciarlet | Mathematical Elasticity, vol. III: Theory of shells, Studies in mathematics and its applications[END_REF], we consider the bijection

π ε : x ∈ Ω → x ε ∈ Ω ε given by      π ε (x 1 , x 2 , x 3 ) = (x 1 , x 2 , x 3 -(1 -ε)), for all x ∈ Ω + tr , π ε (x 1 , x 2 , x 3 ) = (x 1 , x 2 , εx 3 ), for all x ∈ Ω m , π ε (x 1 , x 2 , x 3 ) = (x 1 , x 2 , x 3 + (1 -ε)), for all x ∈ Ω - tr ,
where

Ω ± tr := {x ± e 3 , x ∈ Ω ± }, Ω m := ω×] -1, 1[ and S ± := ω × {±1}.
In order to simplify the notation, we still denote by Ω ± the set Ω ± tr , and set

Ω = Ω -∪ S -∪ Ω m ∪ S + ∪ Ω + . Consequently, one has ∂ ε α = ∂ α and ∂ ε 3 = 1 ε ∂ 3 in Ω m .
With the unknowns u ε and the test functions v ε appearing in formulation (1), we associate respectively the scaled unknowns u and the scaled test functions v transformed by π ε by means of the following relations:

u(ε)(x) := u ε (x ε ), for all x ε = π ε (x) ∈ Ω ε , v(x) := v ε (x ε ), for all x ε = π ε (x) ∈ Ω ε .
For ε suciently small, we associate with the functions

A ijk ,ε ± , g ±,ε , Γ p,ε ij : Ω ±,ε → R the functions A ijk ± , g ± , Γ p ij : Ω ± → R dened by A ijk ± (x) := A ijk ,ε ± (x ε ), for all x ε = π ε (x) ∈ Ω ±,ε , g ± (x) := g ±,ε (x ε ), for all x ε = π ε (x) ∈ Ω ±,ε , Γ p ij (x) := Γ p,ε ij (x ε ), for all x ε = π ε (x) ∈ Ω ±,ε ,
and we associate with the functions

A ijk ,ε m , g m,ε , Γ p,ε ij : Ω m,ε → R the func- tions A ijk m (ε), g m (ε), Γ p ij (ε) : Ω m → R dened by A ijk m (ε)(x) := A ijk ,ε m (x ε ), for all x ε = π ε (x) ∈ Ω m,ε , g m (ε)(x) := g m,ε (x ε ), for all x ε = π ε (x) ∈ Ω m,ε , Γ p ij (ε)(x) := Γ p,ε ij (x ε ), for all x ε = π ε (x) ∈ Ω m,ε .
We assume that the rigidity of the shell-like layer has order of magnitude 1

ε p with p ≥ 1.
From the previous assumptions it then follows that:

     A αβσ3 m (ε) = A α333 m (ε) = 0 A ijk m (ε) g m (ε) = = 1 ε p A ijk m (0) √ a + 1 ε p-1 B ijk ,1 m + 1 ε p-2 B ijk ,2 m + O(ε 2-p ), (2) 
where a := det(a αβ ),

A αβστ m (0) := λ m a αβ a στ + µ m (a ασ a βτ + a ατ a βσ ), A αβ33 m (0) := λ m a αβ , A α3σ3 m (0) := µ m a ασ , A 3333 m (0) := λ m + 2µ m ,
and the order symbol O(ε 2-p ) is meant with respect to the norm of C 0 (Ω m ).

The covariant components of the linearized change of the metric tensor e ij (ε; v) ∈ L 2 (Ω m ), transformed by π ε and associated with the displacement eld v ∈ H 1 (Ω m ; R 3 ), are dened as follows:

e αβ (ε; v) := 1 2 (∂ β v α + ∂ α v β ) -Γ p αβ (ε)v p , e α3 (ε; v) := 1 2 ( 1 ε ∂ 3 v α + ∂ α v 3 ) -Γ σ α3 (ε)v σ , e 33 (ε; v) := 1 ε ∂ 3 v 3 .
As in [START_REF] Ciarlet | Mathematical Elasticity, vol. III: Theory of shells, Studies in mathematics and its applications[END_REF] one can prove that in Ω m the functions

Γ p ij (ε) satisfy :          Γ σ αβ (ε) = Γ σ αβ -εx 3 b σ β | α + O(ε 2 ), Γ 3 αβ (ε) = b αβ -εx 3 b σ α b σβ , Γ σ α3 (ε) = -b σ α -εx 3 b τ α b σ τ + O(ε 2 ), Γ 3 α3 (ε) = Γ p 33 (ε) = 0, (3) 
where the order symbols O(ε) and O(ε 2 ) are meant with respect to the norm of C 0 (Ω m ).

For later use we dene γ αβ (v) and ρ αβ (v) in Ω m with the same formulae employed in section 2.2 for the surface ω:

γ αβ (v) := 1 2 (∂ β v α + ∂ α v β ) -Γ σ αβ v σ -b αβ v 3 , (4) 
,

ρ αβ (v) := ∂ αβ v 3 -Γ σ αβ ∂ σ v 3 -b σ α b σβ v 3 + b σ α (∂ β v σ -Γ τ βσ v τ )+ +b τ β (∂ α v τ -Γ σ ατ v σ ) + (∂ α b τ β + Γ τ ασ b σ β -Γ σ αβ b τ σ )v τ . ( 5 
)
For simplicity we assumed that the shell-like inclusion is free of charges, then it follows that L ε (v ε ) = L(v). According to the previous assumptions, problem [START_REF] Bathe | The nite element analysis of shells-fundamentals[END_REF] can be reformulated on the xed domain Ω independent of ε. We obtain the following scaled problem:

Find u(ε) ∈ V := v ∈ H 1 (Ω; R 3 ); v |Γ 0 = 0 such that A -(u(ε), v) + A + (u(ε), v) + εA m (u(ε), v) = L(v) for all v ∈ V, (6) 
where

A ± (u(ε), v) := Ω ± A ijk ± e k (u(ε))e ij (v) g ± dx, A m (u(ε), v) := Ω m A ijk m (ε)e k (ε; u(ε))e ij (ε; v) g m (ε) dx.
In the sequel, only if necessary, we denote by v ± , resp v m , the restriction of the function v to Ω ± , resp Ω m .

Asymptotic expansion

We can now perform an asymptotic analysis of the rescaled problem [START_REF] Ciarlet | Junctions between three-dimensional and twodimensional linearly elastic structures[END_REF]. We distinguish the two cases when the rigidity of the shell-like layer has its order of magnitude equal to 1 ε or 1 ε 3 with respect to the rigidities of the surrounding three-dimensional bodies.

Since the rescaled problem ( 6) has a polynomial structure with respect to the small parameter ε, we can look for a formal development of the solution:

u(ε) = u 0 + εu 1 + ε 2 u 2 + . . . , (7) 
with u q ∈ V, q ∈ N.

The above formal asymptotic expansion of the scaled unknowns and the asymptotic behavior of functions Γ p ij (ε) induce the formal asymptotic expansion for the scaled linearized strains in Ω m of the form:

e ij (ε) = 1 ε e -1 ij + e 0 ij + εe 1 ij + ε 2 e 2 ij + . . . , where      e -1 αβ := 0, e -1 α3 := 1 2 ∂ 3 u 0 α , e -1 33 := ∂ 3 u 0 3 ,        e 0 αβ := 1 2 (∂ β u 0 α + ∂ α u 0 β ) -Γ σ αβ u 0 σ -b αβ u 0 3 , e 0 α3 := 1 2 (∂ 3 u 1 α + ∂ α u 0 3 ) + b σ α u 0 σ , e 0 33 := ∂ 3 u 1 3 , (8) 
       e 1 αβ := 1 2 (∂ β u 1 α + ∂ α u 1 β ) -Γ σ αβ u 1 σ -b αβ u 1 3 + x 3 (b σ β | α u 0 σ + b σ α b σβ u 0 3 ), e 1 α3 := 1 2 (∂ 3 u 2 α + ∂ α u 1 3 ) + b σ α u 1 σ + x 3 b τ α b σ τ u 0 σ , e 1 33 := ∂ 3 u 2 3 . ( 9 
)
The functions e ij (ε; v) likewise admit in Ω m a formal asymptotic expansion of the form:

e ij (ε; v) = 1 ε e -1 ij (v) + e 0 ij (v) + εe 1 ij (v) + ε 2 e 2 ij (v) + . . . ,
where

     e -1 αβ (v) := 0, e -1 α3 (v) := 1 2 ∂ 3 v α , e -1 33 (v) := ∂ 3 v 3 ,        e 0 αβ (v) := 1 2 (∂ β v α + ∂ α v β ) -Γ σ αβ v σ -b αβ v 3 , e 0 α3 (v) := 1 2 ∂ α v 3 + b σ α v σ , e 0 33 (v) := 0, (10) 
   e 1 αβ (v) := x 3 b σ β | α v σ + x 3 b σ α b σβ v 3 , e 1 α3 (v) := x 3 b τ α b σ τ v σ , e 1 33 (v) := 0. (11) 
Hence, by substituting ( 2), ( 3), ( 7)-( 11) in [START_REF] Ciarlet | Junctions between three-dimensional and twodimensional linearly elastic structures[END_REF] and by identifying the terms with identical power, we can characterize the formal limit problems for p = 1 and p = 3.

5 The limit problem for p = 1

The formulation of the limit problem when the rigidity of the shell is 1 ε is stated in the following theorem: Theorem 1 The leading term u 0 of the asymptotic expansion [START_REF] Chapelle | Modeling of the inclusion of a reinforcing sheet within a 3D medium[END_REF] satises the following variational problem:

Find u 0 ∈ V M such that A -(u 0 , v) + A + (u 0 , v) + A m M (u 0 , v) = L(v) for all v ∈ V M , (12) 
with

V M := v ∈ L 2 (Ω; R 3 ); v ± ∈ H 1 (Ω ± ; R 3 ), v m α ∈ H 1 (Ω m ), L 2 (Ω m ; R 3 ) ∂ 3 v m = 0, v ± |S ± = v m |S ± , v |Γ 0 = 0 ,
and where

A m M (u 0 , v) := Ω m a αβστ e 0 στ (u 0 )e 0 αβ (v) √ a dx, a αβστ := 2λ m µ m λ m + 2µ m a αβ a στ + 2µ m (a ασ a βτ + a ατ a βσ ),
are respectively the bilinear form associated with the membrane behavior of the shell and the contravariant components of the elasticity tensor of the shell.

Proof For convenience we split the proof in three parts numbered form (i) to (iii).

(i) The variational problem corresponding to the order ε -2 in the problem ( 6) is:

Ω m A ijk m (0)e -1 k e -1 ij (v) √ a dx = 0 for all v ∈ V.
The matrix (a αβ ) being positive denite this implies that ∂ 3 u 0 = 0 in Ω m . Thus the leading term u 0 is independent of the transverse variable x 3 in Ω m and consequently e -1 ij = 0.

(ii) The relations e -1 ij = 0 (obtained in step (i)) lead to the following variational problem associated with the order ε -1 :

Ω m A ijk m (0)e 0 k e -1 ij (v) √ a dx = 0 for all v ∈ V.
It turns out that e 0 α3 = 0 and e 0 33 = -

A αβ33 (0) A 3333 (0) e 0 αβ in Ω m .
(iii) The variational problem associated with the order ε 0 is:

Ω + A ijk + e k (u 0 )e ij (v) g + dx + Ω - A ijk -e k (u 0 )e ij (v) g -dx+ + Ω m {A ijk m (0)(e 0 k e 0 ij (v) + e 1 k e -1 ij (v)) + B ijk ,1 m e 0 k e -1 ij (v)} √ a dx = L(v),
for all v ∈ V . By choosing test function v such that v m is independent of x 3 , then e -1 ij (v) = 0 in Ω m and the above variational problem reduces to:

Ω + A ijk + e k (u 0 )e ij (v) g + dx + Ω - A ijk -e k (u 0 )e ij (v) g -dx + Ω m A ijk m (0)e 0 k e 0 ij (v) √ a dx = L(v) for all v ∈ V M . ( 13 
)
From steps (i) and (ii), we can easily prove that

Ω m A ijk m (0)e 0 k e 0 ij (v) √ a dx = Ω m a αβστ e 0 στ (u 0 )e 0 αβ (v) √ a dx.
Hence (13) shows that u 0 is the solution of the limit problem [START_REF] Sanchez-Hubert | Coques Elastiques Minces. Propriétés Asymptotiques[END_REF].

Remark 1. One can note that the space V M is isomorphic to

V M := v ∈ H 1 ( Ω; R 3 ); v |ω ∈ H 1 (ω; R 2 ) × H 1 2 (ω), v |Γ 0 = 0 , where Ω := Ω + ∪ ω ∪ Ω -.
Since u 0 and v are independent of x 3 , e 0 στ (u 0 ) = γ στ (u 0 ) and e 0 αβ (v) = γ αβ (v). Consequently, by integrating along the x 3 -coordinate, we can write

A m M (u 0 , v) = 2 ω a αβστ γ στ (u 0 )γ αβ (v) √ a d x.
We obtain in the simplied model a membrane transmission condition at the interface between the two three-dimensional bodies. This condition can be interpreted as a curvilinear generalization of the Ventcel-type transmission condition obtained in [START_REF] Bessoud | Multi-materials with strong interface: variational modelings[END_REF]. Indeed, one has Elasticity problems in

Ω ± Transmission conditions in ω -σ ij ± j = f i in Ω ± , u = 0 on Γ 0 ,    [[σ α3 ]] = n αβ | β on ω, [[σ 33 ]] = n αβ b αβ on ω, [[u]] = 0 on ω,
where σ ij ± := A ijk ± e k (u ± ) and n αβ := a αβστ γ στ (u |ω ) are respectively the contravariant components of the stress tensor and of the membrane stress tensor of the shell, [[σ i3 ]] := σ i3 + -σ i3 -represents the stress jump at the interface ω between Ω + and Ω -, [[u]] represents the displacement jump at ω between Ω + and Ω -. [START_REF] Ciarlet | Junctions between three-dimensional and twodimensional linearly elastic structures[END_REF] The limit problem for p = 3

We state in Theorem 2 below the formulation of the limit problem when the rigidity of the shell is 1 ε 3 .

Theorem 2 The leading term u 0 of the asymptotic expansion (7) satises the following variational problem:

Find u 0 ∈ V F such that A -(u 0 , v) + A + (u 0 , v) + A m F (u 0 , v) = L(v) for all v ∈ V F , (14) 
where

V F := v ∈ H 1 (Ω; R 3 ); v m 3 ∈ H 2 (Ω m ), γ αβ (v m ) = 0, ∂ 3 v m = 0, v |Γ0 = 0 ,
and

A m F (u 0 , v) := Ω m x 2 3 a αβστ ρ στ (u 0 )ρ αβ (v) √ a dx
is the bilinear form associated with the exural behavior of the shell.

Proof The proof is divided into four steps numbered form (i) to (iv) and follows [START_REF] Ciarlet | Mathematical Elasticity, vol. III: Theory of shells, Studies in mathematics and its applications[END_REF], chap. 3.

(i)

The variational problems at order ε -4 and ε -3 are respectively analogous to those of steps (i) and (ii) of Theorem 1. Hence, one has:

∂ 3 u 0 = 0, e 0 α3 = 0 and e 0 33 = - A αβ33 (0) A 3333 (0) e 0 αβ (15)
in Ω m . For v ∈ V such that e -1 ij (v) = 0, the variational problem at order ε -2 takes the following form:

Ω m a αβστ e 0 στ e 0 αβ (v) √ a dx = 0.
Thus e 0 αβ = 0.

(ii) Since e 0 αβ = γ αβ (u 0 ) = 0, from (15 2 ) it turns out that:

e 0 33 = ∂ 3 u 1 3 = 0 and e 0 α3 = 1 2 (∂ 3 u 1 α + ∂ α u 0 3 ) + b σ α u 0 σ = 0.
Hence

u 1 α (x) = u 1 α ( x) -x 3 (∂ α u 0 3 + 2b τ α u 0 τ )( x) and u 1 3 (x) = u 1 3 ( x) in Ω m .
From the assumption on the asymptotic expansion [START_REF] Chapelle | Modeling of the inclusion of a reinforcing sheet within a 3D medium[END_REF] it follows that u 0 3 ∈ H 2 (Ω m ). Since e 0 ij = 0, the variational problem at order ε -2 reduces to

Ω m A ijk m (0)e 1 k e -1 ij (v) √ a dx = 0 for all v ∈ V.
By similar computations as in Theorem 1, we deduce that e 1 α3 = 0 and e 1 33 = -

A αβ33 (0) A 3333 (0) e 1 αβ . ( 16 
)
Using ( 9) one can express e 1 αβ in terms of u 1 and u 0 . An easy computation gives e 1 αβ = e 0 αβ (u 1 ) -x 3 ρ αβ (u 0 ).

(iii) The variational problem at order ε -1 takes the form (we recall that e -1 ij = e 0 ij = 0):

Ω m {A ijk m (0)(e 1 k e 0 ij (w) + e 2 k e -1 ij (w)) √ a + B ijk ,1 m e 1 k e -1 ij (w)} dx = 0 (17)
for all w ∈ V . Let choose again w such that e -1 ij (w) = 0. Then from (16),

Ω m A ijk m (0)e 1 k e 0 ij (w) √ a dx = Ω m a αβστ e 1 στ e 0 αβ (w) √ a dx = = Ω m
a αβστ e 0 στ (u 1 )e 0 αβ (w) √ a dx = 0.

Therefore e 0 στ (u 1 ) = 0 and so e 1 στ = -x 3 ρ στ (u 0 ).

(iv) The problem at order ε 0 takes the following form:

Ω + A ijk + e k (u 0 )e ij (v) g + dx + Ω - A ijk -e k (u 0 )e ij (v) g -dx+ + Ω m A ijk m (0)(e 1 k e 1 ij (v) + e 2 k e 0 ij (v) + e 3 k e -1 ij (v)) √ a dx+ + Ω m B ijk ,1 m (e 1 k e 0 ij (v) + e 2 k e -1 ij (v)) dx + Ω m B ijk ,2 m e 1 k e -1 ij (v) dx = L(v) for all v ∈ V.
By subtracting equation ( 17) one obtains:

Ω + A ijk + e k (u 0 )e ij (v) g + dx + Ω - A ijk -e k (u 0 )e ij (v) g -dx+ + Ω m A ijk m (0){(e 1 k (e 1 ij (v) -e 0 ij (w)) + e 2 k (e 0 ij (v) -e -1 ij (w)) +e 3 k e -1 ij (v)) √ a} dx+ + Ω m B ijk ,1 m {(e 1 k (e 0 ij (v) -e -1 ij (w)) + e 2 k e -1 ij (v))} dx + Ω m B ijk ,2 m e 1 k e -1 ij (v) dx = L(v) for all v, w ∈ V.
Given an arbitrary test function v ∈ V F , let choose w ∈ V such that

w α = x 3 (2b τ α v τ + ∂ α v 3 ) and w 3 = 0 in Ω m . Since e -1 ij (v) = 0 and e 1 αβ (v) -e 0 αβ (w) = -x 3 ρ αβ (v), e 0 αβ (v) -e -1 αβ (w) = 0 in Ω m , it follows the desired result. Remark 1. Note that the space V F is isomorphic to V F := v ∈ H 1 ( Ω; R 3 ); v |ω ∈ H 1 (ω; R 2 ) × H 2 (ω), v |Γ 0 = 0, γ αβ (v |ω ) =
0 in ω . Since u 0 and v are independent of x 3 , ρ στ (u 0 ) and ρ στ (v) are also independent of x 3 . Consequently, by integrating along the x 3 -coordinate, we get

A m F (u 0 , v) = 2 3 ω a αβστ ρ στ (u 0 )ρ αβ (v) √ a d x.
The simplied model is characterized by a exural transmission condition at the interface between the two three-dimensional bodies as follows:

Elasticity problems in

Ω ± Transmission conditions on ω -σ ij ± j = f i in Ω ± , u = 0 on Γ 0 ,    [[σ α3 ]] = (b α σ m σβ )| β + b α σ (m σβ | β ) on ω, [[σ 33 ]] = b σ α b σβ m αβ -m αβ | αβ on ω, [[u]] = 0 on ω,
where m αβ := 1 3 a αβστ ρ στ (v |ω ) are the contravariant components of the moment tensor of the shell.

Two Korn's type results

In the whole paper, we denote by • s,Ω the norm in the Sobolev space H s (Ω, R d ) for every d ≥ 1 and • 0,Ω will stand for the norm in L 2 (Ω, R d ).

Obviously, the same holds in Ω ± , Ω m , ω. Let us recall that V = v ∈ H 1 (Ω; R 3 ); v |Γ 0 = 0 . In order to study convergence of the solutions of problems ( 6) for p ∈ {1, 3}, we establish the two following Korn type inequalities in curvilinear coordinates.

Proposition 1 There exists a constant C > 0 such that for ε small enough and for all v ∈ V :

v 1,Ω ≤ C e ij (v) 2 0,Ω + + e ij (v) 2 0,Ω -+ 1 ε 2 e ij (ε; v) 2 0,Ω m 1/2 .
Proof Assume that the announced inequality is false. Then there exist

ε k → 0 and (v k ) ∞ k=1 ∈ V such that v k 1,Ω = 1 for all k, e ij (v k ) → 0 in L 2 (Ω ± ), 1 ε k e ij (ε k ; v k ) → 0 in L 2 (Ω m ).
Therefore there exist v ∈ V and a subsequence (not relabeled) such that

v k v in H 1 (Ω; R 3 ),
and thus

v k → v in L 2 (Ω; R 3 ). Moreover, from the convergence e ij (v k ) → 0 in L 2 (Ω + ) we deduce that v k → v = 0 in H 1 (Ω + ; R 3 ). Besides, one has 1 ε 2 k ∂ 3 v k 3 = 1 ε k e 33 (ε k ; v k ) → 0 in L 2 (Ω m ), ∂ 3 v k α = ε k 2e α3 (ε k ; v k ) -∂ α v k 3 + 2Γ σ α3 (ε k )v k σ → 0 in L 2 (Ω m ).
Thus, ∂ 3 v = 0 in Ω m . Then, from the continuity of the trace on S + , we deduce that v = 0 in Ω m . Finally the convergence e ij (v k ) → 0 in L 2 (Ω -) and the continuity of the trace on S -imply that v = 0 in Ω -. Hence we have that

v k → 0 = v in H 1 (Ω ± ; R 3 ).
In order to conclude one has to prove that

v k → 0 = v in H 1 (Ω m ; R 3 ). We remark at rst that e ij (ε k ; v k ) → 0 in L 2 (Ω m ) implies that ∂ 1 v k 1 , ∂ 2 v k 2 and ∂ 1 v k 2 + ∂ 2 v k 1 tend to zero strongly in L 2 (Ω m ).
As in the classical proof of Korn's inequality, one deduces that

∂ 1 v k 2 and ∂ 2 v k 1 tend to zero strongly in L 2 (Ω m ). To prove that ∂ α v k 3 tends to zero strongly in L 2 (Ω m ) it is enough to prove that ∂ αβ v k 3 tends to zero in H -1 (Ω m ). Let us remark that ∂ αβ v k 3 = ∂ β e α3 (ε k ; v k ) + ∂ α e β3 (ε k ; v k ) - 1 ε k ∂ 3 e αβ (ε k ; v k ) - 1 ε k ∂ 3 (Γ p αβ (ε k )v k p ) + Γ σ α3 (ε k )∂ β v k σ + Γ σ β3 (ε k )∂ α v k σ + (∂ β Γ σ α3 (ε k ) + ∂ α Γ σ β3 (ε k ))v k α . ( 18 
)
From the previous considerations, one immediately deduces that all the terms in the right-hand side go to zero in

H -1 (Ω m ; R 3 ) except 1 ε k ∂ 3 (Γ p αβ (ε k )v k p )
. By using (3) and the previous results, one sees that it is enough to prove that

1 ε k ∂ 3 v k tends to zero in H -1 (Ω m ; R 3
). This in turn follows from the denition of e α3 (ε k ; v k ) and the convergence of v k 3 to zero in L 2 (Ω m ). Hence the sequence (v k ) ∞ k=1 converges strongly to 0 in H 1 (Ω; R 3 ) which is contradictory with the assumption v k 1,Ω = 1 for all k.

Let us dene the space V:

V := v ∈ L 2 (Ω; R 3 ); v ± ∈ H 1 (Ω ± ; R 3 ), v m α ∈ H 1 (Ω m ), ∂ 3 v m ∈ L 2 (Ω m ; R 3 ), v ± |S ± = v m |S ± , v |Γ 0 = 0 , equipped with the norm • V dened by v V := { e ij (v) 2 0,Ω + + e ij (v) 2 0,Ω -+ v 2 0,Ω + + ∂ α v β 2 0,Ω m + |∂ 3 v 2 0,Ω m } 1/2 .
We can easily prove that V is complete and that V M ⊂ V is a closed subspace; therefore the uniqueness of the solution for problem [START_REF] Sanchez-Hubert | Coques Elastiques Minces. Propriétés Asymptotiques[END_REF] is guaranteed. Let us also remark that V ⊂ V.

Proposition 2 There exists a constant C > 0 such that for ε small enough,

v V ≤ C e ij (v) 2 0,Ω + + e ij (v) 2 0,Ω -+ e ij (ε; v) 2 0,Ω m 1/2 for all v ∈ V.
Proof Assume that the announced inequality is false. Then there exists

ε k → 0 and (v k ) ∞ k=1 ∈ V such that v k V = 1 for all k, e ij (v k ) → 0 in L 2 (Ω ± ), e ij (ε k ; v k ) → 0 in L 2 (Ω m ).
Up to extraction of a subsequence (not relabeled), there exists

v ∈ V such that v k v in H 1 (Ω ± ; R 3 ), v k 3 v 3 in L 2 (Ω m ), v k α v α in H 1 (Ω m ), ∂ 3 v k ∂ 3 v in L 2 (Ω m ; R 3 ).
The convergence

e ij (v k ) → 0 in L 2 (Ω + ) implies that v = 0 in Ω + and v k → v = 0 in H 1 (Ω + ; R 3 ). Besides, one has 1 ε k ∂ 3 v k 3 = e 33 (ε k ; v k ) → 0 in L 2 (Ω m ), ∂ 3 v k α + ε k ∂ α v k 3 = ε k 2e α3 (ε k ; v k ) + 2Γ σ α3 (ε k )v k σ → 0 in L 2 (Ω m ). (19) 
Hence for all ϕ ∈ D(Ω m ), one has:

Ω m ∂ 3 v α ϕ dx = -lim k→∞ Ω m (v k α ∂ 3 ϕ + ε k v k 3 ∂ α ϕ) dx = lim k→∞ Ω m (∂ 3 v k α + ε k ∂ α v k 3 )ϕ dx = 0.
Thus, ∂ 3 v = 0 in Ω m , and by the continuity of the trace on S + , we deduce that v = 0 in Ω m . Finally the convergence e ij (v k ) → 0 in L 2 (Ω -) and the continuity of the trace on S -imply that v = 0 in Ω -. Hence we have that

v k → 0 = v in H 1 (Ω ± ; R 3 ). Moreover, since Ω m |v k 3 | 2 dx ≤ C( S + |v k 3 ( x, 1)| 2 d x + Ω m |∂ 3 v k 3 | 2 dx), it follows that v k 3 → 0 strongly in L 2 (Ω m ). Let us now prove that ∂ 3 v k α → 0 in L 2 (Ω m ). From (19), it is enough to establish that ε k ∂ α v k 3 tends to zero in L 2 (Ω m
). This can be deduced from (18) and the previous results. In order to conclude one has to prove that v k α → 0 in H 1 (Ω m ). For this we apply the classical Korn inequality to (z k ) ∞ k=1 where

z k = (z k i ) := (v k 1 , v k 2 , 0). We set e ij (z) := 1 2 (∂ i z j + ∂ j z i ). Since e αβ (z k ) = e αβ (ε k ; v k ) + Γ p αβ (ε k )v k p and e α3 (z k ) = 1 2 ∂ 3 v k α , it follows that e ij (z k ) → 0 in L 2 (Ω m ) and so z k → 0 in H 1 (Ω m ). Hence the sequence (v k ) ∞
k=1 converges strongly to 0 in V which is contradictory with the hypothesis v k V = 1 for all k.

8 Convergence results

Strong convergence for p = 1

For every function v dened almost everywhere over

Ω m = ω×] -1, 1[, we dene the average v( x) := 1 2 1 -1 v( x, x 3 )dx 3 for all x ∈ ω.
We recall for later use that the weak convergence in L 2 (Ω m ; R 3 ) implies the weak convergence of the average in L 2 (ω; R 3 ) Let u(ε) ∈ V ⊂ V be the solution of (6) for p = 1. Thanks to the assumptions on the loading, the coercivity of the bilinear forms A ± and A m , the classical Korn inequality and Proposition 2, one obtains the following a priori estimates:

u(ε) V ≤ C , e ij (ε; u(ε)) 0,Ω m ≤ C. ( 20 
)
Theorem 3 The sequence (u(ε)) ε>0 converges strongly in V to u 0 ∈ V M , the unique solution of problem [START_REF] Sanchez-Hubert | Coques Elastiques Minces. Propriétés Asymptotiques[END_REF].

Proof For convenience, the proof is divided into seven parts, numbered from (i) to (vii).

(i) From (20) we deduce that there exist a subsequence (not relabeled),

u ∈ V and e ij ∈ L 2 (Ω m ) such that u(ε) u in V, e ij (ε; u(ε)) e ij in L 2 (Ω m ). (21) 
Let us explicitly remark that u(ε) u in V means that:

u(ε) u in H 1 (Ω ± ; R 3 ), u 3 (ε) u 3 in L 2 (Ω m ), u α (ε) u α in H 1 (Ω m ), ∂ 3 u(ε) ∂ 3 u in L 2 (Ω m ; R 3 ).
(ii) We prove that ∂ 3 u = 0 in Ω m . From ( 20) and ( 21), one has

∂ 3 u 3 (ε) = εe 33 (ε; u(ε)) → 0 = ∂ 3 u 3 in L 2 (Ω m ), ∂ 3 u α (ε) + ε∂ α u 3 (ε) = 2ε{e α3 (ε; u(ε)) + Γ σ α3 (ε)u σ (ε)} → 0 in L 2 (Ω m ).
Thus, with the same arguments as in the proof of Proposition 2, we obtain

∂ 3 u α = 0 in L 2 (Ω m ) and u ∈ V M . (iii)
The limits e αβ satisfy the relation e αβ = γ αβ (u). Indeed using the denition of the average of e αβ (ε; u(ε)), of γ αβ (u(ε)) and of Γ σ αβ (ε), we deduce that e αβ (ε; u(ε)) -γ αβ (u(ε)) 0,ω ≤ Cε u(ε) 0,Ω m which tends to zero as ε → 0. On the other hand, by denition of V, γ αβ (u(ε))

γ αβ (u) in L 2 (Ω m ) which implies that γ αβ (u(ε)) γ αβ (u) = γ αβ (u) in L 2 (ω)
and thus e αβ = γ αβ (u) in L 2 (ω).

(iv) The limits e αβ satisfy ∂ 3 e αβ = 0. For this let us now remark that

∂ 3 e αβ (ε; u(ε)) = 1 2 (∂ β ∂ 3 u α (ε) + ∂ α ∂ 3 u β (ε)) -∂ 3 (Γ p αβ (ε)u p (ε)). (22) 
Thanks to (ii), ( 21) and ( 3), the right-hand side converges to zero weakly in H -1 (Ω m ) as ε → 0. The continuity of the operator

∂ 3 : L 2 (Ω m ) → H -1 (Ω)
implies that ∂ 3 e αβ = 0 and so

e αβ = γ αβ (u) in L 2 (Ω m ). (23) 
From ( 8) and ( 4) we nally obtain e αβ = e 0 αβ (u).

(v) By multiplying problem (6) by ε and by letting ε → 0, we get e α3 = 0 and e 33 = -A αβ33 (0)

A 3333 (0) e αβ . ( 24 
)
By choosing in (6) test functions v independent of x 3 in Ω m and by applying the limit as ε → 0, we obtain:

A + (u, v)+A -(u, v)+ Ω m
A αβστ (0)e αβ e 0 στ (v)+A στ 33 (0)e 33 e 0 στ (v) dx = L(v).

From ( 23) and ( 24), we infer that

A + (u, v) + A -(u, v) + Ω m a αβστ e 0 αβ (u)e 0 στ (v) √ a dx = L(v).
Hence, by virtue of the uniqueness of the solution, we deduce that u = u 0 .

(vi) Let us prove the strong convergence of e ij (ε; u(ε)) to e ij in L 2 (Ω m ). For this we remark that

Ω + A ijk + (e k (u(ε)) -e k )(e ij (u(ε)) -e ij ) g + dx+ + Ω - A ijk -(e k (u(ε)) -e k )(e ij (u(ε)) -e ij ) g -dx+ + Ω m A ijk m (e k (ε; u(ε)) -e k )(e ij (ε; u(ε)) -e ij )
√ g m dx tends to zero. From the coercivity, we obtain the claimed strong convergence. Moreover, from the classical Korn inequality, we deduce the strong convergence of u ± (ε) to u 0,± in H 1 (Ω ± ; R 3 ).

(vii) In order to conclude the proof of the strong convergence of u(ε) to u 0 in V, we have only to prove that u α (ε) → u 0 α in H 1 (Ω m ). For this let us apply the classical Korn inequality to u(ε) = ( u i (ε)) := (u 1 (ε), u 2 (ε), 0) and u 0 = ( u 0 i ) := (u 0 1 , u 0 2 , 0). We set e ij (z) := 1 2 (∂ i z j + ∂ j z i ) and we remark that from (vi) it follows easily : e αβ ( u(ε)) → e αβ (u 0 ) in L 2 (Ω m ). Hence, one has only to prove that e α3 ( u(ε

)) → e α3 ( u 0 ) = 1 2 ∂ 3 u 0 α in L 2 (Ω m ). From (i) and (ii) we have that u α (ε) → u 0 α in L 2 (Ω m ) and ∂ 3 u 0 α = 0. Thus e α3 ( u(ε)) = 1 2 ∂ 3 u α (ε) → 0 in H -1 (Ω m ). Therefore we need only to prove that also ∂ β3 u α (ε) → 0 in H -1 (Ω m ). One has ∂ β3 u α (ε) = ∂ 3 ( e αβ ( u(ε)) + ∂ β (εe α3 (ε; u(ε)) + εΓ σ α3 (ε)u σ (ε))+ -∂ α (εe β3 (ε; u(ε)) + εΓ σ β3 (ε)u σ (ε)) -→ ∂ 3 (e αβ (u 0 )) in H -1 (Ω m )
From (iv) it follows that ∂ 3 (e αβ (u 0 )) = 0 and hence the announced strong convergence holds.

Strong convergence for p = 3

Let u(ε) ∈ V be the solution of (6) for p = 3. Thanks to the assumptions on the loading, the coercivity of the bilinear forms and Proposition 1 we can write the following a priori estimates:

u(ε) 1,Ω ≤ C 1 ε 2 e ij (ε; u(ε) 2 0,Ω m ≤ C. ( 25 
)
Theorem 4 The sequence (u(ε)) ε>0 converges strongly in H 1 (Ω; R 3 ) to u 0 ∈ V F , the unique solution of problem (14).

Proof For the sake of clarity, the proof is divided into ve steps numbered from (i) to (v). (i) From the a priori bound (25 1 ) it follows that there exist u ∈ V and a subsequence not relabeled such that u

(ε) u in H 1 (Ω; R 3 ). Estimate (25 2 ) implies that 1 ε ∂ 3 u 3 (ε) → 0 in L 2 (Ω m ) and that e α3 (ε; u(ε)) → 0 in L 2 (Ω m ). Therefore 1 ε ∂ 3 u α (ε) → -∂ α u 3 -2b σ α u σ in L 2 (Ω m ),
and

∂ 3 u = 0 in Ω m . From estimate (25 2 ) we get that e αβ (ε; u(ε)) → 0 = γ αβ (u) in L 2 (Ω m ). Thus u ∈ v ∈ H 1 (Ω, R 3 ) : ∂ 3 v = 0, γ αβ (v) = 0 in Ω m , v |Γ0 = 0 . At last, estimate (25 2 ) yields the existence of z ij ∈ L 2 (Ω m ) such that 1 ε e ij (ε; u(ε)) z ij in L 2 (Ω m ).
(ii) In order to prove that u 3 ∈ H 2 (Ω m ), let us dene

u 1 α (ε)( x) := 1 ε 1 -1 x 3 u α (ε)dx 3 = 1 2ε 1 -1 (1 -x 2 3 )∂ 3 u α (ε)dx 3 .
Then, using (i) it follows that

u 1 α (ε) → 1 2 1 -1 (x 2 3 -1)(∂ α u 3 + 2b σ α u σ )dx 3 = = - 2 3 (∂ α u 3 + 2b σ α u σ ) in L 2 (ω).
Actually, this convergence holds weakly in H 1 (ω). Indeed, one has

1 2 (∂ α u 1 β (ε) + ∂ β u 1 α (ε)) = 1 2ε 1 -1 x 3 (∂ α u β (ε) + ∂ β u α (ε))dx 3 = = 1 -1 x 3 1 ε e αβ (ε; u(ε))dx 3 + 1 2ε 1 -1 (1 -x 2 3 )(Γ σ αβ ∂ 3 u σ (ε) + b αβ ∂ 3 u 3 (ε))dx 3 + - 1 -1 x 2 3 b σ α b σβ u 3 (ε)dx 3 + 1 ε 1 -1 x 3 (Γ σ αβ (ε) -Γ σ αβ )u σ (ε)dx 3 .
The rst term in the right-hand side converges weakly to

1 -1 x 3 z αβ dx 3 in L 2 (ω) and the second term tends to -2 3 Γ σ αβ (∂ σ u 3 + 2b τ σ u τ ) in L 2 (ω).
The last terms converge evidently in L 2 (ω). By the classical Korn inequality it follows that the sequence (u

1 α (ε)) ε>0 is bounded in H 1 (ω), hence -2 3 (∂ α u 3 + 2b σ α u σ ) ∈ H 1 (ω) and so ∂ α u 3 ∈ H 1 (ω). Thus u 3 ∈ H 2 (ω) and since ∂ 3 u 3 = 0, one has u 3 ∈ H 2 (Ω m ) so that u ∈ V F .
(iii) By multiplying (6) by ε 2 and by letting ε → 0, we deduce that

z 33 = - A αβ33 (0) A 3333 (0) z αβ and z α3 = 0.
Afterwards, by multiplying (6) by ε, by letting ε → 0 and by choosing test functions such that ∂ 3 v 3 = 0, we obtain: Hence if we choose in (6) v ∈ V F , by passing to the limit we get: 

lim ε→0 Ω m 1 ε A α3σ3 (0)e α3 (ε; u(ε))e σ3 (ε; v) dx = - Ω m a αβστ z αβ e 0 στ (v) dx. ( 26 
A + (u, v)+A -(u, v) + Ω m a αβστ z αβ x 3 b µ τ | σ v µ + b µ σ b µτ v 3 dx+ + lim ε→0 1 ε 2 Ω m A α3σ3 (0)e σ3 (ε; u(ε)) 1 2 ∂ α v 3 + b τ α v τ dx = L(v).
A(u(ε)-u 0 -εψ -ε 2 φ η , u(ε)-u 0 -εψ -ε 2 φ η ) ≥ C u(ε)-u 0 -εψ -ε 2 φ η 2 V .
By letting ε → 0 and by using a standard diagonalization argument, one has 

1 ε ∂ 3 e 1 ε 2 2 ∂ α v 3

 131223 )Let us now remark that ∂ 3 e αβ (ε; u(ε)) = ε{∂ α e β3 (ε; u(ε))+ ∂ β e α3 (ε; u(ε)) -∂ αβ u 3 (ε)+ +∂ β (Γ σ α3 (ε)u σ (ε)) + ∂ α (Γ σ β3 (ε)u σ (ε))} -∂ 3 (Γ p αβ (ε)u p (ε))(27)From (27) and recalling that bτ β | α = b τ α | β it follows that in H -1 (Ω m ) one has ∂ 3 z αβ = lim ε→0 αβ (ε; u(ε)) = -ρ αβ (u).However, sinceu 3 ∈ H 2 (Ω m ) the equality ρ αβ (u) = -∂ 3 z αβ holds in L 2 (Ω m ). Given any η ∈ H 1 (ω, R 2 ) × H 2 (ω) such that γ αβ (η) = 0 let v ∈ H 1 (Ω m , R 3 ) dened by v α = η α -x 3 θ α and v 3 = η 3 , where θ α := ∂ α η 3 + 2b σ α η σ and θ = (θ i ) := (θ 1 , θ 2 , 0). Since then e σ3 (ε; v) = 1 2 (-1 ε θ α + ∂ α η 3 ) -Γ σ α3 (ε)(η σ -x 3 θ σ ), z α3 = 0 and e 0 στ (v) = -x 3 e 0 στ (θ), we obtain from (26)lim ε→0 Ω m A α3σ3 (0)e α3 (ε, u(ε)) 1 2 θ σ dx = = Ω m a αβστ z αβ e 0 στ (v) dx = -Ω m a αβστ z αβ x 3 e 0 στ (θ) dx = -1 2 Ω m a αβστ (1 -x 2 3 )∂ 3 z αβ e 0 στ (θ) dx = 1 2 Ω m (1 -x 2 3 )a αβστ ρ αβ (u)e 0 στ (θ) dx. (28) (iv) When v ∈ V F one has      e αβ (ε; v) = εx 3 (b σ β | α v σ + b σ α b σβ v 3 ) + O(ε 2), e α3 (ε; v) = 1 + b σ α v σ + O(ε), e 33 (ε; v) = 0.

Let ξ α := ∂ α v 3

 3 + 2b τ α v τ and ξ = (ξ i ) := (ξ 1 , ξ 2 , 0). Then, by using (28) and the relation e0 στ (ξ) -b µ τ | σ v µ -b µ σ b µτ v 3 = ρ στ (v), we obtain that A + (u, v) + A -(u, v) + 2 3 ω a αβστ ρ αβ (u)ρ στ (v) d x = L(v),so that u = u 0 , the one and only one solution of problem (14).

( v ) 3 (x) = x 2 3 2

 v33 It remains to prove the strong convergence. Let (φ η ) η>0 ⊂ V be dened as follows:φ η α (x) = x 2 3 (b σ α ∂ σ u 0 3 ( x) + b σ α b τ σ u 0 τ ( x)) for all x ∈ Ω m , φ η w η ( x) for all x ∈ Ω m ,where (w η ) η>0 is a sequence in D(ω) which satises in L 2 (ω)w η → A αβ33 (0) A 3333 (0) ρ αβ (u 0 ).Let ψ ∈ V be such thatψ α (x) = -x 3 (∂ α u 0 3 ( x) + 2b τ α u 0 τ ( x)) for all x ∈ Ω m , ψ 3 (x) = 0 for all x ∈ Ω m . Then u(ε) -u 0 -εψ -ε 2 φ η ∈ V and e αβ (ε; u 0 -εψ -ε 2 φ η ) = -εx 3 ρ αβ (u 0 ) + O(ε 2 ) e αβ (ε; u 0 -εψ -ε 2 φ η ) = O(ε 2 ) e αβ (ε; u 0 -εψ -ε 2 φ η ) = εx 3 w ηwhere the order symbol O(ε 2 ) is meant with respect to the norm of L 2 (Ω m ).Setting A(•, •) := A + (•, •) + A -(•, •) + εA m (•,•), by virtue of the coercivity we obtain :

m x 2 3 a

 3 (ε) -u 0 -εψ -ε 2 φ η , u(ε) -u 0 -εψ -ε 2 φ η ) = = L(u 0 ) -A + (u 0 , u 0 ) -A -(u 0 , u 0 ) -Ω αβστ ρ αβ (u 0 )ρ στ (u 0 ) dx = 0,which completes the proof. Acknowledgement. The work described in this paper has been developed during the A.-L. Bessoud permanence at Laboratoire de Mécanique et Génie Civil , Université Montpellier II, as part of her Ph.D thesis entitled Modélisation mathématique d'un multi-matériau and during the M. Serpilli permanence at I.N.R.I.A. -Rocquencourt, supported by the French Agence Nationale de la Recherche (ANR) under grant epsilon (BLAN08-2-312370): Domain decomposition and multi-scale computations of singularities in mechanical structures.

  of the second-order tensor eld with contravariant componentsT αβ ∈ C 1 (ω) are dened by T αβ | τ := ∂ τ T αβ + Γ α στ T βσ +Γ β τ σ T ασ .The covariant derivatives of the curvature tensor dened by means of its mixed components are dened by b τ β