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Abstract. We investigate spherically symmetric spacetimes with an anisotropic fluid and discuss
the existence and stability of a dividing shell separating expanding and collapsing regions. We find
that the dividing shell is defined by a relation between the pressure gradients, both isotropic and
anisotropic, and the strength of the fields induced by the Misner-Sharpe mass inside the separating
shell and by the pressure fluxes. This balance is a generalization of the Tolman-Oppenheimer-
Volkoff equilibrium condition which defines a local equilibrium condition, but conveys also a non-
local character given the definition of the Misner-Sharpe mass. We present a particular solution with
dust and radiation that provides an illustration of our results.
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The universe close to us exhibits structures below certain scales that seem to be

immune to the overall expansion of the universe. This reflects two different gravitational

behaviors, and usually the dynamics corresponding to the structures that have undergone

non-linear collapse is treated under the approximation that Newton’s gravitational theory

is valid without residual acceleration. However, this approach does not tell us with

exactitude what is the critical scale where the latter approximation starts to be valid,

nor does it explain in a non-perturbative way how the collapse of over-dense patches
decouples from the large-scale expansion. For this purpose one requires a fully general

relativistic approach where an exact solution exhibiting the two competing behaviors

and allowing us to characterize how the separation between them comes about. It is the

understanding of this interplay between collapsing and expanding regions within the

theory of general relativity (GR) that we aim to address here.

In previous works we have investigated the present issue in models with spherical

symmetry and with a perfect fluid [1, 2] . Here we briefly report our findings when we

overcome the limitations of a perfect fluid description of the non-equilibrium setting

under focus. We thus consider here an anisotropic fluid.

We resort to a 3+1 splitting, and assess the existence and stability of a dividing shell

separating expanding and collapsing regions, in a gauge invariant way.



In the generalized Painlevé-Gullstrand coordinates [4] spherically symmetric metrics

can be cast as

ds2 =−α(t,r)2dt2+
1

1+E(t,r)
(β (t,r)dt+dr)2 +R2(r, t)dΩ2

. . (1)

In the latter expression α(t,r) is the lapse function and β (t,r) the shift function. Notice

that the areal radius R differs, in principle, from the r coordinate to account for additional
degrees of freedom that are required to cope with both a general fluid that includes

anisotropic stresses and heat fluxes.

We consider an energy-momentum tensor

T ab = ρ nanb +Phab +Πab +2 j(anb)
, (2)

where na = α−1(1,β ,0,0) is the flow vector, hab = gab + nanb is the metric of the

hypersurfaces orthogonal to it, ρ is the energy density, P is the pressure, Πab is the

anisotropic stress tensor and qa is the heat flux vector. Πabnb = 0 and Πa
a = 0, i.e.,

the anisotropic stress Πab is orthogonal to na and traceless, and ja = j(t,r)(β ,1,0,0)
represents the heat flux which is also orthogonal to the matter flow.

Introducing the Misner-Sharpe mass M and following [4, 5]

∂

∂ r
M = 4π

(

ρ
∂

∂ r
R+ jLnR

)

R2 (3)

it is possible to derive from the Einstein field equations expressions for (LnR)2
and

for L 2
n R. The simultaneous vanishing of the latter quantities defines, on the one hand,

the turning point condition ((LnR)2 = 0) and, on the other hand, the generalized local

conditions for the existence of a separating shell: (L 2
n R = 0). This yields

(LnR)2 =
2M

R
+(1+E)

(

∂R

∂ r

)2

−1 = 0 (4)

and

−L
2

n R =
M

R2
+4π(P−2Π)R−

1+E

α

∂α

∂ r

∂R

∂ r
= 0 . (5)

This allows us to extend the generalization of the TOV function made in [1, 2], which we

called gTOV, to the case where anisotropic stresses are present, since gTOV =−L 2
n R .

In what follows case we shall ignore the heat fluxes (it is then possible to restrict to

R = r, but we will keep it R(r, t) for the sake of generality). We have

−
1

α

∂α

∂ r
=

1

(ρ +P−2Π)

[

∂

∂ r
(P−2Π)−

6Π

R

(

∂R

∂ r

)]

(6)

and Eqn. (5) becomes

M

R2
+4π(P−2Π)R+

1+E

(ρ +P−2Π)

[

∂

∂ r
(P−2Π)−

6Π

R

(

∂R

∂ r

)]

∂R

∂ r
= 0 . (7)



which is the gTOV= 0 equation of state for the stationarity of the separating shell, and

it is immediately apparent that, when going from the isotropic perfect fluid to the case

of an anisotropic content, we have to replace P by P−2Π in the equations. This means

of course that the anisotropic stresses play a fundamental role in defining the pressure

gradients that promote the local conditions for the separability of the sign of LnR.

It is possible to relate LnR with the expansion and shear scalars, respectively, Θ= na
;a,

and a, where a can be defined from the shear tensor σi j as σi j = a(t,r)Pi j where we use

the fact that, from the spherical symmetry, all the quantities Xi j = hi
ahi

a Xab share the

same spatial eigendirections characterized by the traceless 3-tensor Pi
j = diag [−2,1,1].

We have
(

θ

3
+a

)

=
LnR

R
(8)

and we see that the turning point condition (4) does imply neither the vanishing of

the expansion nor of the shear, but it rather means that these quantities should satisfy

θ∗ = 3a∗ at the separating shell r = r∗. If either θ or a were to vanish at this locus we

would then have the other quantity vanishing as well.This limit case corresponds to a

static separating shell.

Given Eqn. (8) it is interesting to relate the condition (4) to the Hamiltonian constraint

that generalizes the Friedman equation

(

θ

3
+a

)2

=
8πρ

3
−

3R

6
+2a

(

θ

3
+a

)

. (9)

We conclude that

2M

R
+(1+E)

(

∂R

∂ r

)2

−1 =
8πρ

3
−

3R

6
+2a

(

θ

3
+a

)

. (10)

which allows us to emphasize that the stationarity condition for the existence of a

separating shell (4) involves non-local quantities namely M, and E, while the right-

hand side of the expression just derived, (10), only involves local quantities. The non-

locality of the conditions (4) and (7) is consistent with the findings of Herrera and co-

workers [7] who have studied the “cracking” of compact objects in astrophysics using

small anisotropic perturbations around spherically symmetric homogeneous fluids in

equilibrium.

We now turn our attention to an exact solution derived by Sussman and Pavón for
a spherically symmetric model with a combination of dust and radiation exhibiting

anisotropic stress, but no heat fluxes [8]. The metric is written in the Lemaître-Tolman-

Bondi (LTB) form

ds2 =−dT 2 +
(∂rR)

2

1+E(T,r)
dr2 +R2dΩ2

, (11)

and it assumed that the flow is geodesic to keep ourselves as close as possible to the case

where dust is the only component which is present, i.e., the original LTB case. The latter

hypothesis implies in GPG coordinates that − 1
α

∂α
∂ r

= 0, and hence (P−2Π)′+6Π R′

R
= 0



where the prime stands for differentiation with respect to r. On the other hand the

absence of heat fluxes makes E = E(r), independent of T . The condition (4) amounts to

2M(r)

R
+

2W (r)

R2
+E = 0 , (12)

and equating the gTOV condition reduces to

M(r)

R2
+

W (r)

R3
+4π(P−2Π)R = 0 . (13)

The latter conditions defining the separating shell reduce to a differential equation that

E(r) must satisfy, and in [5] we show that it is possible to specify such an E.

Thus, in the present work we find that the existence of shells separating expanding

and contracting domains of the areal radius is defined by two relations: an energy

balance yielding a stationarity condition, and a relation between the pressure gradients,

both isotropic and anisotropic, and the strength of the fields induced by the Misner-

Sharpe mass inside the separating shell and by the pressure fluxes. This balance is a

generalization of the Tolman-Oppenheimer-Volkoff equilibrium condition which defines
a local equilibrium condition, but simultaneously has a non-local character given the

definition of the Misner-Sharpe mass M (and incidentally that of the function E as

well). We wish also to emphasize that the consideration of anisotropic stresses is most

important to guarantee the fulfillment of this gTOV and has an impact of the propagation

of the shear. A more detailed and complete discussion of this subject can be found in

[5].
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