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Abstract

We discuss contemporaneous aggregation of independent copies of a triangular array of random-coefficient

AR(1) processes with i.i.d. innovations belonging to the domain of attraction of an infinitely divisible law

W . The limiting aggregated process is shown to exist, under general assumptions on W and the mixing

distribution, and is represented as a mixed infinitely divisible moving-average {X(t)} in (1.4). Partial sums

process of {X(t)} is discussed under the assumption EW 2 <∞ and a mixing density regularly varying at

the “unit root” x = 1 with exponent β > 0. We show that the above partial sums process may exhibit four

different limit behaviors depending on β and the Lévy triplet of W . Finally, we study the disaggregation

problem for {X(t)} in spirit of Leipus et al. (2006) and obtain the weak consistency of the corresponding

estimator of φ(x) in a suitable L2−space.

Keywords: Aggregation; random-coefficient AR(1) process; triangular array; infinitely divisible distribu-

tion; partial sums process; long memory; disaggregation

1 Introduction

The present paper discusses contemporaneous aggregation of N independent copies

X
(N)
i (t) = aiX

(N)
i (t− 1) + ε

(N)
i (t), t ∈ Z, i = 1, 2, · · · , N (1.1)

of random-coefficient AR(1) process X(N)(t) = aX(N)(t − 1) + ε(N)(t), t ∈ Z, where {ε(N)(t), t ∈ Z}, N =

1, 2, · · · is a triangular array of i.i.d. random variables in the domain of attraction of an infinitely divisible

law W :

N∑
t=1

ε(N)(t) →d W (1.2)

and where a is a r.v., independent of {ε(N)(t), t ∈ Z} and satisfying |a| < 1 almost surely (a.s.). The limit

aggregated process {X(t), t ∈ Z} is defined as the limit in distribution:

N∑
i=1

X
(N)
i (t) →fdd X(t). (1.3)

Here and below, →d and →fdd denote the weak convergence of distributions and finite-dimensional distribu-

tions, respectively. A particular case of (1.1)-(1.3) corresponding to ε(N)(t) = N−1/2ζ(t), where {ζ(t), t ∈ Z}
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are i.i.d. r.v.’s with zero mean and finite variance, leads to the classical aggregation scheme of Robinson

(1978), Granger (1980) and a Gaussian limit process {X(t)}. See also Gonçalves and Gourièroux (1988),

Zaffaroni (2004), Oppenheim and Viano (2004), Celov et al. (2007), Beran et al. (2010) on aggregation of

more general time series models with finite variance. Puplinskaitė and Surgailis (2009, 2010) discussed ag-

gregation of random-coefficient AR(1) processes with infinite variance and innovations ε(N)(t) = N−1/αζ(t),

where {ζ(t), t ∈ Z} are i.i.d. r.v.’s in the domain of attraction of α−stable law W, 0 < α < 2. Aggregation

and disaggregation of autoregressive random fields was discussed in Lavancier (2005, 2011), Lavancier et al.

(2012), Puplinskaitė and Surgailis (2012), Leonenko et al. (2013).

The present paper discusses the existence and properties of the limit process {X(t)} in the general triangular

aggregation scheme (1.1)-(1.3). Let us describe our main results. Theorem 2.6 (Sec. 2) says that under

condition (1.2) and some mild additional conditions, the limit process in (1.3) exists and is written as a

stochastic integral

X(t) :=
∑
s≤t

∫
(−1,1)

xt−sMs(dx), t ∈ Z, (1.4)

where {Ms, s ∈ Z} are i.i.d. copies of an infinitely divisible (ID) random measure M on (−1, 1) with control

measure Φ(dx) := P(a ∈ dx) and Lévy characteristics (µ, σ, π) the same as of r.v. W (M ∼W ) in (1.2), i.e.,

for any Borel set A ⊂ (−1, 1)

EeiθM(A) = eΦ(A)V (θ), θ ∈ R. (1.5)

Here and in the sequel, V (θ) denotes the log-characteristic function of r.v. W :

V (θ) := log EeiθW =

∫
R

(eiθy − 1− iθy1(|y| ≤ 1))π(dy)− 1

2
θ2σ2 + iθµ, (1.6)

where µ ∈ R, σ ≥ 0 and π is a Lévy measure (see sec. 2 for details). In the particular case when W is

α−stable, 0 < α ≤ 2, Theorem 2.6 agrees with Puplinskaitė and Surgailis (2010, Thm. 2.1). We note that

the process {X(t)} in (1.4) is stationary, ergodic and has ID finite-dimensional distributions. According to

the terminology in Rajput and Rosinski (1989), (1.4) is called a mixed ID moving-average.

Section 3 discusses partial sums limits and long memory properties of the aggregated process {X(t)} in

(1.4) under the assumption that the mixing distribution Φ has a probability density φ varying regularly at

x = 1 with exponent β > 0:

φ(x) ∼ C(1− x)β, x→ 1 (1.7)

for some C > 0. (1.7) is similar to the assumptions on the mixing distribution in Granger (1980), Zaffaroni

(2004) and other papers. In the finite variance case σ2
W := Var(W ) < ∞ the aggregated process in (1.4) is

covariance stationary provided E(1− a2)−1 <∞, with covariance

r(t) := Cov(X(t),X(0)) = σ2
W E

[∑
s≤0

at−sa−s
]

= σ2
W E

[ at

1− a2

]
, ∀t ∈ N (1.8)

depending on σ2
W and the mixing distribution only. Note also that the autocorrelation function of X only

depends on the law of a. It is well-known that for 0 < β < 1 and a ∈ [0, 1) a.s., (1.7) implies that

r(t) ∼ C1t
−β (t → ∞) with some C1 > 0, in other words, the aggregated process {X(t)} has nonsummable

covariances
∑

t∈Z |r(t)| =∞, or covariance long memory.

Long memory is often characterized by the limit behavior of partial sums. According to Cox (1984),

a stationary process {Yt, t ∈ Z} is said to have distributional long memory if there exist some constants
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An → ∞ (n → ∞) and Bn and a (nontrivial) stochastic process {J(τ), τ ≥ 0} with dependent increments

such that

A−1
n

[nτ ]∑
t=1

(Yt −Bn) →fdd J(τ). (1.9)

In the case when {J(τ)} in (1.9) has independent increments, the corresponding process {Yt, t ∈ Z} is said

to have distributional short memory.

The main result of Sec. 3 is Theorem 3.1 which shows that under conditions (1.7) and EW 2 <∞, partial

sums of the aggregated {X(t)} in (1.4) may exhibit four different limit behaviors, depending on parameters

β, σ and the behavior of the Lévy measure π at the origin. Write W ∼ ID2(σ, π) if EW = 0, EW 2 =

σ2 +
∫
R x

2π(dx) <∞, in which case V (θ) of (1.6) can be written as

V (θ) =

∫
R

(eiθy − 1− iθy)π(dy)− 1

2
θ2σ2. (1.10)

The Lévy measure π is completely determined by two nonincreasing functions Π+(x) := π({u > x}), Π−(x) :=

π({u ≤ −x}), x > 0 on R+ = (0,∞). Assume that there exist α > 0 and c± ≥ 0, c+ + c− > 0 such that

lim
x→0

xαΠ+(x) = c+, lim
x→0

xαΠ−(x) = c−. (1.11)

Under these assumptions, the four limit behaviors of Sn(τ) :=
∑[nτ ]

t=1 X(t) correspond to the following param-

eter regions:

(i) 0 < β < 1, σ > 0,

(ii) 0 < β < 1, σ = 0, 1 + β < α < 2,

(iii) 0 < β < 1, σ = 0, 0 < α < 1 + β,

(iv) β > 1.

According to Theorem 3.1, the limit process of {Sn(τ)}, in the sense of (1.9) with Bn = 0 and suitably

growing An in respective cases (i) - (iv) is a

(i) fractional Brownian motion with parameter H = 1− (β/2),

(ii) α−stable self-similar process Λα,β with dependent increments and self-similarity parameter H = 1 −
(β/α), defined in (3.2) below,

(iii) (1 + β)−stable Lévy process with independent increments,

(iv) Brownian motion.

See Theorem 3.1 for precise formulations. Accordingly, the process {X(t)} in (1.4) has distributional long

memory in cases (i) and (ii) and distributional short memory in case (iii). At the same time, {X(t)} has

covariance long memory in all three cases (i)-(iii). Case (iv) corresponds to distributional and covariance short

memory. As α increases from 0 to 2, the Lévy measure in (1.11) increases its “mass” near the origin, the

limiting case α = 2 corresponding to σ > 0 or a positive “mass” at 0. We see from (i)-(ii) that distributional

long memory is related to α being large enough, or small jumps of the random measure M having sufficient

high intensity. Note that the critical exponent α = 1 +β separating the long and short memory “regimes” in
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(ii) and (iii) decreases with β, which is quite natural since smaller β means the mixing distribution putting

more weight near the unit root a = 1.

Since aggregation leads to a natural loss of information about aggregated “micro” series, an important

statistical problem arises to recover the lost information from the observed sample of the aggregated process.

In the context of the AR(1) aggregation scheme (1.1)-(1.3) this leads to the so-called the disaggregation

problem, or reconstruction of the mixing density φ(x) from observed sample X(1), · · · ,X(n) of the aggregated

process in (1.4). For Gaussian process (1.4), the disaggregation problem was investigated in Leipus et al.

(2006) and Celov et al. (2010), who constructed an estimator of the mixing density based on its expansion

in an orthogonal polynomial basis. In Sec. 4 we extend the results in Leipus et al. (2006) to the case when

the aggregated process is a mixed ID moving-average of (1.4) with finite 4th moment and obtain the weak

consistency of the mixture density estimator in a suitable L2−space (Theorem 4.1).

The results of our paper could be developed in several directions. We expect that Theorem 3.1 can be

extended to the aggregation scheme with common innovations and to infinite variance ID moving-averages

of (1.4), generalizing the results in Puplinskaitė and Surgailis (2009, 2010). An interesting open problem is

generalizing Theorem 3.1 to the random field set-up of Lavancier (2010) and Puplinskaitė and Surgailis (2012).

In what follows, C stands for a positive constant whose precise value is unimportant and which may change

from line to line.

2 Existence of the limiting aggregated process

Consider random-coefficient AR(1) equation

X(t) = aX(t− 1) + ε(t), t ∈ Z, (2.1)

where {ε(t), t ∈ Z} are i.i.d. r.v.’s with generic distribution ε, and a ∈ (−1, 1) is a random coefficient

independent of {ε(t), t ∈ Z}. The following proposition is easy. See, e.g. Brandt (1986), Puplinskaitė and

Surgailis (2009).

Proposition 2.1 Assume that E|ε|p < ∞ for some 0 < p ≤ 2 and Eε = 0 (p ≥ 1). Then there exists a

unique strictly stationary solution to the AR(1) equation (2.1) given by the series

X(t) =

∞∑
k=0

akε(t− k). (2.2)

The series in (2.2) converge conditionally a.s. and in Lp for any |a| < 1. Moreover, if

E
[ 1

1− |a|

]
< ∞ (2.3)

then the series in (2.2) converges unconditionally in Lp.

Write W ∼ ID(µ, σ, π) if r.v. W is infinitely divisible having the log-characteristic function in (1.6), where

µ ∈ R, σ ≥ 0 and π is a measure on R satisfying π({0}) = 0 and
∫
R(x2 ∧ 1)π(dx) < ∞, called the Lévy

measure of W . It is well-known that the distribution of W is completely determined by the (characteristic)

triplet (µ, σ, π) and vice versa. See, e.g., Sato (1999).
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Definition 2.2 Let {ε(N), N ∈ N∗} be a sequence of r.v.’s tending to 0 in probability, and W ∼ ID(µ, σ, π) be

an ID r.v. We say that the sequence {ε(N)} belongs to the domain of attraction of W , denoted {ε(N)} ∈ D(W ),

if

(CN (θ))N → EeiθW , ∀ θ ∈ R, (2.4)

where CN (θ) := E exp{iθε(N)}, θ ∈ R, is the characteristic function of ε(N).

Remark 2.1 Sufficient and necessary conditions for {ε(N)} ∈ D(W ) in terms of the distribution functions

of ε(N) are well-known. See, e.g., Sato (1999), Feller (1966, vol. 2, Ch. 17). In particular, these conditions

include the convergences

NP(ε(N) > x) → Π+(x), NP(ε(N) < −x) → Π−(x) (2.5)

at each continuity point x > 0 of Π+, Π−, respectively, where Π± are defined as in (1.11).

Remark 2.2 By taking logarithms of both sides, condition (2.4) can be rewritten as

N log CN (θ) → log EeiθW = V (θ), ∀ θ ∈ R, (2.6)

with the convention that the l.h.s. of (2.6) is defined for N > N0(θ) sufficiently large only, since for a fixed

N , the characteristic function CN (θ) may vanish at some points θ. In the general case, (2.6) can be precised

as follows: For any ε > 0 and any K > 0 there exists N0(K, ε) ∈ N∗ such that

sup
|θ|<K

∣∣N log CN (θ)− V (θ)
∣∣ < ε, ∀N > N0(K, ε). (2.7)

The following definitions introduce some technical conditions, in addition to {ε(N)} ∈ D(W ), needed to

prove the convergence towards the aggregated process in (1.3).

Definition 2.3 Let 0 < α ≤ 2 and {ε(N)} be a sequence of r.v.’s. Write {ε(N)} ∈ T (α) if there exists a

constant C independent of N and x and such that one of the two following conditions hold: either

(i) α = 2 and Eε(N) = 0, NE(ε(N))2 ≤ C, or

(ii) 0 < α < 2 and NP(|ε(N)| > x) ≤ Cx−α, x > 0; moreover, Eε(N) = 0 whenever 1 < α < 2, while, for

α = 1 we assume that the distribution of ε(N) is symmetric.

Definition 2.4 Let 0 < α ≤ 2 and W ∼ ID(µ, σ, π). Write W ∈ T (α) if there exists a constant C

independent of x and such that one of the two following conditions hold: either

(i) α = 2 and EW = 0, EW 2 <∞, or

(ii) 0 < α < 2 and Π+(x) + Π−(x) ≤ Cx−α, ∀x > 0; moreover, EW = 0 whenever 1 < α < 2, while, for

α = 1 we assume that the distribution of W is symmetric.

Corollary 2.5 Let {ε(N)} ∈ D(W ), W ∼ ID(µ, σ, π). Assume that {ε(N)} ∈ T (α) for some 0 < α ≤ 2.

Then W ∈ T (α).
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Proof. Let α = 2 and RN denote the l.h.s. of (1.2). Then R2
N →d W 2 and EW 2 ≤ lim infN→∞ ER2

N =

lim infN→∞NE(ε(N))2 < ∞ follows by Fatou’s lemma. Then, relation EW = limN→∞ ERN = 0 follows by

the dominated convergence theorem. For 0 < α < 2, relation Π±(x) ≤ Cx−α at each continuity point x of

Π± follows from {ε(N)} ∈ T (α) and (2.5) and then extends to all x > 0 by monotonicity. Verification of the

remaining properties of W in the cases 1 < α < 2 and α = 1 is easy and is omitted. �

The main result of this section is the following theorem. Recall that {Xi(t) ≡ X(N)
i (t)}, i = 1, 2, · · · , N are

independent copies of AR(1) process in (2.1) with i.i.d. innovations {ε(t) ≡ ε(N)(t)} and random coefficient

a ∈ (−1, 1). Write M ∼ W if M is an ID random measure on (−1, 1) with characteristic function as in

(1.5)-(1.6).

Theorem 2.6 Let condition (2.3) hold. In addition, assume that the generic sequence {ε(N)} belongs to the

domain of attraction of ID r.v. W ∼ ID(µ, σ, π) and there exists an 0 < α ≤ 2 such that {ε(N)} ∈ T (α).

Then the limiting aggregated process {X(t)} in (1.3) exists. It is stationary, ergodic, has infinitely divisible

finite-dimensional distributions, and a stochastic integral representation as in (1.4), where M ∼W .

Proof. We follow the proof of Theorem 2.1 in Puplinskaitė and Surgailis (2010). Fixm ≥ 1 and θ(1), · · · , θ(m) ∈
R. Denote

ϑ(s, a) :=
m∑
t=1

θ(t)at−s1(s ≤ t).

Then
∑m

t=1 θ(t)X
(N)
i (t) =

∑
s∈Z ϑ(s, ai)ε

(N)
i (s), i = 1, · · · , N , and

E exp
{

i

N∑
i=1

m∑
t=1

θ(t)X
(N)
i (t)

}
=

(
E exp

{
i

m∑
t=1

θ(t)X(N)(t)
})N

=
(

1 +
Θ(N)

N

)N
, (2.8)

where

Θ(N) := N
(

E
[∏
s∈Z
CN (ϑ(s, a))

]
− 1
)
.

From definitions (1.4), (1.6) it follows that

E exp
{

i
m∑
t=1

θ(t)X(t)
}

= eΘ, where Θ := E
∑
s∈Z

V (ϑ(s, a)). (2.9)

The convergence in (1.3) to the aggregated process of (1.4) follows from (2.8), (2.9) and the limit

lim
N→∞

Θ(N) = Θ, (2.10)

which will be proved below.

Note first that supa∈[0,1),s∈Z |ϑ(s, a)| ≤
∑m

t=1 |θ(t)| =: K is bounded and therefore the logarithm log CN (ϑ(s, a))

is well-defined for N > N0(K) large enough, see (2.7), and Θ(N) can be rewritten as

Θ(N) = EN
(

exp
{
N−1

∑
s∈Z

N log CN (ϑ(s, a))
}
− 1
)
.

Then (2.10) follows if we show that

lim
N→∞

∑
s∈Z

N log CN (ϑ(s, a)) =
∑
s∈Z

V (ϑ(s, a)), ∀ a ∈ (−1, 1) (2.11)
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and ∑
s∈Z

∣∣N log CN (ϑ(s, a))
∣∣ ≤ C

1− |a|α
, ∀ a ∈ (−1, 1), (2.12)

where C does not depend on N, a.

Let us prove (2.12). It suffices to check the bound

N |1− CN (θ)| ≤ C|θ|α. (2.13)

Indeed, since |CN (ϑ(s, a)) − 1| < ε for N large enough (see above), so
∣∣N log CN (ϑ(s, a))

∣∣ ≤ CN
∣∣1 −

CN (ϑ(s, a))
∣∣ and (2.13) implies∑

s∈Z

∣∣N log CN (ϑ(s, a))
∣∣ ≤ C

∑
s∈Z
|ϑ(s, a)|α ≤ C

1− |a|α
, (2.14)

see Puplinskaitė and Surgailis (2010, (A.4)), proving (2.12).

Consider (2.13) for 1 < α < 2. Since Eε(N) = 0 so CN (θ)− 1 =
∫
R(eiθx − 1− iθx)dFN (x) and

N |1− CN (θ)| ≤ N
∣∣ ∫ 0

−∞
(eiθx − 1− iθx)dFN (x)

∣∣+N
∣∣ ∫ ∞

0
(eiθx − 1− iθx)d(1− FN (x))

∣∣
= |θ|

(∣∣ ∫ 0

−∞
NFN (x)(eiθx − 1)dx

∣∣+
∣∣ ∫ ∞

0
N(1− FN (x))(eiθx − 1)dx

∣∣)
≤ C|θ|

∫ ∞
0

x−α((|θ|x) ∧ 1)dx ≤ C|θ|α, (2.15)

since NFN (x)1(x < 0) +N(1− FN (x))1(x > 0) ≤ C|x|−α and the integral∫ ∞
0

x−α((|θ|x) ∧ 1)dx = |θ|
∫ 1/|θ|

0
x1−αdx+

∫ ∞
1/|θ|

x−αdx = |θ|α−1(
1

2− α
+

1

α− 1
)

converges. In the case α = 2, we have N |CN (θ)− 1| ≤ 1
2θ

2NE(ε(N))2 ≤ Cθ2 and (2.13) follows.

Next, let 0 < α < 1. Then

N |1− CN (θ)| ≤ N

∫ 0

−∞
|eiθx − 1|dFN (x) +N

∫ ∞
0
|eiθx − 1| |d(1− FN (x))| =: I1 + I2.

Here, I1 ≤ 2N
∫ 0
−∞((|θ| |x|) ∧ 1)dFN (x) = 2N

∫ −1/|θ|
−∞ dFN (x) + 2N |θ|

∫ 0
−1/|θ| |x|dFN (x) =: 2(I11 + I12). We

have I11 = NFN (−1/|θ|) ≤ C|θ|α and

I12 = −|θ|N
∫ 0

−1/|θ|
xdFN (x) = −|θ|N

(
xFN (x)

∣∣x=0

x=−1/|θ| −
∫ 0

−1/|θ|
FN (x)dx

)
= |θ|N

(
− FN (−1/|θ|)

|θ|
+

∫ 0

−1/|θ|
FN (x)dx

)
≤ C|θ|α + C|θ|

∫ 0

−1/|θ|
|x|−αdx ≤ C|θ|α.

Since I2 can be evaluated analogously, this proves (2.13) for 0 < α < 1.

It remains to prove (2.13) for α = 1. Since
∫
{|x|≤1/|θ|} xdFN (x) = 0 by symmetry of ε(N), so CN (θ) − 1 =

J1 +J2 +J3 +J4, where J1 :=
∫ −1/|θ|
−∞ (eiθx−1)dFN (x), J2 :=

∫ 0
−1/|θ|(e

iθx−1− iθx)dFN (x), J3 :=
∫ 1/|θ|

0 (eiθx−
1 − iθx)dFN (x), J4 :=

∫∞
1/|θ|(e

iθx − 1)dFN (x). We have N |J1| ≤ 2NFN (−1/|θ|) ≤ C|θ| and a similar bound

follows for Ji, i = 2, 3, 4. This proves (2.13). Then (2.11) and the remaining proof of (2.10) and Theorem 2.6

follow as in Puplinskaitė and Surgailis (2010, proof of Thm. 2.1). �

Theorem 2.6 applies in the case of innovations in the domain of attraction of α−stable law, see below.
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Definition 2.7 Let 0 < α ≤ 2 and ζ be a r.v. Write ζ ∈ D(α) if

(i) α = 2 and Eζ = 0, Eζ2 <∞, or

(ii) 0 < α < 2 and there exist some constants c1, c2 ≥ 0, c1 + c2 > 0 such that

lim
x→∞

xαP(ζ > x) = c1 and lim
x→−∞

|x|αP(ζ ≤ x) = c2;

moreover, Eζ = 0 whenever 1 < α < 2, while, for α = 1 we assume that the distribution of ζ is symmetric.

Corollary 2.8 Let ε(N) = N−1/αζ, where ζ ∈ D(α), 0 < α ≤ 2. Then {ε(N)} ∈ T (α) and {ε(N)} ∈ D(W ),

where W is α−stable r.v. with the characteristic function

EeiθW = e−|θ|
αω(θ;α,c1,c2), θ ∈ R, (2.16)

where

ω(θ;α, c1, c2) :=


Γ(2−α)

1−α

(
(c1 + c2) cos(πα/2)− i(c1 − c2)sign(θ) sin(πα/2)

)
, α 6= 1, 2,

(c1 + c2)(π/2), α = 1,

σ2/2, α = 2.

(2.17)

In this case, the statement of Theorem 2.6 coincides with Puplinskaitė and Surgailis (2010, Thm. 2.1).

3 Convergence of the partial sums

In this section we study partial sums limits and distributional long memory property of the aggregated mixed

ID moving-average in (1.4) under condition (1.7) on the mixing distribution Φ. More precisely, we shall

assume that Φ has a density φ in a vicinity (1− ε, 1), 0 < ε < 1 of the unit root such that

φ(x) = ψ(x) (1− x)β, x ∈ (1− ε, 1), (3.1)

where β > 0 and ψ(x) is an bounded function having a finite limit ψ(1) := limx→1 ψ(x) > 0. Notice that no

restrictions on the mixing distribution in the interval (−1, 1 − ε] with exception of (2.3) are imposed. We

also expect that condition (3.1) can be further relaxed by including a slowly varying factor as x→ 1.

Consider an independently scattered α−stable random measure N(dx,ds) on (0,∞) × R with control

measure ν(dx,ds) := ψ(1)xβ−αdxds and characteristic function EeiθN(A) = e−|θ|
αω(θ;α,c+,c−)ν(A), θ ∈ R,

where A ⊂ (0,∞)×R is a Borel set with ν(A) <∞ and ω is defined at (2.17). For 1 < α ≤ 2, 0 < β < α− 1,

introduce the process

Λα,β(τ) :=

∫
R+×R

(
f(x, τ − s)− f(x,−s)

)
N(dx,ds), τ ≥ 0, where (3.2)

f(x, t) :=

1− e−xt, if x > 0 and t > 0,

0, otherwise,

defined as a stochastic integral with respect to the above random measure N . The process Λα,β was introduced

in Puplinskaitė and Surgailis (2010). It has stationary increments, α−stable finite-dimensional distributions,

a.s. continuous sample paths and is self-similar with parameter H = 1 − β
α ∈ ( 1

α , 1). Note that for α = 2,

Λ2,β is a fractional Brownian motion. Write →D[0,1] for the weak convergence of random processes in the

Skorohod space D[0, 1] endowed with the J1−topology.
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Theorem 3.1 Let {X(t)} be the aggregated process in (1.4), where M ∼ W ∼ ID2(σ, π) and the mixing

distribution satisfies (3.1) and (2.3).

(i) Let 0 < β < 1 and σ > 0. Then

1

n1−β
2

[nτ ]∑
t=1

X(t) →D[0,1] BH(τ), (3.3)

where BH is a fractional Brownian motion with parameter H := 1− β
2 and variance EB2

H(τ) = σ2ψ(1)Γ(β −
2)τ2H .

(ii) Let 0 < β < 1, σ = 0 and there exist 1 + β < α < 2 and c± ≥ 0, c+ + c− > 0 such that (1.11) hold. Then

1

n1− β
α

[nτ ]∑
t=1

X(t) →D[0,1] Λα,β(τ), (3.4)

where Λα,β is defined in (3.2).

(iii) Let 0 < β < 1, σ = 0, π 6= 0 and there exists 0 < α < 1 + β such that∫
R
|x|απ(dx) <∞. (3.5)

Then

1

n
1

1+β

[nτ ]∑
t=1

X(t) →fdd L1+β(τ), (3.6)

where {L1+β(τ), τ ≥ 0} is an (1 + β)−stable Lévy process with log-characteristic function given in (3.24)

below.

(iv) Let β > 1. Then

1

n1/2

[nτ ]∑
t=1

X(t) →fdd σΦB(τ), (3.7)

where B is a standard Brownian motion with EB2(1) = 1 and σΦ is defined in (3.25) below. Moreover, if

β > 2 and π satisfies (3.5) with α = 4, the convergence →fdd in (3.7) can be replaced by →D[0,1].

Remark 3.1 Note that the normalization exponents in Theorem 3.1 decrease from (i) to (iv):

1− β

2
> 1− β

α
>

1

1 + β
>

1

2
. (3.8)

Hence, we may conclude that the dependence in the aggregated process decreases from (i) to (iv). Also note

that while {X(t)} has finite variance in all cases (i) - (iv), the limit of its partial sums may have infinite

variance as it happens in (ii) and (iii). Apparently, the finite-dimensional convergence in (3.6) cannot be

replaced by the convergence in D[0, 1] with the J1−topology. See Mikosch et al. (2002, p.40), Leipus and

Surgailis (2003, Remark 4.1) for related discussion.

Proof. Decompose {X(t)} in (1.4) as X(t) = X+(t)+X−(t), where X+(t) :=
∑

s≤t
∫

(1−ε,1) x
t−sMs(dx), X−(t) :=∑

s≤t
∫

(−1,1−ε] x
t−sMs(dx) and 0 < ε < 0 is the same as in (3.1). Let us first show that

S−n : =

n∑
t=1

X−(t) = Op(n
1/2). (3.9)
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Using (1.8), we can write

E(S−n )2 = σ2E
[ n∑
t,s=1

a|t−s|

1− a2
1(−1 < a ≤ 1− ε)

]
≤ C

n∑
s=1

E
[ 1− an−s

(1− a2)(1− a)
1(−1 < a ≤ 1− ε)

]
≤ C(n/ε)E(1− a2)−1 = O(n),

proving (3.9). We see from (3.9) and (3.8) that S−n is negligible in the proof of (i) - (iii) since the normalizing

constants in these statements grow faster than n1/2. Therefore in the subsequent proofs of finite-dimensional

convergence in (i) - (iii) we can assume w.l.g. that X(t) = X+(t).

Proof of (i). The statement is true if π = 0, or W ∼ N (0, σ2). In the case π 6= 0, split X(t) = X1(t) + X2(t),

where X1(t),X2(t) are defined following the decomposition of the measure M = M1 + M2 into independent

random measures M1 ∼W1 ∼ ID2(σ, 0) and M2 ∼W2 ∼ ID2(0, π). Let us prove that

Sn2 :=
n∑
t=1

X2(t) = op(n
1−β

2 ). (3.10)

Let V2(θ) := log EeiθW2 =
∫
R(eiθx − 1− iθx)π(dx). Then

|V2(θ)| ≤ Cθ2 (∀ θ ∈ R) and |V2(θ)| = o(θ2) (|θ| → ∞). (3.11)

Indeed, for any δ > 0, |V2(θ)| ≤ θ2I1(δ) + 2|θ|I2(δ), where I1(δ) := θ−2
∫
|x|≤δ |e

iθx − 1 − iθx|π(dx) ≤∫
|x|≤δ x

2π(dx)→ 0 (δ → 0) and I2(δ) := (2|θ|)−1
∫
|x|>δ |e

iθx − 1− iθx|π(dx) ≤
∫
|x|>δ |x|π(dx) <∞ (∀ δ > 0).

Hence, (3.11) follows.

Relation (3.10) follows from Jn := log E exp
{

iθn−1+β
2 Sn2

}
= o(1). We have

Jn =
∑
s∈Z

∫ ε

0
V2

(
θn−1+β/2

n∑
t=1

(1− z)t−s1(t ≥ s)
)
zβψ(1− z)dz = Jn1 + Jn2,

where Jn1 :=
∑

s≤0

∫ ε
0 V2(· · · )zβψ(1 − z)dz, Jn2 :=

∑n
s=1

∫ ε
0 V2(· · · )zβψ(1 − z)dz. By change of variables:

nz = w, n− s+ 1 = nu, Jn2 can be rewritten as

Jn2 =
n∑
s=1

∫ ε

0
V2

(θ(1− (1− z)n−s+1)

n1−β/2z

)
zβψ(1− z)dz

=
1

nβ

∫ 1

1/n
du

∫ εn

0
V2

(θnβ/2(1− (1− w
n )[un])

w

)
wβψ

(
1− w

n

)
dw

= θ2

∫ 1

0
du

∫ ∞
0

Gn(u,w)wβ−2ψ
(

1− w

n

)
dw,

where

Gn(u,w) :=
(
1− (1− w

n
)[un]

)2
κ
(θnβ/2(1− (1− w

n )[un])

w

)
1(1/n < u < 1, 0 < w < εn)

and where κ(θ) := V2(θ)/θ2 is a bounded function vanishing as |θ| → ∞; see (3.11). Therefore Gn(u,w) →
0 (n→∞) for any u ∈ (0, 1], w > 0 fixed. We also have |Gn(u,w)| ≤ C

(
1− (1− w

n )[un]
)2 ≤ C(1− e−wu)2 =:

Ḡ(u,w), where
∫ 1

0 du
∫∞

0 Ḡ(u,w)wβ−2dw < ∞. Thus, Jn2 = o(1) follows by the dominated convergence

theorem. The proof Jn1 = o(1) using (3.11) follows by a similar argument. This proves Jn = o(1), or (3.10).

The tightness of the partial sums process in D[0, 1] follows from β < 1 and Kolmogorov’s criterion since
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E
(∑n

t=1 X(t)
)2

= O(n2−β), the last relation being an easy consequence of r(t) = O(t−β), see (1.8) and the

discussion below it.

Proof of (ii). Let Sn(τ) :=
∑[nτ ]

t=1 X(t). Let us prove that for any 0 < τ1 < · · · < τm ≤ 1, θ1 ∈ R, · · · , θm ∈ R

Jn := log E exp
{

i
1

n1− β
α

m∑
j=1

θjSn(τj)
}
→ J, where (3.12)

J := −ψ(1)

∫
R+×R

∣∣∣ m∑
j=1

θj(f(w, τj − u)− f(w,−u))
∣∣∣αω( m∑

j=1

θj(f(w, τj − u)− f(w,−u));α, c+, c−
)dwdu

wα−β
.

We have J = log Eei
∑m
j=1 θjΛα,β(τj) by definition (3.2) of Λα,β. We shall restrict the proof of (3.12) to

m = τ1 = 1, since the general case follows analogously. Let V (θ) be defined as in (1.10), where σ = 0. Then,

Jn =
∑
s∈Z

∫ ε

0
V
(
θ

1

n1− β
α

n∑
t=1

(1− z)t−s1(t ≥ s)
)
zβψ(1− z)dz

=
∑
s≤0

∫ ε

0
V (...)zβψ(1− z)dz +

n∑
s=1

∫ ε

0
V (...)zβψ(1− z)dz

=: Jn1 + Jn2.

Similarly, split J = J1 + J2, where

J1 := −|θ|αψ(1)ω(θ;α, c+, c−)

∫ 0

−∞
du

∫ ∞
0

(f(w, 1− u)− f(w,−u))αwβ−αdw,

J2 := −|θ|αψ(1)ω(θ;α, c+, c−)

∫ 1

0
du

∫ ∞
0

(f(w, u))αwβ−αdw.

To prove (3.12) we need to show Jn1 → J1, Jn2 → J2. We shall use the following facts:

lim
λ→+0

λV
(
λ−1/αθ

)
= −|θ|αω(θ;α, c+, c−), ∀ θ ∈ R (3.13)

and

|V (θ)| ≤ C|θ|α, ∀ θ ∈ R (∃C <∞). (3.14)

Here, (3.14) follows from (1.11),
∫
R x

2π(dx) <∞ and integration by parts. To show (3.13), let χ(x), x ∈ R be

a bounded continuously differentiable function with compact support and such that χ(x) ≡ 1, |x| ≤ 1. Then

the l.h.s. of (3.13) can be rewritten as

λV
(
λ−1/αθ

)
=

∫
R

(eiθy − 1− iθyχ(y))πλ(dy) + iθµχ,λ,

where πλ(dy) := λπ(dλ1/αy), µχ,λ :=
∫
R y(χ(y)− 1)πλ(dy). The r.h.s. of (3.13) can be rewritten as

−|θ|αω(θ;α, c+, c−) = V0(θ) :=
∫
R(eiθy − 1− iθyχ(y))π0(dy) + iθµχ,0,

where π0(dy) := −c+dy−α1(y > 0) + c−d(−y)−α1(y < 0), µχ,0 :=
∫
R y(χ(y)− 1)π0(dy). Let C\ be the class

of all bounded continuous functions on R vanishing in a neighborhood of 0. According to Sato (1999, Thm.

8.7), relation (3.13) follows from

lim
λ→0

∫
R
f(y)πλ(dy) =

∫
R
f(y)π0(dy), ∀ f ∈ C\, (3.15)

lim
λ→0

µχ,λ = µχ,0, lim
ε↓0

lim
λ→0

∫
|y|≤ε

y2πλ(dy) = 0. (3.16)
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Relations (3.15) is immediate from (1.11) while (3.16) follows from (1.11) by integration by parts.

Coming back to the proof of (3.12), consider the convergence Jn2 → J2. By change of variables: nz =

w, n− s+ 1 = nu, Jn2 can be rewritten as

Jn2 =

∫ 1

1/n
du

∫ εn

0
n−βV

(
θn

β
α

1− (1− w
n )[un]

w

)
wβψ

(
1− w

n

)
dw

= −|θ|αω(θ;α, c+, c−)

∫ 1

0
du

∫ ∞
0

(1− e−wu

w

)α
κn2(θ;u,w)wβψ

(
1− w

n

)
dw,

where κn2(u,w) is written as

κn2(θ;u,w) := −
(1− e−wu

w

)−α
n−β

V
(
θn

β
αw−1(1− (1− w

n )[un])
)

|θ|αω(θ;α, c+, c−)
1(n−1 < u ≤ 1, 0 < w < εn)

=
λn(u,w)V (λ−1/αθ)

−|θ|αω(θ;α, c+, c−)

(1− (1− w
n )[un]

1− e−wu

)α
1(n−1 < u ≤ 1, 0 < w < εn) (3.17)

with

λn(u,w) := n−β
( w

1− (1− w
n )[un]

)α
→ 0

for each u ∈ (0, 1], w > 0 fixed. Hence and with (3.13) in mind, it follows that κn2(θ;u,w) → 1 for each

θ ∈ R, u ∈ (0, 1], w > 0 and therefore the convergence Jn2 → J2 by the dominated convergence theorem

provided we establish a dominating bound

|κn2(θ;u,w)| ≤ C (3.18)

with C independent of n, u ∈ (0, 1], w ∈ (0, εn). From (3.14) it follows that the first ratio on the r.h.s. of (3.17)

is bounded by an absolute constant. Next, for any 0 ≤ x ≤ 1/2, s > 0 we have 1− x ≥ e−2x =⇒ (1− x)s ≥
e−2xs =⇒ 1 − (1 − x)s ≤ 2(1 − e−xs) and hence

1−(1−w
n

)[un]

1−e−wu ≤ 1−(1−w
n

)un

1−e−wu ≤ 2 for any 0 ≤ w ≤ n/2, u > 0

so that the second ratio on the r.h.s. of (3.17) is also bounded by 2, provided ε ≤ 1/2. This proves (3.18)

and concludes the proof of Jn2 → J2. The proof of the convergence Jn1 → J1 is similar and is omitted. This

concludes the proof of (3.12), or finite-dimensional convergence in (3.4).

To prove the tightness part of (3.4), it suffices to verify the well-known criterion in Billingsley (1968,

Thm.12.3): there exists C > 0 such that, for any n ≥ 1 and 0 ≤ τ < τ + h ≤ 1

sup
u>0

uαP
(
n
β
α
−1|Sn(τ + h)− Sn(τ)| > u

)
< Chα−β, (3.19)

where α− β > 1. By stationarity of increments of {X(t)} it suffices to prove (3.19) for τ = 0, h = 1, in which

case it becomes

sup
u>0

uαP
(
|Sn| > u

)
< Cnα−β, Sn := Sn(1). (3.20)

The proof of (3.20), below, requires inequality in (3.21) for tail probabilities of stochastic integrals w.r.t.

ID random measure. Let Lα(Z × (−1, 1)) be the class of measurable functions g : Z × (−1, 1) → R with

‖g‖αα :=
∑

s∈Z E|g(s, a)|α < ∞. Also, introduce the weak space Lαw(Z × (−1, 1)) of measurable functions g :

Z× (−1, 1)→ R with ‖g‖αα,w := supt>0 t
α
∑

s∈Z P(|g(s, a)| > t) <∞. Note Lα(Z× (−1, 1)) ⊂ Lαw(Z× (−1, 1))

and ‖g‖αα,w ≤ ‖g‖αα. Let {Ms, s ∈ Z} be the random measure in (1.4), M ∼ W ∼ ID2(0, π) with zero mean
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and the Lévy measure π satisfying the assumptions in (ii). It is well-known (see, e.g., Surgailis (1981)) that

the stochastic integral M(g) :=
∑

s∈Z
∫

(−1,1) g(s, a)Ms(da) is well-defined for any g ∈ Lp(Z×(−1, 1)), p = 1, 2

and satisfies EM2(g) = C2‖g‖22, E|M(g)| ≤ C1‖g‖1 for some constants C1, C2 > 0. The above facts together

with Hunt’s interpolation theorem, see Reed and Simon (1975, Theorem IX.19) imply that M(g) extends to

all g ∈ Lαw(Z× (−1, 1)), 1 < α < 2 and satisfies the bound

sup
u>0

uαP(|M(g)| > u) ≤ C‖g‖αα,w ≤ C‖g‖αα, (3.21)

with some constant C > 0 depending on α,C1, C2 only. Using (3.21) and the representation Sn = M(g) with

g(s, a) =
∑n

t=1 a
t−s1(t ≥ s) we obtain

sup
u>0

uαP
(
|Sn| > u

)
≤ C

∑
s≤n

E
∣∣∣ n∑
t=1∨s

at−s
∣∣∣α = O(nα−β),

where the last relation easily follows from condition (3.1), see also Puplinskaitė and Surgailis (2010, proof of

Theorem 3.1). This proves (3.20) and part (ii).

Proof of (iii). It suffices to prove that for any 0 < τ1 < · · · < τm ≤ 1, θ1 ∈ R, · · · , θm ∈ R

Jn := log E exp
{

i
1

n1/(1+β)

m∑
j=1

θjSn(τj)
}
→ J := log E exp{i

m∑
j=1

θjL1+β(τj)}. (3.22)

Similarly as in (i)-(ii), we shall restrict the proof of (3.22) to the case m = 1 since the general case follows

analogously. Then

Jn =
∑
s∈Z

∫ ε

0
V
(
n−1/(1+β)θ

[nτ ]∑
t=1

(1− z)t−s1(t ≥ s)
)
zβψ(1− z)dz = Jn1 + Jn2,

where Jn1 :=
∑

s≤0

∫ ε
0 V (· · · )zβψ(1− z)dz, Jn2 :=

∑[nτ ]
s=1

∫ ε
0 V (· · · )zβψ(1− z)dz. Let θ > 0. By the change of

variables: n1/(1+β)z = θ/y, [nτ ]− s+ 1 = nu, Jn2 can be rewritten as

Jn2 =

[nτ ]∑
s=1

∫ ε

0
V
(θ(1− (1− z)[nτ ]−s+1)

n1/(1+β)z

)
zβψ(1− z)dz

= θ1+β

∫ τ

0
du

∫ ∞
0

dy

yβ+2
V
(
y(1− (1− θ

n1/(1+β)y
)[un])

)
ψ
(

1− θ

n1/(1+β)y

)
1n(θ; y, u), (3.23)

where 1n(θ; y, u) := 1(1/n < u < [nτ ]/n], y > θε−1n−1/(1+β))→ 1(0 < u < τ, y > 0). As (1− θ
n1/(1+β)y

)un → 0

for any u, y > 0 due to n/n1/(1+β) → ∞, we see that the integrand in (3.23) tends to y−β−2V (y)ψ(1). We

will soon prove that this passage to the limit under the sign of the integral in (3.23) is legitimate. Therefore,

Jn2 → J := τ |θ|1+βψ(1)

∫ ∞
0

V (y)y−β−2dy = −τ |θ|1+βψ(1)ω(θ; 1 + β, π−β , π
+
β ), (3.24)

π+
β :=

1

1 + β

∫ ∞
0

x1+βπ(dx), π−β :=
1

1 + β

∫ 0

−∞
|x|1+βπ(dx),

and the last equality in (3.24) follows from the definition of V (y) and Ibragimov and Linnik (1971, Thm.

2.2.2).
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For justification of the above passage to the limit, note that the function V (y) =
∫
R(eiyx − 1 − iyx)π(dx)

satisfies |V (y)| ≤ V1(y) +V2(y), where V1(y) := y2
∫
|x|≤1/|y| x

2π(dx), V2(y) := 2|y|
∫
|x|>1/|y| |x|π(dx). We have∫ ∞

0
(V1(y) + V2(y))y−β−2dy ≤

∫
R
x2π(dx)

∫ 1/|x|

0
y−βdy + 2

∫
R
|x|π(dx)

∫ ∞
1/|x|

y−1−βdy

≤ C

∫
R
|x|1+βπ(dx) < ∞.

Next, sup1/2≤c≤1 V1(cy) ≤ y2
∫
|x|≤2/|y| x

2π(dx) =: V̄1(y), sup1/2≤c≤1 V2(cy) ≤ V2(y) and
∫∞

0 V̄1(y)y−β−2dy <

∞. Denote ζn(θ; y, u) := (1 − θ
n1/(1+β)y

)[un]. Then ζn(θ; y, u) ≥ 0 and we split the integral in (3.23) into two

parts corresponding to ζn(θ; y, u) ≤ 1/2 and ζn(θ; y, u) > 1/2, viz., Jn2 = J+
n2 + J−n2, where

J+
n2 := θ1+β

∫ τ

0
du

∫ ∞
0

y−β−2dyV
(
y(1− ζn(θ; y, u))

)
ψ
(

1− θ

n1/(1+β)y

)
1(ζn(θ; y, u) ≤ 1/2)1n(θ, y, u),

J−n2 := θ1+β

∫ τ

0
du

∫ ∞
0

y−β−2dyV
(
y(1− ζn(θ; y, u))

)
ψ
(

1− θ

n1/(1+β)y

)
1(ζn(θ; y, u) > 1/2)1n(θ; y, u).

Since
∣∣V (y(1 − ζn(θ; y, u))

)
1(ζn(θ; y, u) ≤ 1/2)

∣∣ ≤ V̄1(y) + V2(y) is bounded by integrable function (see

above), so J+
n2 → J by the dominated convergence theorem. It remains to prove J−n2 → 0. From inequalities

1 − x ≤ e−x (x > 0) and [un] ≥ un/2 (u > 1/n) it follows that ζn(θ; y, u) ≤ e−θun/2n
1/(1+β)y and hence

1(ζn(θ; y, u) > 1/2) ≤ 1(e−θun/2n
1/(1+β)y > 1/2) = 1((u/y) < c1n

−γ), where γ := β/(1 + β) > 0, c1 :=

(2 log 2)/θ. Without loss of generality, we can assume that 1 < α < 1 + β in (3.5). Condition (3.5) implies

|V (y)| ≤
∫
|xy|≤1

|yx|απ(dx) + 2

∫
|yx|>1

|yx|απ(dx) ≤ C|y|α, ∀ y ∈ R.

Hence

|J−n2| ≤ C

∫ τ

0
du

∫ ∞
0

1
(u
y
< c1n

−γ) dy

y2+β−α ≤ Kn−γ(1+β−α) → 0,

where K := C
∫ τ

0 u
α−1−βdu < ∞. This proves Jn2 → J , or (3.24). The proof of Jn1 → 0 follows similarly

and hence is omitted.

Proof of (iv). The proof of finite-dimensional convergence is similar to Puplinskaitė and Surgailis (2010,

proof of Thm. 3.1 (ii)). Below, we present the proof of the one-dimensional convergence of n−1/2Sn =

n−1/2
∑n

t=1 X(t) towards N (0, σ2
Φ) with σ2

Φ > 0 given in (3.25) below. The convergence of general finite-

dimensional distributions follows analogously. Similarly as above, consider Jn := log E exp{iθn−1/2Sn} =

Jn1 + Jn2, where Jn1 :=
∑

s≤0 EV
(
θn−1/2

∑n
t=1 a

t−s), Jn2 :=
∑n

s=1 EV
(
θn−1/2

∑n
t=s a

t−s). Let Φ̃(dz) :=

Φ(d(1− z)), z ∈ (0, 2). We have

Jn2 =
n∑
k=1

∫
(0,2)

V
(
θ

1− (1− z)k

zn1/2

)
Φ̃(dz)

= −θ2σ2
W n−1

n∑
k=1

∫
(0,2)

(1− (1− z)k)2z−2κn(θ; k, z)Φ̃(dz),

where κn(θ; k, z) := κ
(
θ 1−(1−z)k

zn1/2

)
and the function κ(y) := − V (y)

σ2
W y2

satisfies limy→0 κ(y) = 1, supy∈R |κ(y)| <
∞. These facts together with β > 1 imply n−1

∑n
k=1

∫
(0,2)(1−(1−z)k)2z−2κn(θ; k, z)Φ(dz)→

∫
(0,2) z

−2Φ̃(dz)

and hence Jn2 → −(1/2)θ2σ2
Φ, with

σ2
Φ := 2σ2

W

∫
(0,2)

z−2Φ̃(dz) = 2σ2
WE(1− a)−2. (3.25)
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The proof of Jn1 → 0 follows similarly (see Puplinskaitė and Surgailis (2010) for details). This proves (3.7).

Let us prove the tightness part in (iv). It suffices to show the bound

ES4
n ≤ Cn2. (3.26)

We have Sn = M(g), where M is the stochastic integral discussed in the proof of (ii) above and g ≡ g(s, a) =∑n
t=1 a

t−s1(t ≥ s) ∈ L2(Z × (−1, 1)). Then EM4(g) = cum4(M(g)) + 3(EM2(g))2, where EM2(g) = ES2
n

satisfies ES2
n ≤ Cn (the last fact follows by a similar argument as above). Hence, (EM2(g))2 ≤ Cn2 in agree-

ment with (3.26). It remains to evaluate the 4th cumulant cum4(Sn) = cum4(M(g)) = π4
∑

s∈Z Eg4(s, a),

where π4 :=
∫
R x

4π(dx). Then cum4(Sn) = π4(Ln1 + Ln2), where

Ln1 :=
∑
s≤0

E
( n∑
t=1

at−s
)4
, Ln2 :=

n∑
s=1

E
( n∑
t=s

at−s
)4
.

We have

Ln2 ≤ n

n∑
k=1

E
∣∣∣ k∑
t=0

at
∣∣∣3 ≤ n

n∑
k=1

E
[ 1

|1− a|3
]
≤ Cn2

since β > 2. Similarly,

Ln1 ≤ n2
∑
s≤0

E
( n∑
t=1

at−s
)2
≤ n2E

[ 1

(1− a2)(1− a)2

]
≤ Cn2.

This proves (3.26) and part (iv). Theorem 3.1 is proved. �

4 Disaggregation

Following Leipus et al. (2006), let us define an estimator of φ, the density of the mixing distribution Φ.

Differently from the last paper, we shall assume below that the variance σ−2
W is not necessary known. Its

starting point is the equality (1.8), implying

σ−2
W (r(k)− r(k + 2)) =

∫ 1

−1
xkφ(x)dx, k = 0, 1, · · · , (4.1)

where r(k) = Cov(X(k),X(0)) and σ2
W = Var(W ) = r(0) − r(2). The l.h.s. of (4.1), hence the integrals on

the r.h.s. of (4.1), or moments of Φ, can be estimated from the observed sample, leading to the problem of

recovering the density from its moments, as explained below.

For a given q > −1, consider a finite measure on (−1, 1) having density w(q)(x) := (1− x2)q. Let L2(w(q))

be the space of functions h : (−1, 1) → R which are square integrable with respect to this measure. Denote

by
{
G

(q)
n , n = 0, 1, · · ·

}
the orthonormal basis in L2(w(q)) consisting of normalized Gegenbauer polynomials

G
(q)
n (x) =

∑n
j=0 g

(q)
n,jx

j with coefficients

g
(q)
n,n−2m = (−1)m

(gn)−1/2

Γ(q + 1/2)

2n−2mΓ(q + 1/2 + n−m)

Γ(m+ 1)Γ(n− 2m+ 1)
for 0 ≤ m ≤ [n/2] , (4.2)

where gn := π
22q

Γ(n+2q+1)
Γ2(q+1/2)Γ(n+q+1/2)

, see Abramovitz and Stegun (1965, (22.3.4)), also Leipus et al. (2006,

(B.4)). Thus, ∫ 1

−1
G

(q)
j (x)G

(q)
k (x)w(q)(x)dx =

{
1 if j = k,

0 if j 6= k.
(4.3)
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Any function h ∈ L2(w(q)) can be expanded in Gegenbauer polynomials:

h(x) =

∞∑
k=0

hkG
(q)
k (x) with hk =

∫ 1

−1
h(x)G

(q)
k (x)w(q)(x)dx =

k∑
j=0

g
(q)
k,j

∫ 1

−1
h(x)xjw(q)(x)dx. (4.4)

Below, we call (4.4) the q-Gegenbauer expansion of h.

Consider the function

ζ(x) :=
φ(x)

(1− x2)q
, with

∫ 1

−1
ζ(x)(1− x2)qdx =

∫ 1

−1
φ(x)dx = 1. (4.5)

Under the condition ∫ 1

−1

φ(x)2

(1− x2)q
dx <∞, (4.6)

the function ζ in (4.5) belongs to L2(w(q)), and has a q−Gegenbauer expansion with coefficients

ζk =
k∑
j=0

g
(q)
k,j

∫ 1

−1
φ(x)xjdx =

1

σ2
W

k∑
j=0

g
(q)
k,j (r(j)− r(j + 2)) , k = 0, 1, · · · ; (4.7)

see (4.1). Equations (4.4), (4.7) lead to the following estimates of the function ζ(x):

ζ̂n(x) :=

Kn∑
k=0

ζ̂n,kG
(q)
k (x), ζ̃n(x) :=

Kn∑
k=0

ζ̃n,kG
(q)
k (x), (4.8)

where Kn, n ∈ N∗ is a nondecreasing sequence tending to infinity at a rate which is discussed below, and

ζ̂n,k :=
1

σ̂2
W

k∑
j=0

g
(q)
k,j(r̂n(j)− r̂n(j + 2)), ζ̃n,k :=

1

σ2
W

k∑
j=0

g
(q)
k,j(r̂n(j)− r̂n(j + 2)) (4.9)

are natural estimates of the ζk’s in (4.7) in the case when σ2
W is unknown or known, respectively. Here and

below,

X :=
1

n

n∑
k=1

X(k), r̂n(j) :=
1

n

n−j∑
i=1

(
X(i)− X

)(
X(i+ j)− X

)
, j = 0, 1, · · · , n (4.10)

are the sample mean and the sample covariance, respectively, and the estimate of σ2
W = r(0)− r(2) is defined

as

σ̂2
W := r̂n(0)− r̂n(2).

The corresponding estimators of φ(x) is constructed following relation (4.5):

φ̂n(x) := ζ̂n(x)(1− x2)q, φ̃n(x) := ζ̃n(x)(1− x2)q. (4.11)

The above estimators were essentially constructed in Leipus et al. (2006) and Celov et al. (2010). The

modifications in (4.11) differ from the original ones in the above mentioned papers by the choice of a more

natural estimate (4.10) of the covariance function r(j), which allows for non-centered observations and makes

both estimators in (4.11) location and scale invariant. Note also that the first estimator in (4.11) satisfies∫ 1
−1 φ̂n(x)dx = 1, while the second one does not have this property and can be used only if σ2

W is known.
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Proposition 4.1 Let (X(t)) be an aggregated process in (1.4) with finite 4th moment EX(0)4 < ∞ and

M ∼ W ∼ ID(µ, σ, π). Assume that the mixing density φ(x) satisfies conditions (2.3) and (4.6), with some

q > −1. Let ζ̃n(x) be the estimator of ζ(x) as defined in (4.8), where Kn satisfy

Kn = [γ log n] with 0 < γ < (2 log(1 +
√

2))−1, (4.12)

Then ∫ 1

−1
E(ζ̃n(x)− ζ(x))2(1− x2)qdx → 0. (4.13)

Proof. Denote vn the l.h.s. of (4.13). From the orthonormality property (4.3), similarly as in Leipus et al.

(2006, (3.3)),

vn =

Kn∑
k=0

E(ζ̃n,k − ζk)2 +

∞∑
k=Kn+1

ζ2
k , (4.14)

where the second sum on the r.h.s. tends to 0. By the location invariance mentioned above, w.l.g. we can

assume below that EX(t) = 0. Let r̂◦n(j) := 1
n

∑n−j
i=1 X(i)X(i+ j), 0 ≤ j < n, then Er̂◦n(j)− r(j) = (j/n)r(j)

and

E
{
ζ̃n,k − ζk

}2
= σ−4

W E
{ k∑
j=0

g
(q)
k,j

(
r̂n(j)− r̂n(j + 2)− r(j) + r(j + 2)

)}2

= σ−4
W E

{ k∑
j=0

g
(q)
k,j

(
r̂◦n(j)− r̂◦n(j + 2)− r(j) + r(j + 2) + 2n−1X

2

− n−1X
[
X(n− j − 1) + X(n− j) + X(j + 1) + X(j + 2)

])}2

≤ Ck
(

max
0≤j≤k

|g(q)
k,j |
)2 k∑

j=0

( j2

n2
+ Var(r̂◦n(j)− r̂◦n(j + 2)) +

C

n2

)
, (4.15)

where we used the trivial bound EX
4
< C.

The rest of the proof of Proposition 4.1 follows from (4.14), (4.15), Lemmas 4.1 below and the following

bound on the Gegenbauer coefficients

max
0≤j≤n

|g(q)
n,j | ≤ Cn

11/2enβ with β := log(1 +
√

2),

obtained in Leipus et al. (2006, Lemma 5). See Leipus et al. (2006, pp.2552-2553) for other details. �

Lemma 4.1 generalizes (Leipus et al., 2006, Lemma 4) for a non-Gaussian aggregated process with finite 4th

moment.

Lemma 4.1 Let {X(t)} be an aggregated process in (1.4) with EX(0)4 < ∞, EX(0) = 0. There exists a

constant C > 0 independent of n, k and such that

Var(r̂◦n(k)− r̂◦n(k + 2)) ≤ C

n
. (4.16)

Proof. Let D(k) := X(k)− X(k + 2). Similarly as in Leipus et al. (2006, p.2560),

Var(r̂◦n(k)− r̂◦n(k + 2)) ≤ Cn−2
(

Var
( n−k−2∑

j=1

X(j)D(j + k)
)

+ 1
)
.
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Here, Var
(∑n−k−2

j=1 X(j)D(j + k)
)

=
∑n−k−2

j,l=1 Cov
(
X(j)D(j + k),X(l)D(l + k)

)
, where

Cov(X(j)D(j + k),X(l)D(l + k)) = Cum(X(j), D(j + k),X(l), D(l + k))

+ E[X(j)X(l)]E[D(j + k)D(l + k)] + E[X(j)D(k + l)]E[X(l)D(j + k)].

The two last terms in the above representation of the covariance are estimated in Leipus et al. (2006). Hence

the lemma follows from
n−k−2∑
j,l=1

Cum(X(j), D(j + k),X(l), D(l + k)) ≤ Cn. (4.17)

We have for k1, k2 ≥ 0, l ≥ j

Cum(X(j),X(j + k1),X(l),X(l + k2)) = π4E
[∑
s≤j

aj−saj−s+k1al−sal−s+k2
]

= π4E
[ak1+k2+2(l−j)

1− a4

]
and hence

cj,l,k := Cum(X(j), D(j + k),X(l), D(l + k)) = π4E
[a2k+2(l−j)(1− a2)

1 + a2

]
where π4 :=

∫
R x

4π(dx). Then

n−k−2∑
j,l=1

|cj,l,k| ≤ C
∑

1≤j≤l≤n
E
[(1− a2)

1 + a2
|a|2(l−j)]

≤ C
∑

1≤j≤n
E
[ 1

1 + a2

]
≤ Cn,

proving (4.17) and the lemma, too. �

The main result of this sec. is the following theorem.

Theorem 4.1 Let {X(t)}, φ(x) and Kn satisfy the conditions of Proposition 4.1, and φ̂n(x), φ̃n(x) be the

estimators of φ(x) as defined in (4.11). Then∫ 1

−1

(φ̂n(x)− φ(x))2

(1− x2)q
dx →p 0 and

∫ 1

−1

E(φ̃n(x)− φ(x))2

(1− x2)q
dx → 0. (4.18)

Proof. The second relation in (4.18) is immediate from (4.11) and (4.13). Next,

φ̂n(x)− φ(x) =
σ2
W

σ̂2
W

(
φ̃n(x)− φ(x)

)
+ φ(x)

(σ2
W

σ̂2
W

− 1
)
,

where

σ̂2
W = r̂n(0)− r̂n(2) = (g

(q)
0,0)−1σ2

W ζ̃n,0 = σ2
W

∫ 1

−1
ζ̃n(x)(1− x2)qdx,

see (4.3), (4.4), (4.8), (4.9). Hence the first relation in (4.18) follows from the second one and the fact that

σ̂2
W − σ2

W →p 0. We have

E(σ̂2
W − σ2

W )2 = σ4
WE
(∫ 1

−1
(ζ̃n(x)− ζ(x))(1− x2)qdx

)2

≤ σ4
WE
(∫ 1

−1
(ζ̃n(x)− ζ(x))2(1− x2)qdx

∫ 1

−1
(1− x2)qdx

)
= σ4

W 22q+1 Γ(q + 1)2

Γ(2q + 1)

∫ 1

−1
E(ζ̃n(x)− ζ(x))2(1− x2)qdx→ 0, as n→∞,
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see (4.13). Theorem 4.1 is proved. �

Remark 4.1 An interesting open question is asymptotic normality of the mixture density estimators in

(4.11) for non-Gaussian process {X(t)} (1.4), extending Theorem 2.1 in Celov et al. (2010). The proof of the

last result relies on a central limit theorem for quadratic forms of moving-average processes due to Bhansali

et al. (2007). Generalizing this theorem to mixed ID moving averages is an open problem at this moment.

A simulation study. We illustrate the performance of the estimator φ̂n in (4.11) from aggregated processes

with Gamma and Gaussian innovations. Write ξ ∼ Gamma(a, b) if ξ has gamma distribution with density

proportional to xa−1e−x/b1(0,∞)(x), with mean ab and variance ab2. It is well-known that ξ ∼ Gamma(a, b)

is ID and Eeiθξ = (1 − iθb)−a = exp{
∫∞

0 (1 − eiθx)dΠ+(x)},Π+(x) := a
∫∞
x y−1e−y/bdy, x > 0. The statistics

φ̂n is computed for the aggregated process XN (t) =
∑N

i=1X
(N)
i (t), 1 ≤ t ≤ n with N = 5, 000 and {X(N)

i (t)}
simulated according to the AR(1) equations in (1.1). We consider two cases of the noise distribution in (1.1):

ε(N)(t) ∼ Gamma(1/N, 1)− 1/N, (4.19)

ε(N)(t) ∼ N (0, 1/N). (4.20)

In our simulations, we take the mixing distribution with density

φ(x) ∝ (1 + x)(1− x)β1(−1,1)(x), (4.21)

with β taking values 0.25, 0.75 and 1.25. Thus, for β = 0.25, 0.75 the aggregated process has covariance long

memory and for β = 1.25 it has covariance short memory in both cases (4.19) and (4.20). The simulated

trajectory with Gamma innovations (4.19) shown in Figure 1 clearly indicates that this process is nongaussian.

The Lévy measure of (4.19) satisfies the asymptotics in (1.11) with α = 0 up to a logarithmic factor. Following

the proof of Theorem 3.1 (iii), it can be easily shown that partial sums of the limit aggregated process in the

case (4.19) tends to a (1 + β)−stable Lévy process for any 0 < β < 1, thus also for β = 0.25 and 0.75.

The estimate φ̂n strongly depends on q and Kn. For φ in (4.21), condition (4.6) is satisfied with any

−1 < q < 1 + 2β. In particular, q < 1 ensures this condition for arbitrary β > 0, which is generally unknown.

Figure 2 illustrates the behavior of the estimate φ̂n when the distribution of the noise is given by (4.19).

Here, the parameter q = 0.5 is fixed. This figure clearly shows the presence of a strong bias for smaller values

of Kn = 0, 1, 2 and an increase in the variance for Kn = 3, 4. Figure 1 also suggests that the accuracy of the

estimate decreases with β, or with the memory increasing in the aggregated process.

Figures 3 and 4 represent integrated MISE of φ̂n estimated by a Monte Carlo procedure with 500 replica-

tions, for models (4.19) - (4.21) and different values of parameters q and β. While the optimal choice of q

(minimizing the integrated MISE in (4.18)) is not clear, Figures 3 and 4 suggest that the “optimal” choice

of q might be close to (unknown) β. These graphs also indicate that for Kn ≥ 4 the estimate φ̂n becomes

really inefficient. Similar facts were observed in the Gaussian case studied in Leipus et al. (2006) and Celov

et al. (2010). Since Figures 3 and 4 appear rather similar, we may conclude that the differences in the noise

distribution and the asymptotic results of Section 3 do not have a strong effect on the performance of the

estimators of the mixing density.
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Figure 1: The process obtained by aggregating N = 5000 independent random-coefficient AR(1) with the

Gamma noise in (4.19) and mixing density (4.21), β = 0.75. [left] the first 500 values of the simulated

trajectory, [Middle] histogram, [right] empirical auto covariance. The sample size n = 10000.

Figure 2: The estimates φ̂n computed from the aggregated series with N = 5000 and Gamma noise (4.19).

The mixing density is (4.21). [left] β = 0.25, [middle] β = 0.75, [right] β = 1.25. The sample size n = 10000.
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Figure 3: The estimated MISE of φ̂n versus q computed from the aggregated series with N = 5000 and the

Gamma noise in (4.19). The true density is (4.21). [left] β = 0.25, [middle] β = 0.75, [right] β = 1.25. The

number of replications is 500. The sample size n = 10000.

Figure 4: The estimated MISE of φ̂n versus q computed from the aggregated series with N = 5000 and

Gaussian noise (4.20). The true density is (4.21). [left] β = 0.25, [middle] β = 0.75, [right] β = 1.25. The

number of replications is 500. The sample size n = 10000.
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Sato, K.-I., (1999). Lévy processes and Infinitely Divisible Distributions. Cambridge Univ. Press, Cambridge.

Surgailis, D. (1981) On infinitely divisible self-similar random fields. Zeit. Wahrsch. verw. Geb. 58, 453–477.

Zaffaroni, P. (2004) Contemporaneous aggregation of linear dynamic models in large economies. J. Econometrics

120, 75–102.

23


