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Abstract

The gradient displacement field of a micro-structured strong inter-
face of a three-dimensional multi-material is regarded as a gradient-Young
measure so that the stored strain energy of the material is defined as a
bifunctional of displacement/Young measure state variables. We propose
a new model by computing a suitable variational limit of this bifunctional
when the thickness and the stiffness of the strong material are of order ε

and 1

ε
respectively. The stored strain energy functional associated with

the model in pure displacements living in a Sobolev space is obtained
as the marginal map of the limit bifunctional. We also obtain a new
asymptotic formulation in terms of Young measure state variable when
considering the other marginal map.
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1 Introduction

In [1] and [10] a variational model of multi-material with a very rigid interface
is obtained by identifying the classical Γ-limit of the stored strain energy func-
tional when the magnitude order ε of the interface thickness goes to zero and
the stiffness of the material occupying the interface grows as 1

ε
. In this paper

we assume that the thin structure is occupied by a material which undergoes
reversible solid/solid phase transformation, while the strain of the soft material
occupying the complementary set of the layer can be high. As the main me-
chanical features are high strain of the soft material and oscillations of gradient
displacement in the layer of hight stiffness, we deal with the asymptotic analysis
of the problem by means of a new variational convergence where competing ob-
jects are pairs (u, ν) of displacements/gradient Young measures state variables.
The advantage of using the second argument lies in the fact that ν encodes
the gradient oscillations of u restricted to the layer. We obtain a new formu-
lation (ū, ν̄) ∈ argmin F(u, ν) − L(u) of the problem by identifying the limit
(u, ν) 7→ F(u, ν) of the stored strain energy functional u 7→ Fε(u) rewritten as
a bifunctional (u, µ) 7→ Fε(u, µ) (we write L(u) for the exterior loading).

Let Ω be the reference configuration occupied by the material and S×]0, ε[
the thin inclusion. The limit energy functional of Fε obtained in [10] is of
the form u 7→ F (u) :=

∫

Ω
Qf(∇u) dx +

∫

S
Qg0(∇̂γS(u)) dx̂ for all Sobolev-

functions u with smooth trace γS(u) on the two-dimensional interface S, where
Qf and Qg0 denote the quasiconvexifications of f and g0. As a straightforward
consequence of our formulation we find the stored strain energy F as to be
the marginal map u 7→ infν F(u, ν) of the energy functional F when the Young
measure ν = νx̂⊗dx̂ is then regarded as an internal state variable. By comparing
the two variational formulations ū ∈ argmin (F−L) and (ū, ν̄) ∈ argmin (F−L),
we obtain an integral representation with respect to the probability measure ν̄x̂
on the set M3×2 of 3 × 2-matrices, of the significant macroscopic quantities
∇̂γS(ū) and Qg0(∇̂γS(ū)). In some sense we may think the variable ν̄ as the
microscopic description of ∇̂γS(ū) and Qg0(∇̂γS(ū)).

Another way for obtaining a variational formulation of the problem is to
consider the marginal map G of F − L when the displacement field u is now
regarded as an internal variable. We show that the energy functional ν 7→
G(ν) := infu(F(u, ν) − L(u)) is a variational limit of µ 7→ infu(Fε(u, µ) −
L(u)) so that ν̄ ∈ argmin G is a new formulation of the problem in terms of
gradient Young measures parametrized on the interface S. By comparing it
with the formulation (ū, ν̄) ∈ argmin (F − L), we show that ū is a solution of
the nonlinear Dirichlet problem min(

∫

Ω\S
Qf(∇u) dx− L(u)) subjected to the

boundary condition ū(x̂) = ∇̂−1(
∫

M3×2 λ̂dν̄x̂) on the interface S. Consequently,

one may think the surface energy
∫

S
Qg0(∇̂γS(u)) dx̂ obtained in [10] as a

relaxation of the boundary condition above (it should be noted the analogy
with the relaxation of boundary conditions in BV -spaces).

This paper illustrates, in the modeling of multi-materials, the following gen-
eral strategy: in order to capture various convergence phenomena on minimizing
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sequences regarded as Sobolev variables of a problem (Pε), one defines a suit-
able measure state variable µ connected to the Sobolev state variable u (Young
measure, concentration measure....), an energy bifunctional (u, µ) 7→ Fε(u, µ)
modeling (Pε), a suitable variational convergence process, and identify its limit
F . We recover the limit energy in terms of Sobolev variables as the marginal
functional of F when µ is regarded as an internal variable. This idea as al-
ready been used in the framework of relaxation theory for a reduction dimen-
sion problem in [12], and for control problems in [22]. We also obtain a new
asymptotic formulation in terms of measure state variable by considering the
marginal functional of F when u is an internal variable. Here, in the context of
asymptotic analysis, we have to first establish a variational convergence of the
two marginals.

The paper is organized as follows. Section 2 provides the abstract setting of
the problem. We introduce a suitable variational convergence for bifunctionals
and establish the variational convergence of their marginal maps. In Section
3, after a brief exposition of the mechanical setting, according to Section 2,
we set up notation and terminology for the problem and prove the variational
convergence of the bifunctional Fε to the bifunctional F (Theorem 2). The two
last sections are devoted to the asymptotic analysis of the marginal maps and
their consequences (Theorem 3, Corollaries 1 and 2). For making the paper as
self contained as possible, we repeat the material from Young measures without
proofs in Appendix 6.

2 A variational convergence of sequences of func-
tionals defined on topological product spaces

2.1 The abstract setting

Given three first countable topological spaces, X , Y , Ŷ , a map A from Y to Ŷ ,
and extended real-valued functionals Fn : X×Y −→ R∪{+∞}, F : X× Ŷ −→
R ∪ {+∞}, our purpose is to define a variational convergence of the sequence
(Fn)n∈N toward the functional F so that, under a suitable convergence process
associated with A and some compactness hypotheses, the following implication
holds true when n −→ +∞:

Fn −→ F ⇒







infX×Y Fn −→ minX×Ŷ F ;
argminX×Y Fn ∋ (xn, yn) −→ (x, ŷ) ∈ argmin

X×Ŷ F
at least for a subsequence.

We begin by introducing a new weak notion of convergence between elements
of Y and Ŷ , and next, between elements of X × Y and X × Ŷ .

Definition 1. Let (yn)n∈N be a sequence in Y and ŷ in Ŷ . We say that yn
A-converges to ŷ and we write

yn
A
⇀ ŷ
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iff there exists y in Y such that yn → y and ŷ = A(y).
Let ((xn, yn))n∈N be a sequence in X × Y and (x, ŷ) in X × Ŷ . We say that

(xn, yn) converges to (x, ŷ) and we write

(xn, yn)
I×A
⇀ (x, ŷ)

iff xn converges to x, and yn A-converges to ŷ.

We introduce now the variational convergence associated with the previous
convergence.

Definition 2. We say that Fn ΓX,Y,Ŷ -converges to F and we write

Fn
ΓX,Y,Ŷ
−→ F

iff for all (x, ŷ) in X × Ŷ , both following assertions hold:

(i) ∀(xn, yn) ∈ X × Y s.t. (xn, yn)
I×A
⇀ (x, ŷ), F(x, ŷ) ≤ lim inf

n→+∞
Fn(xn, yn),

(ii) ∃(xn, yn) ∈ X × Y s.t. (xn, yn)
I×A
⇀ (x, ŷ), F(x, ŷ) ≥ lim sup

n→+∞
Fn(xn, yn).

Note that this convergence is closely related to the Γ-convergence. When
X = {0} or, which is equivalent, when Fn and F do not depend on x, we denote
it briefly by Γ

Y,Ŷ
. When Y = {0} and Ŷ = {0̂} i.e. when Fn and F do not

depend on y and ŷ, we will write it simply ΓX and our definition agrees with
the classical Γ-convergence. Note also that when Y = Ŷ and A is the identity
map, ΓX,Y,Y is the ΓX×Y -convergence. The proposition below expresses the
variational nature of the ΓX,Y,Ŷ -convergence.

Proposition 1. Let us assume that (Fn)n∈N ΓX,Y,Ŷ -converges to F and let

((xn, yn))n∈N be a sequence of X × Y satisfying

Fn(xn, yn) ≤ inf
(x,y)∈X×Y

Fn(x, y) +
1

n
.

Assume furthermore that {(xn, yn) : n ∈ N} is relatively compact for the conver-

gence
I×A
⇀ defined above. Then any cluster point (x̄, ¯̂y) ∈ X × Ŷ is a minimizer

of F and
lim

n→+∞
inf{Fn(x, y) : (x, y) ∈ X × Y } = F(x̄, ¯̂y)

Proof. The proof is similar to that of Theorem 12.1.1 in [6] and left to the
reader.

2.2 The variational convergence of marginal functionals

Let us consider the following marginal functionals Fn, F : X −→ R ∪ {+∞},
Gn : Y −→ R ∪ {+∞}, and G : Ŷ −→ R ∪ {+∞} defined by :

Fn(x) = inf
y∈Y

Fn(x, y) , F (x) = inf
ŷ∈Ŷ

F(x, ŷ)

Gn(y) = inf
x∈X

Fn(x, y) , G(ŷ) = inf
x∈X

F(x, ŷ)
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The variational convergence of the functionals Fn yields the variational conver-
gence of their marginal maps, precisely:

Theorem 1. Let us assume that (Fn)n∈N Γ
X,Y,Ŷ

-converges to F . Assume fur-
thermore that the following inf-compactness property holds: for every sequence
((xn, yn))n∈N satisfying supn∈NFn(xn, yn) < +∞, there exists a subsequence

(xσ(n), yσ(n)) in X × Y and (x, ŷ) in X × Ŷ such that (xσ(n), yσ(n))
I×A
⇀ (x, ŷ).

Then

(i) Fn
ΓX−→ F

(ii) Gn
Γ

Y,Ŷ
−→ G

Proof. Proof of assertion (i). On account of Theorem 12.1.1 in [6], we are going
to establish that for any subsequence of Fn, one can extract a subsequence
which ΓX -converges to F . Let (xn)n∈N be a sequence converging to x in X and
consider a sequence (yn)n∈N in Y such that

Fn(xn, yn) −
1

n
≤ inf

y∈Y
Fn(xn, y) := Fn(xn). (1)

We can assume that supn∈N
Fn(xn) < +∞ (otherwise there is nothing to prove)

so that supn∈N Fn(xn, yn) < +∞. Thus, according to the inf-compactness as-

sumption, there exist a subsequence (xσ(n), yσ(n)) and ŷ in Ŷ such that xσ(n)

converges to x, and yσ(n) A-converges to ŷ. Furthermore, since (Fn)n∈N Γ
X,Y,Ŷ

-
converges to F , one has

F(x, ŷ) ≤ lim inf
n→+∞

Fσ(n)(xσ(n), yσ(n)).

Since from (1) one has Fσ(n)(xσ(n)) ≥ Fσ(n)(xσ(n), yσ(n)) −
1

σ(n) , we deduce

F (x) ≤ F(x, ŷ) ≤ lim inf
n→+∞

Fσ(n)(xσ(n)).

From now on, to shorten notation, we write n instead of σ(n). Let (ŷp)p∈N be

a sequence in Ŷ satisfying

F (x) = inf
ŷ∈Ŷ

F(x, ŷ) = lim
p→+∞

F(x, ŷp). (2)

Combining (i) and (ii) of Definition 2, for every fixed p there exists a sequence
((xpn, yp,n))n∈N in X × Y such that

{

xpn → x

yp,n
A
⇀ ŷp

and satisfying
F(x, ŷp) = lim

n→+∞
Fn(x

p
n, yp,n). (3)
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From (2) and (3), we obtain

F (x) = lim
p→+∞

lim
n→+∞

Fn(x
p
n, yp,n).

Then, using a standard diagonalization argument, there exists a map n 7→ p(n)
satisfying p(n) → +∞ whenever n→ +∞ for which one has

F (x) = lim
n→+∞

Fn(x
p(n)
n , yp(n),n) ≥ lim sup

n→+∞
Fn(x

p(n)
n ).

The sequence defined by xn = x
p(n)
n then satisfies assertion (ii) of Definition 2

and the proof of (i) is complete. The proof of assertion (ii) is very similar and
left to the reader.

2.3 A concrete example

In this section, we present a concrete example entering within the general frame-
work described above. It is the main subject of the paper which will be treated in
details in the next section. We will deal with a second example in a forthcoming
paper where we will take into account the concentration gradient phenomenon.
For the analysis of concentration effects we refer the reader to [18] and [25].

We denote the sets of 3 × 3 and 3 × 2 matrices with real numbers entries
by M3×3 and M3×2 respectively. Considering the space M3×3 as the product
M3×2 × R

3, we will denote by λ̂ the first coordinate in M3×2 of any element λ
of M3×3. We write PM3×2 to denote the projection mapping M3×3 to M3×2.
In what follows, we use notation of Theorem 4 in Appendix 6.

Let Ω, B be two open bounded subsets of R
3, and S ⊂ R

2 such that B =
S× (0, 1), we define the sets of Young measures Y3×3(B) and Y3×2(S) as follow:

µ ∈ Y3×3(B) ⇔ µ ∈ M+(B × M3×3) and PB#µ = L,

ν ∈ Y3×2(S) ⇔ ν ∈ M+(S × M3×2) and PS#ν = L̂

where PB#µ (resp. PS#ν) denotes the image of the measure µ (resp. ν) by the
projection PB : B ×M3×3 −→ B (resp. PS : S ×M3×2 −→ S) and L (resp.
L̂) the Lebesgue measure on B (resp. S). For every probability measure P on
M3×3 or M3×2, we write bar(P) for its barycenter, i.e. bar(P) =

∫

λ dP(λ).

The map A is defined by:

A : Y3×3(B) −→ Y3×2(S)

µ = µx ⊗ dx 7→ ν =
(

∫ 1

0

µ̂x̂,sds
)

⊗ dx̂

where µ̂x = PM3×2#µx, x ∈ Ω, and
∫ 1

0
µ̂x̂,sds is the probability measure param-

eterized by x̂ ∈ S, which acts on all ϕ ∈ C0(M
3×2) as follows:

〈

∫ 1

0

µ̂x̂,sds , ϕ〉 :=

∫ 1

0

∫

M3×2

ϕ(λ̂)dµ̂x̂,s ds.
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Given a sequence (µε)ε>0 in the space Y3×3(B) equipped with the narrow
convergence (see Appendix 6) and ν in Y3×2(S), according to Definition 1 one
has

µε
A
⇀ ν ⇔ ∃µ ∈ Y3×3(B) s.t.

{

µε
nar
⇀ µ

ν = A(µ)

and, for (vε, µε) in Lp(Ω,R3) × Y3×3(B), and (v, ν) in Lp(Ω,R3) × Y3×2(S):

(vε, µε)
I×A
⇀ (v, ν) ⇔

{

vε → v in Lp(Ω,R3)

µε
A
⇀ ν.

Given two locally Lipschitz functions f, g : M3×3 → R
+ satisfying a growth

condition of order p, we consider the integral functional Fε defined by

Fε : Lp(Ω,R3) × Y3×3(B) −→ R ∪ {+∞}

Fε(u, µ) :=















∫

Ωε

f(∇u) dx+

∫

B×M3×3

g(λ̂|
1

ε
λ3) dµ+ Iε(u, µ)

if u ∈ W
1,p
Γ0

(Ω,R3),

+∞ otherwise,

where

Iε(u, µ) :=

{

0 if µ = δ∇v(x) ⊗ dx, v = 1
B
rεu

+∞ otherwise.

and rεu is defined by rεu(x̂, x3) = u(x̂, εx3).

Let ∇̂Y3×2(S) denote the subset of Y3×2(S) made up of all Young measures
generated by gradients of W 1,p(S,R3)-Sobolev functions, γS the trace operator
from W 1,p(Ω \ S,R3) into Lp(S,R3) and define the function g0 : M3×2 → R for

all λ̂ in M3×2 by g0(λ̂) := infξ∈R3 g(λ̂|ξ). Setting X = Lp(Ω,R3), Y = Y3×3(B)

and Ŷ := Y3×2(S), in the next section we prove that the sequence (Fε)ε>0

Γ
X,Y,Ŷ

-converges to the functional F , defined by

F : Lp(Ω,R3) × Y3×2(S) −→ R ∪ {+∞}

F(u, ν) :=















∫

Ω

Qf(∇u) dx+

∫

S×M3×2

g0(λ̂) dν + I(u, ν) if u ∈ W
1,p
Γ0

(Ω,R3)

γSu ∈ W 1,p(S,R3),

+∞ otherwise,

where

I(u, ν) :=

{

0 if ν ∈ ∇̂Y3×2(S), bar(νx̂) = ∇̂γS(u)(x̂) a.e in S.

+∞ otherwise.

Theorem 1 applied to the sequence of the two marginal maps sheds new light
on the mechanical problem.
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3 A model in terms of displacement/Young mea-
sures: analysis of microstructures of the strong

material

In the three dimensional Euclidean space E
3 referred to the orthonormal frame

(0; e1, e2, e3), we consider a domain Ω with a C1 boundary Γ. Let Ω± = Ω ∩
[±x3 > 0], the interior S = {∂Ω+ ∩ ∂Ω−}

◦
of the common part of the boundaries

of Ω± is assumed to have a positive H2-measure and, to shorten the proofs,
included in the plane [x3 = 0]. The set Ω is the physical reference configuration
of the assembly of two materials. More precisely, given a small dimensionless
parameter ε and a global characteristic length h (for example the diameter of
Ω), the set Bε = {x + εz : 0 < z < h, x ∈ S} is the reference configuration
of a strong material (whose stiffness is of order 1

ε
) while Ωε = Ω \ Bε is the

reference configuration of a material with stiffness of order 1. (see figure 1).
The structure is clamped on a part Γ0 of Γ with a positive H2-measure, the
complementary part Γψ of Γ0 is submitted to surface loads ψ and we assume
that H1(Γ0 ∩ S̄) > 0. Obviously one can there consider other type of boundary
conditions (e.g. a combination of some components of the stress vector and of
the displacement). Moreover the structure is submitted to applied body forces
Φ.

S

Ω+
ǫ

ǫh

Γ0

Γϕ

Ω−
ǫ

B
ǫ B h = 1

S

Ω+Γ0

Γϕ

Ω−

Figure 1: Bonded assembly - Left: the physical configuration-Right: the rescaled
layer - Below: the limit configuration.
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Let p ≥ 1, we say that a Borel function W : M3×3 → R satisfies a (Cp) condition
if

{

∃α, β, C ∈ R
+ s. t. ∀(λ, λ′) ∈ M3×3, α|λ|p ≤W (λ) ≤ β(1 + |λ|p)

|W (λ) −W (λ′)| ≤ C|λ− λ′|(1 + |λ|p−1 + |λ′|p−1)
(4)

We say that a quasiconvex function φ : M3×3 → R (resp φ : M3×2 → R)
satisfies a growth condition of order p if there exists γ ≥ 0 such that

∀λ ∈ M3×3, |φ(λ)| ≤ γ(1 + |λ|p) (resp ∀λ̂ ∈ M3×2, |φ(λ̂)| ≤ γ(1 + |λ̂|p)).

The soft and the strong materials are modeled as hyperelastic and the bulk
energy densities f , g of the two materials occupying Ωε and Bε satisfy a (Cp)
condition with p > 1. To shorten notation, we assume that (Cp) is satisfied
with the same constants α, β and C. We make the assumption that the strain
of the soft material can be high and that the thin structure Bε is occupied by
a material which undergoes reversible solid-solid phase transformation as for
instance crystalline solids. In this context, the densities f and g are not convex
and g entails a multi-well structure. It is worth pointing out that the assumed
growth condition violates the mechanical principle which asserts that it needs
infinite amount of energy to squeeze a small piece of material down to a point.
We also do not take into account preservation of orientation and injectivity
conditions on the deformation fields so that the model presented in this section
is a first attempt to account large purely elastic deformation. We hope to deal
with this much more complex situation in a future work (for some results where
these constraints are taken into account, we refer the reader to [20], [3, 4]).

We assume that the global characteristic length h is equal to 1 and the stored
strain energy associated with a displacement field u is given by the functional

Fε(u) :=

∫

Ωε

f(∇u) dx+
1

ε

∫

Bε

g(∇u) dx.

The equilibrium configuration of the structure is given by the displacement field
uε, solution-more generally ε-approximate solution-of the problem

inf{Fε(u) − L(u) : u ∈W
1,p
Γ0

(Ω,R3)}

where L(u) =

∫

Ω

Φ dx +

∫

Γψ

ψ dH2. We want to analyze the behavior of

uε when ε tends to zero and to identify the variational problem whose limit
is a solution. But since the material in the layer Bε possesses a fine micro-
structure, the gradient minimizing sequence (∇uε)ε>0 develops oscillations we
would like to integrate into the variational problem. This is why we write the
strain energy 1

ε

∫

Bε
g(∇u) dx in terms of Young measures so that the limit

problem also accounts for a two-dimensional microstructure (for existence of
microstructures see [9] and for microstructures in thin films, we refer the reader
to [11], [17], [21] and references therein).
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Since the behavior of the displacement is radically different in Ωε and Bε,
in a first stage, it is convenient to write the energy functional Fε in terms of
two arguments, one u, the displacement on Ωε, the other v, the displacement on
Bε occupied by the strong material. On the other hand, in order to work in a
fixed space for the variable v, the change of scale (x̂, x3) = (x̂, εy3) transforming
(x̂, x3) ∈ Bε into (x̂, y3) ∈ B := S × (0, 1) leads to consider the following
functional

Gε : Lp(Ω,R3) × Lp(B,R3) −→ R ∪ {+∞}

Gε(u, v) :=







∫

Ωε

f(∇u) dx+

∫

B

g(∇̂v|
1

ε

∂v

∂x3
) dx+ Iε(u, v) if u ∈W

1,p
Γ0

(Ω,R3),

+∞ otherwise,

where, for all (u, v) ∈W
1,p
Γ0

(Ω,R3) ×W 1,p(B,R3)

Iε(u, v) :=

{

0 if 1
B
rεu = v

+∞ otherwise.

and rεu(x̂, y3) := u(x̂, εy3). Now we write Gε in terms of pairs of displace-
ments/Young measures by defining the functional Fε as follows

Fε : Lp(Ω,R3) × Y3×3(B) −→ R ∪ {+∞}

Fε(u, µ) :=







∫

Ωε

f(∇u) dx+

∫

B×M3×3

g(λ̂|
1

ε
λ3) dµ+ Iε(u, µ) if u ∈W

1,p
Γ0

(Ω,R3),

+∞ otherwise,

where

Iε(u, µ) :=

{

0 if µ = δ∇v(x) ⊗ dx, v = 1
B
rεu

+∞ otherwise.

Clearly Fε is one way of writing Gε and from the strict variational point of view,
it is equivalent to identify the variational limit of Fε and that of Fε in the spirit
of the previous section. Indeed we have

inf
u∈W 1,p

Γ0
(Ω,R3)

(

Fε(u) − L(u)
)

= inf
(u,v)∈Lp(Ω,R3)×Lp(B,R3)

(

Gε(u, v) − L(u)
)

= inf
(u,µ)∈Lp(Ω,R3)×Y3×3(B)

(

Fε(u, µ) − L(u)
)

.

Nevertheless, we want to point out that the last formulation has the advantage
to encode the gradient oscillations of ε-minimizers in the layer Bε thanks to the
Young measure state variable.

In order to apply Proposition 1 we begin by establishing the following com-
pactness lemma

Lemma 1 (Compactness). Let ((uε, vε, µε))ε>0 be a sequence in Lp(Ω,R3) ×
Lp(B,R3) × Y3×3(B) satisfying supε>0 Gε(uε, vε) = supε>0 Fε(uε, µε) < +∞.

Then there exist (u, v) ∈ W
1,p
Γ0

(Ω,R3) × W 1,p(B,R3), ν ∈ ∇̂Y3×2(S) and a
subsequence not relabeled such that
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i) uε → u weakly in W
1,p
Γ0

(Ω,R3) and strongly in Lp(Ω,R3), vε → v weakly

in W 1,p(B,R3) and strongly in Lp(B,R3);

ii) ∂vε

∂y3
→ 0 strongly in Lp(B,R3), ∂v

∂y3
= 0 and v ∈W 1,p(S,R3);

iii) γS(u) = v on S where γS denotes the trace operator from W 1,p(Ω \ S,R3)
into Lp(S);

iv) (uε, µε)
I×A
⇀ (u, ν), with ν = A(µ) where µ = (µ̂x ⊗ δ0

R3 ) ⊗ dx and µ̂ :=

µ̂x ⊗ dx is the Young measure generated by (∇̂vε)ε>0. Moreover u and ν

are connected as follows: bar(νx̂) = ∇̂γS(u)(x̂) for a.e. x̂ ∈ S.

Proof. Assertions i) and ii) are straightforward consequences of the coerciveness
condition in (4), Poincaré’s inequality and the isometry between W 1,p(S,R3)
and {v ∈ W 1,p(B,R3) : ∂v

∂y3
= 0}. We are going to establish assertion iii). For

a. e. x ∈ B we have

vε(x̂, y3) = uε(x̂, εy3) = uε(x̂, 0) +

∫ εy3

0

∂uε

∂y3
(x̂, s) ds

where uε(x̂, 0) must be taken in the trace sense. Let Qρ(x̂0) = Q̂ρ(x̂0) × (0, ρ)

be the cylinder of R
3 where Q̂ρ(x̂0) is the ball of R

2 centered at x̂0 ∈ S with
ρ > 0 small enough so that Qρ(x̂0) ⊂ B. Integrating the previous equality over
Qρ(x̂0) yields

−

∫

Qρ(x̂0)

vε dx = −

∫

Qρ(x̂0)

uε(x̂, 0) dx+ −

∫

Qρ(x̂0)

∫ εy3

0

∂uε

∂y3
(x̂, s) ds dx.

Letting ε → 0, according to the continuity of the trace operator and to i), ii),
we obtain

−

∫

Q̂ρ(x̂0)

v dx̂ = −

∫

Q̂ρ(x̂0)

γS(u) dx̂+ lim sup
ε→0

Iρ,ε (5)

where Iρ,ε := −

∫

Qρ(x̂0)

∫ εy3

0

∂uε

∂y3
(x̂, s) ds dx. Let us estimate Iρ,ε. An easy

calculation using Hölder’s inequality gives

|Iρ,ε| ≤ −

∫

Qρ(x̂0)

(εy3)
1− 1

p

(

∫ εy3

0

|
∂uε

∂y3
(x̂, s)|p ds

)
1
p

dx̂ dy3

≤ (ερ)1−
1
p −

∫

Q̂ρ(x̂0)

(

∫ ερ

0

|
∂uε

∂y3
(x̂, s)|p ds

)
1
p

dx̂

≤ (ερ)1−
1
p

(

∫

Q̂ρ(x̂0)

∫ ερ

0

|
∂uε

∂y3
(x̂, s)|p ds dx̂

)
1
p

≤ (ερ)1−
1
p

(

∫

Bε

|∇uε|
p dx

)
1
p

.
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But since supε>0 Gε(uε, vε) = supε>0 Fε(uε) < +∞, from the coerciveness prop-

erty satisfied by g one has

∫

Bε

|∇uε|
p dx ≤

ε

α
so that the previous estimate

yields |Iρ,ε| ≤ C(ρ, α)ε where C(ρ, α) is a positive constant depending only on
ρ and α. From this estimate, (5) becomes

−

∫

Q̂ρ(x̂0)

v dx̂ = −

∫

Q̂ρ(x̂0)

γS(u) dx̂

for all ρ > 0. Letting ρ→ 0 finally gives γS(u)(x0) = v(x0) for a.e. x0 in S.

It remains to establish assertion iv). Since Fε(uε, µε) < +∞ we have µε =
δ∇vε(x) ⊗ dx and supε>0

∫

B
|∇vε|

p dx < +∞ so that the Young measures µε
and δ∇̂vε(x) ⊗ dx are tight. According to the Prokhorov compactness theorem

(Theorem 5 of Appendix 6), there exist a subsequence that we do not relabel,
and µ ∈ ∇Y3×3(B), µ̂ ∈ Y3×2(B) such that

µε = δ∇vε(x) ⊗ dx
nar
⇀ µ, δ∇̂vε(x) ⊗ dx

nar
⇀ µ̂. (6)

On the other hand, from assertion ii)

δ ∂vε
∂x3

(x) ⊗ dx
nar
⇀ δ0

R3 ⊗ dx. (7)

Combining (6) and (7) one easily deduce that µx = µ̂x ⊗ δ0
R3 , and setting

ν = νx̂ ⊗ dx̂ where νx̂ :=
∫ 1

0 µ̂x̂,s ds, we finally obtain that µε
A
⇀ ν.

We have to prove that ν belongs to ∇̂Y3×2(S). According to the Kinderlehrer-
Pedregal characterization theorem (Theorem 6 of Appendix 6), it is equivalent
to establish the three following assertions:

(KP)1 there exists w ∈W 1,p(S,R3) such that bar(νx̂) = ∇̂w(x̂) for a.e. x ∈ S;

(KP)2

∫

M3×2

|λ̂|p dνx̂ < +∞ for a.e. x ∈ S;

(KP)3 For all quasiconvex function φ satisfying a growth condition of order p,

φ(bar(νx̂)) ≤

∫

M3×2

φ(λ̂) dνx̂ for a.e. x̂ ∈ S.

Proof of (KP)1: From assertion i) and classical properties on Young mea-

sures, we have ∇̂v(x) =
∫

M3×2 λ̂ dµ̂x for a.e. x ∈ B and since ∂v
∂x3

= 0,

∇̂v(x̂) =

∫ 1

0

∫

M3×2

λ̂ dµ̂x̂,s ds =

∫

M3×2

λ̂ dνx̂

for a.e. x̂ in S so that v is the suitable Sobolev-function w.

Proof of (KP)2: From the definition of νx̂ and the lower semicontinuity
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property for Young measures (Proposition 5 of Appendix 6) we have

∫

S

∫

M3×2

|λ̂|p dνx̂ dx̂ =

∫

B

∫

M3×2

|λ̂|p dµ̂x dx

=

∫

B

∫

M3×3

|λ̂|p (dµ̂x ⊗ δ0
R3 ) dx

=

∫

B×M3×3

|λ̂|p dµ ≤

∫

B×M3×3

|λ|p dµ

≤ lim inf
ε→0

∫

B

|∇vε|
p dx ≤ sup

ε>0
Fε(uε, µε) < +∞

which proves that
∫

M3×2 |λ̂|
p dνx̂ is finit for a.e. x̂ in S.

Proof of (KP)3: Let φ : M3×2 → R be a quasiconvex function satisfying a
growth condition of order p and define the function φ̃ : M3×3 → R by φ̃(λ) =

φ(λ̂). It is easy to check that φ̃ is quasiconvex and clearly satisfies the same
growth condition. Since µ ∈ ∇Y3×3(B) we have for a.e. x in B

φ(∇̂v(x̂)) = φ̃(∇v(x)) ≤

∫

M3×3

φ̃(λ) dµx

=

∫

M3×3

φ(λ̂) dµ̂x ⊗ δ0
R3 =

∫

M3×2

φ(λ̂) dµ̂x

so that for a.e. x in S

φ(∇̂v(x̂)) =

∫ 1

0

φ(∇̂v(x̂)) ds ≤

∫ 1

0

∫

M3×2

φ(λ̂) dµ̂x̂,s ds =

∫

M3×2

φ(λ̂) dνx̂.

Remark 1. In the proof above we established A(∇Y3×3(B)) ⊂ ∇̂Y3×2(S). In
fact it is easy to check that A(∇Y3×3(B)) = ∇̂Y3×2(S).

Consider the functional defined in Section 2.3:

F : Lp(Ω,R3) × Y3×2(S) −→ R ∪ {+∞}

F(u, ν) :=















∫

Ω

Qf(∇u) dx+

∫

S×M3×2

g0(λ̂) dν + I(u, ν) if u ∈ W
1,p
Γ0

(Ω,R3)

γSu ∈ W 1,p(S,R3),

+∞ otherwise.

We establish the Γ
X,Y,Ŷ

-convergence of the sequence (Fε)ε>0 to the functional
F by means of the two next propositions.

Proposition 2 (Lower bound). Let (u, ν) be any pair in Lp(Ω,R3)×Y3×2(S).
Then, for all sequence ((uε, µε))ε>0 in  Lp(Ω,R3)×Y3×3(B) converging to (u, ν),
we have

F(u, ν) ≤ lim inf
ε→0

Fε(uε, µε).
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Proof. One can assume lim infε→0 Fε(uε, µε) < +∞ otherwise there is nothing
to prove. Consequently, from Lemma 1 we have

u ∈ W
1,p
Γ0

(Ω,R3);

ν ∈ ∇̂Y3×2(S); bar(νx̂) = ∇̂γS(u)(x̂) for a.e. x̂ ∈ S.

This proves that I(u, ν) = 0 and it suffices to establish the two following esti-
mates:

∫

S×M3×2

g0(λ̂) dν ≤ lim inf
ε→0

∫

B

g(∇̂vε|
1

ε

∂vε

∂x3
) dx; (8)

∫

Ω

Qf(∇u) dx ≤ lim inf
ε→0

∫

Ωε

f(∇uε) dx. (9)

Proof of (8): From the lower semicontinuity property for Young measures (see
Proposition 5 of Appendix) and assertion iv) of Lemma 1, it follows that

lim inf
ε→0

∫

B×M3×3

g(λ̂|
1

ε
λ3) dµε ≥ lim inf

ε→0

∫

B×M3×3

g0(λ̂) dµε

≥

∫

B×M3×3

g0(λ̂) dµ

=

∫

B×M3×3

g0(λ̂) d(µ̂x ⊗ δ03
R

) ⊗ dx

=

∫

S×M3×2

g0(λ̂) dνx̂ ⊗ dx̂ =

∫

S×M3×2

g0(λ̂) dν.

Proof of (9): For fixed η > ε we have
∫

Ωε

f(∇uε) dx ≥

∫

Ωη

f(∇uε) dx ≥

∫

Ωη

Qf(∇uε) dx

and, since w 7→

∫

Ωη

Qf(∇w) dx is lower semicontinuous for the weak conver-

gence in W 1,p(Ωη,R
3), we deduce

lim inf
ε→0

∫

Ωε

f(∇uε) dx ≥

∫

Ωη

Qf(∇u) dx.

We end the proof by letting η → 0.

For establishing the upper bound in the definition of our variational conver-
gence, we need to prove the following relaxation result

Lemma 2. Let (u, ν) in W
1,p
Γ0

(Ω,R3) × ∇̂Y3×2(S) with ∇̂γS(u)(x̂) = bar(νx̂)

for a.e. x̂ in S and a sequence ((un, vn))n∈N in W
1,p
Γ0

(Ω,R3)×W 1,p(S,R3) such

that un weakly converges to u in W
1,p
Γ0

(Ω,R3), δ∇̂vn(x̂) ⊗dx
nar

⇀ ν in Y3×2(S) and

lim
n→+∞

∫

Ω

f(∇un) dx =

∫

Ω

Qf(∇u) dx

lim
n→+∞

∫

S

g0(∇̂vn) dx̂ =

∫

S×M3×2

g0(λ̂) dν.
(10)
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Then there exists a sequence (ũn)n∈N satisfying all the conditions fulfilled by
(un)n∈N and furthermore which satisfies γS(ũn) = vn.

Proof. Such a sequence ((un, vn))n∈N exists, consult for instance [6], Theorem
11.2.1 and Theorem 11.4.2. Note that one may assume (|∇un|

p)n∈N uniformly
integrable. Indeed, consider the sequence (ũn)n∈N whose gradients generate
the same Young measure µ and such that (|∇ũn|

p)n∈N is uniformly integrable
(see Proposition 7 in Appendix). By using Propositions 5, 6 in Appendix and
standard lower semicontinuity results in Sobolev spaces, we have

∫

Ω

Qf(∇u) dx = lim
n→+∞

∫

Ω

f(∇un) dx

≥

∫

Ω×M3×3

f(λ) dµ

= lim
n→+∞

∫

Ω

f(∇ũn) dx

≥

∫

Ω

Qf(∇u) dx,

so that

lim
n→+∞

∫

Ω

f(∇ũn) dx = lim
n→+∞

∫

Ω

f(∇un) dx =

∫

Ω

Qf(∇u) dx

which proves the thesis. In what follows, we still denote by (un)n∈N the se-
quence (ũn)n∈N. We are going to modify the function un near S so that the
constraint γS(un) = vn holds. The function vn will be indifferently considered
as a W 1,p(S,R3)-function or a W 1,p(Ω,R3)-function with ∂vn

∂x3
= 0.

By coerciveness of g0,
∫

S
|∇̂vn|

p dx̂ is bounded, thus vn strongly converges

in Lp(S,R3) to a function v which classically satisfies ∇̂v(x̂) = bar(νx̂) for
a.e. x̂ in S. Then γS(u) = v on S. Let η > 0 intended to go to 0 and
set Ση := S × (− η

2 ,
η
2 ). We are going to modify un on Ση in order that the

trace on S of the new function be equal to vn, and in such a way to decrease
limn→+∞

∫

Ω f(∇un) dx. Let ϕ ∈ C∞
c (R) satisfying

ϕη = 1 on Ω \ Σ2η, ϕη = 0 on Ση, 0 ≤ ϕη ≤ 1,

|∇ϕη| ≤
1

η

and define
un,η = ϕη(un − vn) + vn. (11)

Clearly un,η belongs to W 1,p
Γ0

(Ω,R3) and γs(un,η) = vn. Moreover

∫

Ω

f(∇un,η) dx =

∫

Ση

f(∇un,η) dx+

∫

Σ2η\Ση

f(∇un,η) dx+

∫

Ω\Σ2η

f(∇un,η) dx

≤

∫

Ση

f(∇vn) dx+

∫

Σ2η\Ση

f(∇un,η) dx+

∫

Ω

f(∇un) dx.
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Thus, from the growth condition in (4),
∫

Ω

f(∇un,η) dx ≤ C
(

η +
1

ηp

∫

Σ2η

|un − vn|
p dx+

∫

Σ2η

(|∇un|
p) dx

)

+

∫

Ω

f(∇un) dx

where, from now on, C denotes various positive constants depending only on β,
p and Ω. Letting n→ +∞, from (10) we obtain

lim sup
n→+∞

∫

Ω

f(∇un,η) dx ≤ C
(

η +
1

ηp

∫

Σ2η

|u−v
p

| dx+ sup
n∈N

∫

Σ2η

(|∇un|
p) dx

)

+

∫

Ω

Qf(∇u) dx.

But since γS(u) = v on S, the following Poincaré inequality holds
∫

Σ2η

|u− v|p dx ≤ ηp
∫

Σ2η

|
∂u

∂x3
|p dx

so that, letting η → 0, from the uniform integrability of (|∇un|)n∈N

lim sup
η→+∞

lim sup
n→∞

∫

Ω

f(∇un,η) dx ≤

∫

Ω

Qf(∇u) dx.

We conclude by a standard diagonalization argument: there exists n 7→ η(n)
such that

lim sup
n→+∞

∫

Ω

f(∇un,η(n)) dx ≤

∫

Ω

Qf(∇u) dx.

It is easily checked that sequence (ũn)n∈N defined by ũn = un,η(n)) converges

to u strongly in Lp(Ω,R3) and weakly in W
1,p
Γ0

(Ω,R3), which completes the
proof.

Proposition 3 (Upper bound). For all (u, ν) ∈ Lp(Ω,R3) × Y3×2(S) there
exists a sequence ((uε, µε))ε>0 in Lp(Ω,R3)×Y3×3(B) converging to (u, ν) and
satisfying

F(u, ν) ≥ lim sup
ε→0

Fε(uε, µε).

Proof. One can assume F(u, ν) < +∞ so that (u, ν) ∈W
1,p
Γ0

(Ω,R3)×∇̂Y3×2(S).

Classically, there exists vn ∈ W 1,p(S,R3) such that (|∇̂vn|
p)n∈N is uniformly

integrable and δ∇̂vn(x̂) ⊗ dx̂
nar
⇀ ν in Y3×2(S) (Proposition 7 of Appendix 6).

Note that we also have

(δ∇̂vn(x̂) ⊗ δ0
R3 ) ⊗ dx

nar
⇀ (νx̂ ⊗ δ0

R3 ) ⊗ dx (12)

in Y3×3(B) when n→ +∞. Since g0 satisfies a growth condition of order p, we
have (Proposition 6 of Appendix 6)

lim
n→+∞

∫

S

g0(∇̂vn) dx̂ =

∫

S×M3×2

g0(λ̂) dν.
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But, according to a classical interchange argument between infimum and inte-
grals (see [2])

∫

S

g0(∇̂vn) dx̂ = inf
ξ∈D(S,R3)

∫

S

g(∇̂vn|ξ) dx̂.

Let ξn in D(S,R3) satisfying

∣

∣

∣

∫

S

g(∇̂vn|ξn) dx̂−

∫

S

g0(∇̂vn) dx̂
∣

∣

∣
≤

1

n
,

then,

lim
n→+∞

∫

S

g(∇̂vn|ξn) dx̂ =

∫

S×M3×2

g0(λ̂) dν. (13)

Consider the function vn,ε in W 1,p(B,R3) defined by

vn,ε(x) = vn(x̂) + εx3ξn(x̂).

For fixed n, we first claim that

µn,ε := δ∇vn,ε(x) ⊗ dx
nar
⇀ (δ∇̂vn(x̂) ⊗ δ0

R3 ) ⊗ dx (14)

in Y3×3(B) when ε→ 0. Indeed, setting ṽn(x) := vn(x̂), since ∇vn,ε−∇ṽn → 0
strongly in Lp(B,M3×3), ∇vn,ε and ∇ṽn generates the same Young measure
(δ∇̂vn(x̂) ⊗ δ0

R3 ) ⊗ dx in Y3×3(B).

On the other hand, according to the classical relaxation theory in Sobolev
spaces, there exists un ∈ W

1,p
Γ0

(Ω,R3) strongly converging to u in Lp(Ω,R3)
such that

lim
n→+∞

∫

Ω

f(∇un) dx =

∫

Ω

Qf(∇u) dx (15)

and we can modify un near S in such a way that γS(un) = vn (see Lemma 2 of
Appendix). Let η > ε and consider the function un,ε,η defined for all x in Ω by

un,ε,η(x̂, x3) := θ(x3)vn,ε(x̂,
x3

ε
) + (1 − θ(x3))un(x̂, x3)

where θ is a C1-function satisfying 0 ≤ θ ≤ 1, | ∂θ
∂x3

| ≤ 1
η−ε and

θ =

{

1 in Bε

0 in Ω \Bη.

To shorten notation, we do not indicate the dependance on η and ε for θ. Note
that vn,ε,η ∈ W

1,p
Γ0

(Ω,R3) and rεun,ε,η = vn,ε on B. From the local Lipschitz
property in (4) satisfied by g one can easily establish

lim
ε→0

∫

B

g(∇̂vn,ε|
1

ε

∂vn,ε

∂x3
) dx =

∫

S

g(∇̂vn|ξn) dx̂ (16)
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Let us write
∫

Ωε

f(∇un,ε,η) dx =

∫

Ω\Bη

f(∇un) dx+

∫

Bη\Bε

f(∇un,ε,η) dx. (17)

We claim that lim
η→0

lim
ε→0

∫

Bη\Bε

f(∇un,ε,η) dx. = 0. Indeed since

∇̂un,ε,η = θ(∇̂vn + x3∇̂ξn) + (1 − θ)∇̂un

∂un,ε,η

∂x3
= ∂θ

x3
(vn − un) + x3ξn

∂θ
x3

+ θξn + (1 − θ)∂un

x3
,

the following estimate holds:

∣

∣

∣

∫

Bη\Bε

f(∇un,ε,η dx
∣

∣

∣
≤ C

(

∫

Bη\Bε

h(ξn, ∇̂ξn, ∇̂un, ∇̂vn
∂un

∂x3
) dx

+

∫

Bη\Bε

∣

∣

∣

∂θ

x3

∣

∣

∣

p

|vn − un|
p dx+

∫

Bη\Bε

|x3ξn
∂θ

x3
|p dx

)

(18)

where h is Lebesgue integrable and does not depend on ε and η. Clearly the
first term in (18) tends to 0 when ε then η go to 0. We estimate the two last
terms. Since γS(un) = vn on S, Poincaré’s inequality yields

∫

Bη\Bε

∣

∣

∣

∂θ

x3

∣

∣

∣

p

|vn − un|
p dx ≤

1

(η − ε)p

∫

Bη

|vn − un|
p dx

≤
ηp

(η − ε)p

∫

Bη

|∇(vn − un)|
p dx

which tends to 0 when ε then η go to 0. On the other hand
∫

Bη\Bε

|x3ξn
∂θ

x3
|p dx ≤

ηp

(η − ε)p

∫

Bη

|ξn|
p dx

which tends to 0 for the same reason. Therefore, combining (16), (17) and (18)
we obtain

lim
η→0

lim
ε→0

Fε(un,ε,η, µn,ε) =

∫

Ω

f(∇un) dx+

∫

S

g(∇̂vn|ξn) dx̂.

Then, using a standard diagonalization argument, there exists a map ε 7→ η(ε)
satisfying η(ε) → 0 whenever ε→ 0 and, setting un,ε := un,ε,η(ε),

lim
ε→0

Fε(un,ε, µn,ε) =

∫

Ω

f(∇un) dx+

∫

S

g(∇̂vn|ξn) dx̂ (19)

for all fixed n ∈ N. Moreover, going back to the expression of un,ε we have

∫

Ω

|un,ε − un|
p dx ≤

∫

Bη(ε)

|vn + x3ξn − un|
p dx,
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thus un,ε strongly converges to un in Lp(Ω,R3) when ε→ 0.

Collecting (12), (13), (14), (15) and (19), we deduce the following conver-
gence scheme where the first arrow indicates a convergence with respect to ε

and the second to n:

µn,ε
nar
⇀ (δ∇̂vn(x̂) ⊗ δ0

R3 ) ⊗ dx
nar
⇀ (νx̂ ⊗ δ0

R3 ) ⊗ dx;

un,ε → un → u strongly in Lp(Ω,R3);

Fε(un,ε, µn,ε) →

∫

Ω

f(∇un) dx +

∫

S

g(∇̂vn|ξn) dx̂

→

∫

Ω

Qf(∇u) dx+

∫

S

g0(λ̂) dν.

The conclusion of Proposition 3 then follows by using a standard diagonalization
argument 1 in the product space Lp(Ω,R3) × Y3×3(B) × R and noticing that
A((νx̂ ⊗ δ0

R3 ) ⊗ dx) = ν.

On account of Definition 2, Proposition 1, Lemma 1 and Propositions 2, 3
above, we can state the main theorem of this section.

Theorem 2. The sequence of functionals (Fε −L)ε>0 ΓX,Y,Ŷ -converges to the

functional F − L. In addition, if (ūε, µ̄ε) ∈ Lp(Ω,R3) × Y3×3(B) is an ε-
minimizer of Fε − L, i.e. satisfies

Fε(ūε, µ̄ε) − L(ūε) ≤ ε+ inf
(u,µ)∈Lp(Ω,R3)×Y3×3(B)

(

Fε(u, µ) − L(u)
)

,

then there exists a subsequence of ((ūε, µ̄ε))ε>0 converging to (ū, ν̄) which is a

minimizer of inf(u,ν)∈Lp(Ω,R3)×Y3×2(S)

(

F(u, ν)−L(u)
)

. Moreover γS(ū) belongs

to W 1,p(S,R3) and, for a.e. x̂ in S bar(ν̄x̂) = ∇̂γS(ū)(x̂).

Proof. The proof is a straightforward consequence of Lemma 1, Propositions 2
and Proposition 3. Indeed, L is easily seen to be a continuous perturbation of

Fε, so that Fε
Γ

X,Y,Ŷ
−→ F =⇒ Fε − L

Γ
X,Y,Ŷ
−→ F − L.

4 The Young measure considered as an internal
variable: the formulation in terms of displace-

ments

In this section, we derive the classical model obtained in [1] in the context of
the linear elasticity or in [10] in a more general setting, from the model obtained
in Section 3. We show that the stored strain energy functional associated with
the classical model is the marginal map of the functional limit F obtained in
the previous section when we consider the Young measure ν, which represents

1 Such an argument is valid because the set Y3×3(B) endowed with the narrow topology
is first countable (see [13] Proposition 2.3.1).
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the fine microstructure of the layer, as an internal variable. In some sense the
formulation in terms of displacement can be regarded as the macroscopic version
of the model suggested in Section 3 (see Corollary 1). With the notations of
Sections 2, 3 we define the two functionals

Hε, H : Lp(Ω,R3) → R ∪ {+∞}

by

Hε(u) :=







∫

Ωε

f(∇u) dx+

∫

B

g(∇̂rεu|
1

ε

∂rεu

∂x3
) dx if u ∈ W

1,p
Γ0

(Ω,R3),

+∞ otherwise

and

H(u) :=















∫

Ω

Qf(∇u) dx+

∫

S

Qg0(∇̂γS(u)) dx̂ if u ∈ W
1,p
Γ0

(Ω,R3),

γS(u) ∈W 1,p(S,R3)

+∞ otherwise.

Clearly, Hε is the marginal map associated with the functional Fε, i.e., for all
u ∈ Lp(Ω,R3) we have

Hε(u) = inf
µ∈Y3×3(B)

Fε(u, µ).

On the other hand H is the stored strain energy functional obtained in [10]
in non linear elasticity, or in [1] in the linear elasticity framework where we
have to replace ∇u with the linearized strain tensor e(u) = 1

2 (∇u +t ∇u) and
the quasiconvexifications of f and g0 with their convexifications. In the next
proposition, we establish that H is the marginal map associated with the limit
functional F .

Proposition 4. The functional H is the marginal map associated with the
functional F when the Young measure ν is considered as an internal variable.
More precisely, for all u ∈ Lp(Ω,R3) we have

H(u) = inf
ν∈Y3×2(S)

F(u, ν).

Proof. We begin by introducing various sets. For every Â in M3×2 we define
the set adm(Â) of probability measures on M3×2 by:

P ∈ adm(Â) ⇐⇒



























Â =

∫

M3×2

λ̂ dP;
∫

M3×2

|λ̂|p dP < +∞;

φ(Â) ≤

∫

M3×2

φ(λ̂) dP
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for all quasiconvex function φ satisfying a growth condition of order p. On the
other hand, for each fixed u ∈ W

1,p
Γ0

(Ω,R3) such that γS(u) ∈ W 1,p(S,R3) we
define the subset Adm(u) of Y3×2(S) by:

ν ∈ Adm(u) ⇐⇒

{

ν ∈ ∇̂Y3×2(S);

bar(νx̂) = ∇̂γS(u)(x̂) for a.e. x̂ ∈ S.

The proof is based on the following localization Lemma.

Lemma 3. With the notations above we have

(i) inf
{

∫

M3×2

g0(λ̂) dP : P ∈ adm(Â)
}

= Qg0(Â) for all Â ∈ M3×2;

(ii) inf
ν∈Adm(u)

∫

S×M3×2

g0(λ̂) dν =

∫

S

inf
P∈adm(∇̂γS(u)(x̂))

(

∫

M3×2

g0(λ̂) dP
)

dx̂.

Proof of Lemma 3. Proof of (i). For every P ∈ adm(Â) one has
∫

M3×2

g0(λ̂) dP ≥

∫

M3×2

Qg0(λ̂) dP ≥ Qg0(Â)

so that inf
{

∫

M3×2

g0(λ̂) dP : P ∈ adm(Â)
}

≥ Qg0(Â).

For the converse inequality, set Ŷ =]0, 1[2, fix ψ ∈ W
1,p
0 (Ŷ ,R3) and define

the probability measure Pψ by

Pψ :=

∫

Ŷ

δ
Â+∇ψ(ŷ) dŷ

which acts on every continuous function ϕ : M3×2 → R satisfying a growth
condition of order p as follows:

∫

M3×2

ϕ(λ̂) dPψ :=

∫

Ŷ

ϕ(Â+ ∇ψ(ŷ)) dŷ.

Clearly Pψ ∈ adm(Â), consequently

E(Â) := {Pψ : ψ ∈W
1,p
0 (Ŷ ,R3)} ⊂ adm(Â).

It follows that

inf
{

∫

M3×2

g0(λ̂) dP : P ∈ adm(Â)
}

≤ inf
{

∫

M3×2

g0(λ̂) dP : P ∈ E(Â)
}

= inf
φ∈W 1,p

0 (Ŷ ,R3)

∫

Ŷ

g0(Â+ φ(ŷ)) dŷ

= Qg0(Â).

In the last equality we have used the quasiconvex envelop formula for real valued
functions satisfying a growth condition of order p (see [15]).
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Proof of (ii). Since ν ∈ Adm(u) yields νx̂ ∈ adm(∇̂γS(u)(x̂)), clearly we
have

inf
ν∈Adm(u)

∫

S

∫

M3×2

g0(λ̂) dνx̂ dx̂ ≥

∫

S

inf
P∈adm(∇̂γS(u)(x̂))

(

∫

M3×2

g0(λ̂) dP
)

dx̂.

Conversely, for all η > 0, and x̂ ∈ S, let P
η
x̂ in adm(∇̂γS(u)(x̂)) satisfying

inf
P∈adm(∇̂γS(u)(x̂))

(

∫

M3×2

g0(λ̂) dP
)

≥

∫

M3×2

g0(λ̂) dPη
x̂ − η. (20)

We can assume that the map x̂ 7→ P
η
x̂ is measurable (see [14]). Set ν := P

η
x̂⊗dx̂.

As P
η
x̂ ∈ adm(∇̂γS(u)(x̂)), the Young measure ν belongs to Adm(u) so that (20)

yields, since η is arbitrary,

∫

S

inf
P∈adm(∇̂γS(u)(x̂))

(

∫

M3×2

g0(λ̂) dP
)

dx̂ ≥ inf
ν∈Adm(u)

∫

S

∫

M3×2

g0(λ̂) dνx̂ dx̂

which completes the proof of Lemma 3.

Proof of Proposition 4 continued. According to Lemma 3 we obtain

inf
ν∈Y3×2(S)

F(u, ν) =

∫

Ω

Qf(∇u) dx+ inf
ν∈Adm(u)

∫

S×M3×2

g0(λ̂) dν

=

∫

Ω

Qf(∇u)dx+

∫

S

inf
P∈adm(∇̂γS(u)(x̂))

(

∫

M3×2

g0(λ̂) dP
)

dx̂

=

∫

Ω

Qf(∇u) dx+

∫

S

Qg0(∇̂γS(u)) dx̂

which proves the proposition.

Applying Proposition 4, Lemma 1 and Theorem 1 we recover the classical
nonlinear model of multimaterial with strong interface obtained in [1] and [10].
Precisely

Theorem 3. Let us equip the space X = Lp(Ω,R3) with the strong convergence.
Then the sequence of functionals (Hε)ε>0 ΓX-converges to the functional H. In
addition, if ūε ∈ Lp(Ω,R3) is an ε-minimizer of Hε − L, i.e. which satisfies

Hε(ūε) − L(ūε) ≤ ε+ inf
u∈Lp(Ω,R3)

(

Hε − L(u)
)

,

then there exists a subsequence of (ūε)ε>0 strongly converging in Lp(Ω,R3) and
weakly in W

1,p
Γ0

(Ω,R3) to some ū which is a minimizer of the classical nonlinear
problem

inf
u∈Lp(Ω,R3)

(

H(u) − L(u)
)

.
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Let (ū, ν̄) be a minimizer of inf(u,ν)∈Lp(Ω,R3)×Y3×2(S)

(

F(u, ν)−L(u)
)

. The

next corollary states that ū is a minimizer of the classical nonlinear problem
and that at a.e. x̂ in S, one may think ν̄ as the microscopic description of the
macroscopic quantities ∇̂γS(ū)(x̂) and Qg0(∇̂γS(ū)(x̂)).

Corollary 1. Let (ū, ν̄) be a minimizer of inf(u,ν)∈Lp(Ω,R3)×Y3×2(S)

(

F(u, ν) −

L(u)
)

, then ū is a minimizer of infu∈Lp(Ω,R3)

(

H(u)−L(u)
)

. Moreover for a.e.

x̂ in S one has

∇̂γS(ū)(x̂) =

∫

M3×2

λ̂ dν̄x̂;

Qg0(∇̂γS(ū)(x̂)) =

∫

M3×2

g0(λ̂) dν̄x̂.

Proof. We begin by proving the two equalities. The proof of the first one is
straightforward since ν̄ ∈ Adm(ū). For the same reason, for a.e. x̂ in S we have

Qg0(∇̂γS(ū)(x̂)) ≤

∫

M3×2

Qg0(λ̂) dν̄x̂

≤

∫

M3×2

g0(λ̂) dν̄x̂.

The converse inequality is more involved and requires a localization argu-
ment. Let x̂0 be a fixed point of S, Qρ(x̂0) = Q̂ρ(x̂0)×(−ρ, ρ) the cylinder of R

3

where Q̂ρ(x̂0) is the ball of R
2 centered at x̂0 ∈ S. Write Fρ,x̂0

ε , Fρ,x̂0 , Hρ,x̂0
ε ,

Hρ,x̂0 for the functionals Fε, F , Hε, H localized at Qρ(x̂0) where the constraint

u ∈ W
1,p
Γ0

(Ω,R3) is replaced by the constraint u ∈ ū +W
1,p
0 (Qρ(x̂0),R

3). It is
easy to check that (ū, ν̄) restricted to Qρ(x̂0) is also a minimizer of the localized
problem

inf
{

Fρ,x̂0(u, ν) : u ∈ Lp(Qρ(x̂0),R
3), ν ∈ Y3×2(Q̂ρ(x̂0)

}

.

On the other hand, analysis similar to that in the proofs of Theorem 2 and

Theorem 3 shows that Fρ,x̂0
ε

Γ
X,Y,Ŷ
→ Fρ,x̂0 and Hρ,x̂0

ε

ΓX→ Hρ,x̂0 . From the second

variational convergence process
ΓX→, there exists a sequence (uε)ε>0 strongly

converging to ū in Lp(Qρ(x̂0),R
3) such that

lim
ε→0

(

Hρ,x̂0
ε (uε) − L(uε)

)

=

∫

Qρ(x̂0)

Qf(∇ū) dx+

∫

Q̂ρ(x̂0)

Qg0(∇̂γS(ū)) dx̂− L(ū). (21)

Moreover, according to the Prokorov compactness theorem, µε = δ∇uε(x)⊗dx
A
⇀

¯̄ν where ¯̄ν is some Young measure in ∇̂Y3×2(S). Now, from the first variational
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convergence process
ΓX,Y,Ŷ
→ , we obtain

lim
ε→0

(

Hρ,x̂0
ε (uε) − L(uε)

)

= lim
ε→0

(

Fρ,x̂0
ε (uε, µε) − L(uε)

)

≥

∫

Qρ(x̂0)

Qf(∇ū) dx+

∫

Q̂ρ(x̂0)

(

∫

M3×2

g0(λ̂) d¯̄νx̂

)

dx̂− L(ū)

≥

∫

Qρ(x̂0)

Qf(∇ū) dx+

∫

Q̂ρ(x̂0)

(

∫

M3×2

g0(λ̂) dν̄x̂

)

dx̂− L(ū). (22)

Combining (21) and (22) we deduce
∫

Q̂ρ(x̂0)

Qg0(∇̂γS(ū)) dx̂ ≥

∫

Q̂ρ(x̂0)

(

∫

M3×2

g0(λ) dν̄x̂

)

dx̂.

By choosing x̂0 outside a suitable H2-negligeable subset of S (take x̂0 a Lebesgue
point of each two integrands in each two members), dividing the two members by

H2(Q̂ρ(x̂0)) and letting ρ→ 0, we obtain Qg0(∇̂γS(ū)(x̂0)) ≥

∫

M3×2

g0(λ) dν̄̂̄x0

which completes the proof of the second equality.
It remains to establish that ū is a minimizer of the classical nonlinear prob-

lem. Indeed, from the second equality previously established we infer
∫

Ω

Qf(∇ū) dx+

∫

S

Qg0(∇̂γS(ū)) dx̂− L(ū) = F(ū, ν̄) − L(ū)

= inf
u∈Lp(Ω,R3)

(

inf
ν∈Y3×2(S)

F(u, ν) − L(u)
)

= inf
u∈Lp(Ω,R3)

(

H(u) − L(u)
)

which completes the proof of the corollary.

5 The displacement considered as an internal

variable: the formulation in terms of Young
measure

Since H1(Γ0 ∩ S̄) > 0, for each ν ∈ ∇̂Y3×2(S) there exists a unique function u

in W 1,p(S,R3) satisfying u = 0 on Γ0 ∩ S̄, defined for a.e. x̂ in S by u(x̂) =
∇̂−1(bar(νx̂)). For every fixed measure ν in ∇̂Y3×2(S), we consider the set

W (ν) :=
{

u ∈W
1,p
Γ0

(Ω,R3) : γS(u)(x̂) = ∇̂−1(bar(νx̂)) for a.e. x̂ in S
}

and define the functional G : Y3×2(S) −→ R ∪ {+∞} by

G(ν) :=







inf
u∈W (ν)

(

∫

Ω

Qf(∇u) dx− L(u)
)

+

∫

S×M3×2

g0(λ̂) dν if ν ∈ ∇̂Y3×2(S)

+∞ otherwise.
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It is straightforward to see that G is the marginal map of the functional F −L

when u is considered as an internal variable, namelyG := infu∈Lp(Ω,R3)

(

F(u, .)−

L(u)
)

. It is also interesting to notice that G is a sum of a bulk and surface en-
ergy, precisely:

G(ν) =

∫

Ω

h(x, bar(νx̂)) dx+

∫

S

(

∫

M3×2

g0(λ̂) dνx̂

)

dx̂

(Take h := Qf ◦ ∇ū where ū is a solution of inf
u∈W (ν)

(

∫

Ω

Qf(∇u) dx− L(u)
)

).

Applying Theorem 1, we deduce thatGε := infu∈Lp(Ω,R3)

(

Fε(u, .)−L(u)
) ΓY,Ŷ

→
G. The formulation of the model in terms of Young measure is then given by the
problem ν̄ ∈ argmin G. From this formulation, we deduce that a minimizer ū of
the classical formulation is solution of a Dirichlet problem (in a variational form)
with the following boundary condition: ū(x̂) = ∇̂−1(bar(νx̂)) on S. Precisely

Corollary 2. Let (ū, ν̄) be a minimizer of inf
(u,ν)∈Lp(Ω,R3)×Y3×2(S)

(

F(u, ν) −

L(u)
)

, then ū is a minimizer of the Dirichlet problem

inf
{

∫

Ω\S

Qf(∇u) dx−L(u) : u ∈W
1,p
Γ0

(Ω,R3), u(x̂) = ∇̂−1(bar(νx̂)) a.e. on S
}

.

Proof. On account of the ΓY,Ŷ -convergence of Gε to G, there exists a sequence

µε ∈ Y3×3(B) satisfying µε
A
⇀ ν̄ and

lim
ε→0

Gε(µε) = inf
u∈W (ν̄)

(

∫

Ω

Qf(∇u) dx− L(u)
)

+

∫

S×M3×2

g0(λ̂) dν̄. (23)

But sinceGε(µε) < +∞, there exists uε inW 1,p
Γ0

(Ω,R3) such that µε = δ∇(rεuε)⊗
dx in Y3×3(B) and Gε(µε) = Fε(uε, µε)−L(uε). From Lemma 1, a subsequence
of (uε)ε>0 strongly converges to some ¯̄u in Lp(Ω,R3). Then, according to the
ΓX,Y,Ŷ convergence of Fε − L to F − L, we deduce

lim
ε→0

Gε(µε) = lim
ε→0

Fε(uε, µε) − L(uε) ≥ lim inf
ε→0

Fε(uε, µε) − L(uε)

≥

∫

Ω

Qf(∇¯̄u) dx− L(¯̄u) +

∫

S×M3×2

g0(λ̂) dν̄

≥

∫

Ω

Qf(∇ū) dx− L(ū) +

∫

S×M3×2

g0(λ̂) dν̄. (24)

Combining (23) and (24) we see that

inf
u∈W (ν̄)

(

∫

Ω

Qf(∇u) dx− L(u)
)

=

∫

Ω

Qf(∇ū) dx− L(ū)

which ends the proof.
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6 Appendix

For a general exposition of the theory of Young measures, we refer the reader
to [7], [8], [26, 27] and the references therein. In all the Appendix, Ω is an
open bounded subset of R

N and E = R
d, d = m×N so that R

d is canonically
isomorphic to the space Mm×N of m×N matrices.

Definition 3. We call Young measure on Ω × E, any positive measure µ ∈
M+(Ω ×E) whose image by the projection πΩ on Ω is the Lebesgue measure L
on Ω: for every Borel subset B of Ω

πΩ#µ(B) := µ(B × E) = L(B).

We denote by Y(Ω;E) the set of all Young measures on Ω × E and equip
Y(Ω;E) with the narrow topology, that is the weakest topology which makes
the maps

µ 7→

∫

Ω×E

ϕ dµ

continuous, where ϕ runs through Cb(Ω;E). This topology induces the narrow
convergence of Young measures defined as follows : let (µn)n∈N be a sequence
of measures in Y(Ω;E) and µ ∈ Y(Ω;E), then

µn
nar
⇀ µ ⇐⇒







∀ϕ ∈ Cb(Ω;E),

lim
n→+∞

∫

Ω×E

ϕ(x, λ) dµn(x, λ) =

∫

Ω×E

ϕ(x, λ) dµ(x, λ).

The following slicing property, is a generalization of Fubini’s theorem.

Theorem 4. Let µ be any Young measure in Y(Ω;E). There exists a family of
probability measure (µx)x∈Ω on E, unique up to equality L-a.e. such that

(i) x 7→

∫

E

ψ(x,Λ) dµx is L-measurable,

(ii)

∫

Ω×E

ψ(x,Λ) dµ(x,Λ) =

∫

Ω

(

∫

E

ψ(x,Λ) dµx(Λ)
)

dx

for each function µ-integrable ψ. The family (µx)x∈Ω is called a disintegration
of the Young measure µ and we write µ = µx ⊗ L.

Let us define the tightness notion for Young measures

Definition 4. A subset H of Y(Ω;E) is said to be tight if

∀ε > 0, ∃Kε compact subset of E such that sup
µ∈H

µ(Ω × E \ Kε) < ε.

Theorem below may be considered as the parameterized version of the clas-
sical Prokhorov compactness theorem
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Theorem 5 (Prokhorov’s compactness theorem). Let (µn)n∈N be a tight se-
quence in Y(Ω;E). Then, there exists a subsequence (µnk)k∈N of (µn)n∈N and
µ in Y(Ω;E) such that

µnk

nar

⇀ µ in Y(Ω;E).

Let (un)n∈N be a sequence of functions un : Ω → E and consider the sequence
of their associated Young measures (µn)n∈N, µn = δun(x) ⊗ L. If µn

nar
⇀ µ

in Y(Ω;E), the Young measure µ is said to be generated by the sequence of
functions (un)n∈N. In general, µ is not associated with a function.

The next proposition is a semicontinuity result related to non negative func-
tions.

Proposition 5. Let ϕ : Ω×E → [0,+∞] be a B(Ω)⊗B(E) measurable function
such that λ 7→ ϕ(x, λ) is lsc for a.e. x in Ω. Let moreover (µn)n∈N be a sequence
of Young measures in Y(Ω;E) narrowly converging to some Young measure µ
in Y(Ω;E). Then

∫

Ω×E

ϕ(x, λ) dµ(x, λ) ≤ lim inf
n→+∞

∫

Ω×E

ϕ(x, λ) dµn(x, λ).

Let us recall the notion of uniform integrability: a sequence (fn)n∈N, fn :
Ω → R is said to be uniformly integrable if

lim
R→+∞

sup
n∈N

∫

[|fn|>R]

|fn| = 0.

One may extend the set Cb(Ω,R
m) of test functions related to the narrow con-

vergence as follows:

Proposition 6. Let (µn)n∈N be a sequence of Young measures associated with
a sequence of functions (un)n∈N, narrowly converging to some Young measure
µ. On the other hand let ϕ : Ω×E → R be a B(Ω)⊗B(E) measurable function
such that λ 7→ ϕ(x, λ) is continuous for a.e. x in Ω. Assume moreover that
x 7→ ϕ(x, un(x)) is uniformly integrable. Then

∫

Ω×E

ϕ(x, λ) dµ(x, λ) = lim
n→+∞

∫

Ω

ϕ(x, un(x)) dx.

In order to apply Proposition 6, the following result is fundamental. For a
proof, we refer the reader to [18], [23].

Proposition 7. Let (un)n∈N be a bounded sequence in W
1,p
Γ0

(Ω,Rm) whose gra-

dients generate a W 1,p-Young measure µ. Then there exists another sequence
(vn)n∈N in W

1,p
Γ0

(Ω,Rm), whose gradients generate the same Young measure µ,
and such that (|∇vn|

p)n∈N is uniformly integrable.

We end this section with the following characterization theorem for W 1,p-
Young measures (Young measures generated by gradients of W 1,p-functions),
established by D. Kinderlehrer and P. Pedregal (see [19], [23], [24]).
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Theorem 6. Let p > 1. Then µ ∈ Y(Ω;E) is a W 1,p-Young measure iff there
exists u ∈W 1,p(Ω,Rm) such that the three following assertions hold :

i) ∇u(x) =

∫

E

λ dµx(λ),

ii) for all quasiconvex function φ satisfying a growth condition of order p one
has

φ(∇u(x)) ≤

∫

E

φ(λ) dµx(λ) for a.e.x ∈ Ω.

iii)

∫

E

|λ|p dµ(x) < +∞ for a.e.x ∈ Ω.
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