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Abstract

This paper presents an original research initiated by the monitoring needs
of a semiconductor production plant. The industrial operations rely on an
Information Technology (IT) system, and several time series data are con-
trolled statistically. Unfortunately, these variables often contain outliers, as
well as structural changes due to external decisions in the IT activity. As a
consequence, it has been observed that the monitoring results obtained with
standard techniques could be severely biased.
This paper presents some contributions to overcome such difficulties. A new
monitoring method is proposed, based on robust Holt-Winters smoothing algo-
rithm, and coupled with a relearning procedure for structural breaks detection.
Such a method is flexible enough for a large-scale industrial application. We
evaluate its performances through simulations studies, and show its usefulness
in industrial real applications for univariate and multivariate time series. The
scope of application deals with IT activity monitoring, but the introduced sta-
tistical methods are generic enough for being used in other industrial fields.
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1 Introduction

Manufacturing activities efficiency relies increasingly on Information Technologies
(IT). This is clearly true for wafer fabrication plants, where this research is ongoing
through a partnership with the company STMicroelectronics. Several activities are
useful for a proper IT management (see eg. Rudd et al.18). This paper is focused on
the monitoring activity. A careful monitoring is based on a cautious observation of
the IT system. The objective is to have a close look on all data recorded and stored
to track the activity of a plant IT system.

As the size and complexity of IT systems strongly increase, the viability of mon-
itoring can only be ensured by employing automated procedures as mentioned by
Dugmore et al.5 Usual monitoring is based on threshold exceeding detection (Rudd
et al.18). However, facing the enormous diversity and expanse of the components
of modern IT systems, IT experts do not have always enough knowledge or time
to determine a priori the critical thresholds. Consequently, automated monitor-
ing procedures that do not require any preliminary hypothesis about the monitored
variables, are required. In this case, the monitoring activity requires the ability to
distinguish normal system operations from exceptional events.

To quantitatively detect such abnormal behaviors in the fluctuation of a time
series, a standard procedure is the following: 1) Model the time series to be mon-
itored; 2) Monitor model residuals, through an appropriate control chart (see eg.
Montgomery13 , Croux et al.4). This procedure is known in IT management studies.
By way of example, Hellerstein8 has developed an approach based on ARIMA mod-
elling, whereas Brutlag3 and Leikis11 have recourse to Holt-Winters smoothing. This
paper focuses on the latter. Holt-Winters smoothing is well adapted in industrial
contexts, where time series have to be modeled without any preliminary analysis.
Moreover, it is a fairly good approximation for many kinds of time series, accurate
enough for industrial applications (see eg. Makridakis et al.12 , Croux et al.4). Fur-
thermore, we observed that the Holt-Winters model is validated for most of the time
series encountered in our research field.

However, a monitoring based on the usual Holt-Winters algorithm revealed sev-
eral limitations at STMicroelectronics. That is why we developed some methods to
overcome these difficulties. This paper provides further details about their imple-
mentation in such a real industrial background. First of all, we observed that the
usual Holt-Winters monitoring procedure could be severely biased by the presence of
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outlier observations. Consequently, we implemented a robust approach, as proposed
by Gelper et al.6 and Croux et al.4 Nonetheless, we noticed that the efficiency of
this robust Holt-Winters control is seriously affected when structural changes occur.
That is why we developed a dynamical procedure, which detects structural breaks
in a time series and reinitializes the robust smoothing parameters accordingly. This
dynamical procedure is an original contribution to References4,6 , contributing to
improve the flexibility for applications in industrial fields. Finally, it should be men-
tioned that an industrial monitoring implies a simultaneous control of several dozens
of variables. There are numerous approaches in multivariate process control (see e.g.
Bersimis et al.2 for a review), and a specific investigation of robust techniques in
this context is beyond the scope of the paper. Alternatively, we show how the ro-
bust controlling procedure can be adapted to the framework of multivariate process
control.

This paper is organized as follows. In Section 2, we introduce the main statistical
methods that have been deployed to control the STMicroelectronics IT system: The
robust Holt-Winters monitoring proposed by Gelper et al.6 and Croux et al.;4 The
dynamical contribution developed through our researches, improving its flexibility in
changing environments. In Section 3, some performance tests are introduced. They
are grounded on quantitative simulations to: 1) Compare the usual and robust Holt-
Winters monitoring procedures; 2) Evaluate the structural break detection capacity
of the new dynamical procedure. Lastly, Section 4 introduces some example from
real industrial cases: Univariate and multivariate applications are considered.

2 Investigation of a robust monitoring for trended

time series with structural changes

We recall here the main principles of Holt-Winters based monitoring, and its ro-
bust version introduced by References4,6 . Then, we propose a new methodology in
presence of structural changes.

2.1 Monitoring based on Holt-Winters smoothing

The Holt-Winters (HW) algorithm is a popular technique used to provide short-term
forecasts of a given time-series (see e.g. Makridakis et al.12). The predictions are
built iteratively as a linear combination of the observed values and the prediction
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obtained at last step.
For illustration, let us consider a time series y, observed at dates 1, 2, . . . , n− 1.

For the sake of simplicity, we assume that y is non-seasonal, though the methodology
is similar. The HW algorithm is based on the assumption that y is a sum of two
time-series α and β corresponding respectively to a local level (order of magnitude)
and a trend. These auxiliary time series are estimated iteratively as averages of the
last observation and the last predictions, weighted by two parameters λ1 and λ2:

α̂t = λ1yt + (1− λ1)ŷt|t−1, t = 1, . . . , n− 1 (1)

β̂t = λ2(α̂t − α̂t−1) + (1− λ2)β̂t−1, t = 1, . . . , n− 1 (2)

Logically, the one-step-ahead forecast done at date t− 1 for date t is then given by:

ŷt|t−1 = α̂t−1 + β̂t−1, t = 1, . . . , n (3)

which gives in particular the prediction at date n. In practice, λ1 and λ2 are estimated
by minimizing a criterion (often the least-square criterion) based on the forecast
errors:

Et = yt − ŷt|t−1, t = 1, . . . , n− 1 (4)

and the algorithm is initialized by a linear regression on the first m values.

As a second step, monitoring can be performed. While applying a control chart to
y is not recommended, due to the violations of the usual assumption (identically and
independently distributed data) especially if y is trended, the forecast errors Et may
be close to satisfy it. Then, assuming furthermore that Et are normally distributed
N(0, S2) the upper and lower control limits for Et are then given by:

UCL = +qα/2 ∗ Ŝ (5)

LCL = −qα/2 ∗ Ŝ (6)

where qα/2 is the quantile of a Student distribution at level α/2, and Ŝ2 is the usual
variance estimator:

Ŝ2 =
1

n−m− 1

n−1∑
t=m+1

E2
t (7)

These limits intend to detect the dates that correspond to an anomaly: A value
of Et outside the interval [UCL, LCL] should be a strong indication of an abnormal
behavior (for a given confidence level α). However, the limits themselves are sensitive
to outliers, since the variance estimator overestimates the true variance in presence
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of outliers. Furthermore, the predicted value ŷt|t−1 depends linearly on past values
that may contain outliers. These problems are solved by the robust version of the
Holt-Winters monitoring.

2.2 Robust monitoring based on Holt-Winters smoothing

The Robust Holt-Winters algorithm (RHW) introduced by Gelper et al.6 and Croux
et al.4 considers two additional auxiliary time series: y∗, representing a cleaned
proxy of y after outliers treatment, and σ the expected prediction error, representing
a robust estimate of the forecast error Et. To obtain a robust algorithm, large values
are truncated when larger than a given threshold. More precisely, the expected errors
σt are computed recursively by:

σ̂2
t = λσ

[
ψk

(
Et
σ̂t−1

)]2
σ̂2
t−1 + (1− λσ)σ̂2

t−1 (8)

where λσ is a given weight, and ψk is the Huber function with boundary value k:

ψk(x) =

{
x if |x| ≤ k,

sign(x)× k if |x| > k
(9)

The error Et is still given by Et = yt− ŷt|t−1, with ŷt|t−1 = α̂t−1 + β̂t−1, but the local
level and trend are now estimated by using the cleaned time series y∗:

α̂t = λ1y
∗
t + (1− λ1)ŷt|t−1 (10)

β̂t = λ2(α̂t − α̂t−1) + (1− λ2)β̂t−1 (11)

where y∗t is given by:

y∗t = ψk

(
Et
σ̂t

)
× σ̂t + ŷt|t−1 (12)

Notice that the role of the Huber function ψ is to truncate the forecast errors Et
when larger than k times the expected prediction error σ̂t:

ψk

(
Et
σ̂t

)
× σ̂t =

{
Et if |Et| < kσ̂t,

sign(Et)× kσ̂t if |Et| > kσ̂t
(13)

For instance, Equation (12) can be rewritten in a simpler way:

y∗t =

{
yt if |Et| < kσ̂t,

sign(Et)× kσ̂t + ŷt|t−1 if |Et| > kσ̂t
(14)
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Finally the parameters λ1 and λ2, and the standard deviation S of the forecast errors
are computed with robust procedures, while λσ is fixed to 0.3 (see References4,6 for
more details). The algorithm initialization is also done in a robust way by repeated
median regression. For that, we recommend using a period of length 7: This is short
enough to assume a local linear trend and long enough to be resistant to 2 outliers.

Since the RHW smoothing is a full robust procedure, the control charts based
on the errors Et (see Section 2.1) are now resistant to outliers, which is a clear
improvement to the (non-robust) HW-based monitoring. However, an adaptation is
necessary in presence of a structural change.

2.3 Robust monitoring with structural changes

In this section, we focus on time series that possibly contain outliers and structural
changes. To detect structural changes in parametric models, three main classes exist
(Zeileis22): F statistics, fluctuation tests and maximum likelihood scores. We choose
to use a common and simple F statistics, the Chow test, since it can be easily adapted
to a robust framework. It consists in splitting the sample into 2 groups: The first one
before the break date and the second one after. The model parameters are estimated
for both of them so that an F test be performed to judge whether they are equal or
not. The Chow test is easy to use but restricted by 2 limitations. The first one is
mentioned by Hansen7 : An important limitation of the Chow test is that the break
date must be known a priori ”. Moreover, the exact number of changes is unknown.
The second problem is a question of robustness: A break may be missed or falsely
detected because of outliers. In this section, we show how the robust Holt-Winters
smoothing allows to deal with these problems and deduce a strategy for structural
change monitoring.

An introducing example Consider the time series in Figure 1 with an outlier at
date 10 and a break at date 26. As expected, the robust algorithm is not sensitive to
the outlier at date 10 contrarily to the classical smoothing: This is its main advan-
tage. But after that, the level changes suddenly at date 26. The robust algorithm
does not admit this modification quickly and many false alarms follow. Nevertheless,
this specificity can be used to detect break dates. Indeed, when a structural change
happens, there is a quite long period (here 26—34) of successive false alarms corre-
sponding to successive large errors in the RHW smoothing. During this period, the
predicted values ŷt|t−1 seem to exhibit a deterministic pattern (Figure 1, d): Actu-
ally, we show below (Figure 2 and Proposition 1) that they match exactly with an
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exponential function. These two facts strongly suggest that the periods of successive
large errors given by the robust Holt-Winters smoothing are useful for break dates
detection.

(a) Alarms given by the classical HW fore-
casting

(b) Predicted values by the classical HW
smoothing

(c) Alarms given by the robust HW forecast-
ing

(d) Predicted values by the robust HW
smoothing

Figure 1: A real time series with outlier and structural change

2.3.1 Structural change and consecutive large errors of the robust Holt-
Winters smoothing

When a structural break occurs in practice, there is a sequence of consecutive false
alarms due to a succession of large errors. The robust smoothing enables to quantify
the importance of these errors by comparing them to their predicted values. Let
us call relative error the ratio Et

σ̂t
. A succession of large values of this ratio is a
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Figure 2: Zoom on Figure 1 (d): The predicted values (solid line) coincide with a
function f of the form f(t) = art + bt+ c (dotted lines) during the period [26-34].

forewarning sign of structural change. More formally, we call t1 a suspicious date for
structural change if there exists an integer p ≥ 3 such that:

ψk

(
Et1
σ̂t1

)
= ψk

(
Et1+1

σ̂t1+1

)
= ... = ψk

(
Et1+p−1
σ̂t1+p−1

)
= k (15)

or

ψk

(
Et1
σ̂t1

)
= ψk

(
Et1+1

σ̂t1+1

)
= ... = ψk

(
Et1+p−1
σ̂t1+p−1

)
= −k (16)

The period [t1, . . . t1 + p − 1] is a suspicious period : a period when forecasting
errors remain k times higher than their expected values.

Proposition 1 During a suspicious period [t1, . . . t1 + p− 1], the predictions ŷt|t−1
of the robust HW smoothing are given by a deterministic and monotonic function f
which does not depend on any observation posterior to date t1. Its form is:

f(t) =
r(t+1)

(r − 1)2
+ a.t+ b (17)

with
r =

√
λσ(k2 − 1) + 1 = 1.378405 (18)

a and b are given by ŷt1 and ŷt1−1
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Proof See Appendix 1.

2.3.2 A new methodology for structural change monitoring

The previous observations and result about the RHW smoothing in case of a struc-
tural change suggest the following methodology that we call RHW-SC:

1. Find the suspicious dates by looking at consecutive relative errors given by the
robust HW smoothing (Equations 15 and 16)

2. Apply a robust version of the Chow test to the suspicious dates detected in
1. One robust version of the Chow test consists in replacing the usual linear
regression by the repeated median regression (Siegel19 , Rousseeuw et al.17

) and using a robust estimator of the residuals’ variance (Croux et al.4) to
compute the F statistic.

This strategy tackles the two main issues mentioned at the beginning of this sec-
tion: All the possible break dates (number and locations) are automatically detected
by the algorithm itself, and for a given date the statistical test for structural change
is done in a robust way. In practice the methodology is applied dynamically, and
when the robust Chow test is positive, the robust HW smoothing is reinitialized.

Performance of the RHW-SC methodology on the introducing example
To solve the problem raised by the introducing example, we perform dynamically the
RHW-SC methodology with p=3. The methodology has detected only one suspicious
date, namely day 26, which indeed corresponds to the structural change. Notice
that only one Chow test has been used contrarily to exhaustive methods such as
Quandt-Anderson that systematically test all dates. We reinitialized the robust HW
smoothing at date 26, by using the repeated median regression coefficients. As a
result, RHW-SC methodology remains resistant to the outlier at date 10 without
generating a long sequence of false alarms after the break.
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(a) Alarms given by the RHW-SC method-
ology

(b) Predicted values with the RHW-SC
methodology

Figure 3: Alarms and predicted values by the robust version with structural change
detection

3 Global performance tests

Some ARIMA models correspond to exponential smoothing methods (see e.g. Hyn-
dman et al.10 . In particular, a Holt-Winters forecasting with smoothing parameters
(λ1 , λ2) is equivalent to an ARIMA (0, 2, 2) model of parameters (θ1 , θ2) if:
−1 ≤ θ2 ≤ 1 , θ2 − θ1 ≤ 1 and θ2 + θ1 ≤ 1, with :

λ1 = 1 + θ1 (19)

λ2 =
1− θ1 − θ2

1 + θ2
(20)

Thus, we first use ARIMA (0, 1, 1) time series with parameter θ = 0.5. Indeed,
they correspond to the special case where θ2 = 0. Next, we perform our simulations
on ARIMA (0, 2, 2) models with (θ1 , θ2) = (1 , -0.25). These parameters have
been estimated from an industrial time series by assuming that it comes from an
ARIMA(0, 2, 2) model. In this section, we compare first the performances of the
RHW and the HW smoothing statically and dynamically. Afterwards, we evaluate
the ability of the RHW-SC method to detect a structural change.

3.1 Comparison tests in a static setting

We are interested in comparing 2 characteristics of the HW and the RHW methods:
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1. The power : The probability that an outlying observation is detected

2. The false detection rate: The probability that a normal observation is detected.
This risk is called size of the control chart when there is no outlier. Below, we
use 0.95 as a confidence level, so the false detection rate is expected to be 0.05.

3.1.1 Simulation results for ARIMA (0, 1, 1) time series

We use the following strategy:

1. Generation of a time series: simulate an ARIMA (0, 1, 1) time series of length
160 with parameters θ = 0.5. The first 60 values serve as a training sample
(including m = 7 values for HW and RHW initializing).

2. Generation of outliers: For a fixed contamination rate R, choose randomly
160R dates among the 160 dates. Contaminate these observations by adding
or subtracting to them a value e. Whether it is an addition or a subtraction is
chosen at random. Two cases are considered for e:

(a) e is a fixed value among 10, 20 or 30

(b) ”Mix”: e is chosen at random uniformly among 10, 20, 30

3. Perform the HW and the RHW methods and estimate:

(a) Their power : as the percentage of the contaminated observations that are
really detected

(b) Their false detection rate: as the percentage of non contaminated obser-
vations that are detected.

4. Repeat 100 times the steps 1 to 3.

The RHW and HW monitoring are equivalent when there is no outlier (Reference4

). Their differences become significant when the data is contaminated.
On the one hand, Table 1 and Table 2 below show that the HW control chart is

subject to two effects. The first one is the widening of its control limits by outliers,
which tends to reduce abnormaly its false alarms rate. The second one concerns
the dates following these outliers: the corresponding predictions are biased and this
fact tends to raise the false alarms rate. Here, the first effect is predominant. This
explains the too low false alarms risk and the poor detection rate of the HW method.
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On the other hand, Table 3 and Table 4 show that the RHW methodology out-
performs the HW smoothing especially when the number of outliers raises and when
the magnitude of these outliers is not fixed: which is a realistic case. In fact,the
RHW control chart doesn’t lose neither its power, nor the stability of its false alarms
rate that remains stable around the theoretical value 5%.

Table 1: HW detection rate

R = 2% R = 5% R = 10%
e = 10 93.5 70.0 31.0
e = 20 94 74 35
e = 30 91 72 36
Mix 72 55 33

Table 2: HW false alarms rate

R = 2% R = 5% R = 10%
e = 10 3.3 3.6 2.1
e = 20 1.7 3.0 7.5
e = 30 1.9 6.0 10
Mix 3 5.3 4

Table 3: RHW detection rate

R = 2% R = 5% R = 10%
e = 10 100 100 99.2
e = 20 100 100 99.9
e = 30 100 100 100
Mix 100 100 99.8

Table 4: RHW false alarms rate

R = 2% R = 5% R = 10%
e = 10 5.2 4.8 6.1
e = 20 5.2 5.2 6.4
e = 30 5.2 4.8 7.1
Mix 5.1 4.9 6.1

3.1.2 Simulation results for ARIMA (0, 2, 2) time series

The same strategy as in the precedent section is used. Only the first step is modified
to generate ARIMA (0, 2, 2) models with (θ1 , θ2) = (1 , -0.25). The results are
summarized below (Tables 5, 6, 7 and 8). They show that the RHW control chart
remains better in term of detection. Nevertheless, its false risk becomes higher than
expected even if it remains stable enough for a fixed contamination rate contrarily
to the HW smoothing.

Table 5: HW detection rate

R = 2% R = 5% R = 10%
e = 10 97.6 91.3 67.0
e = 20 100 92.2 74.4
e = 30 97.1 91.0 73.3
Mix 92.7 77.3 57.5

Table 6: HW false alarms rate

R = 2% R = 5% R = 10%
e = 10 3.3 2.7 3.7
e = 20 2.1 4.1 8.0
e = 30 5.2 1.5 4.0
Mix 2.2 3.9 6.4
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Table 7: RHW detection rate

R = 2% R = 5% R = 10%
e = 10 99.8 99.0 83.0
e = 20 100 99.9 93.5
e = 30 100 99.9 95.0
Mix 99.7 99.3 91.5

Table 8: RHW false alarms rate

R = 2% R = 5% R = 10%
e = 10 6.4 7.2 9.0
e = 20 7.1 7.1 8.5
e = 30 6.2 7.2 9.7
Mix 7.0 7.4 9.0

3.2 Comparison tests in a dynamical setting for ARIMA (0,
2, 2) time series

In practice, industrial variables are tracked daily; the smoothing parameters and
control limits are re-estimated every day. So, we perform dynamical simulations
that consist in using the same procedure as for the static setting but with updating
the smoothing parameters and controls limits at each iteration.

Table 9: HW detection rate

R = 2% R = 5% R = 10%
e = 10 99.6 95.4 80
e = 20 100 93.6 80
e = 30 100 97 78.6
Mix 95 70 52

Table 10: HW false alarms rate

R = 2% R = 5% R = 10%
e = 10 4.6 4.3 4.2
e = 20 3.3 2.2 2
e = 30 2.5 2.2 2.4
Mix 3.0 3.2 2.0

Table 11: RHW detection rate

R = 2% R = 5% R = 10%
e = 10 100 100 99.7
e = 20 100 100 100
e = 30 100 100 100
Mix 100 100 100

Table 12: RHW false alarms rate

R = 2% R = 5% R = 10%
e = 10 6.3 6.8 8.6
e = 20 6.0 7.1 9.1
e = 30 6.2 6.9 9.3
Mix 6.1 7.0 7.2

Tables 11 and 12 show how suitable the HW monitoring is to update its smoothing
parameters and control limits contrarily to the RHW method. Indeed, the HW de-
tection rate is drastically improved even if the power of the RHW smoothing remains
the better. Let’s remark that the HW false alarm risk has raised and approaches
better the theoretical value 5%. As for the RHW false alarms risk, it has decreased
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to approach this same theoretical value; but this later improvement is less obvious.
However, the RHW false alarms risk has become very stable and non dependant on
the magnitude of outliers, which is not the case for the HW control chart. Anyway,
the RHW control chart outperforms the HW one when the scale of the outliers is
more realistically (randomly) chosen.

3.3 Structural change detection performance tests

To evaluate the RHW-SC methodology, we use the following strategy:

1. Generation of a time series: simulate an ARIMA (0, 2, 2) time series of length
160 with parameters (θ1 , θ2) = (1,-0.25). The first 60 values serve as a training
sample (including m = 7 values for RHW initializing).

2. Generation of outliers: For a fixed contamination rate R = 0.05, choose ran-
domly 160R dates among the 160 dates. Contaminate these observations by
adding or subtracting to them a fixed value e = 5. Whether it is an addition
or a subtraction is chosen at random.

3. Generation of structural changes: choose randomly 1 date among the 100 last
values. From this date to the last one, add a linear function: A ∗DATE + B
to the time series.

4. Perform the RHW-SC methods with 0.95 as confidence level for the robust
Chow test and compute:

(a) The detection rate for structural changes

(b) The false detection rate for structural changes.

5. Repeat 1000 times the steps 1 to 4.

Table 13: Detection rate

B = 0 B = ±50
A = 0 - 95
A = ±50 86 95

Table 14: False detection rate

B = 0 B = ±50
A = 0 - 6
A = ±50 4 5

The RHW-SC methodology is efficient enough for structural change detection
especially when a shift happens. It looses in efficiency when there is no shift. But in
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these latest cases, the RHW period of successive false alarms is short. The RHW-SC
false detection rate corresponds to the theoretical value expected since the confidence
level used for the Chow test is 95%.

4 Applications

The RHW and the RHW-SC methods are performed daily on many indicators of the
information system of a company. In general, the results are satisfactory. Here, we
present some of these examples and a multivariate case.

4.1 Examples of univariate time series

This first example is illustrative of structural changes detection by the RHW-SC
methodology.

(a) RHW (b) RHW-SC

Figure 4: An industrial time series with a structural change

The time series of Figure 4 is subject to one slope change at date 47, which leads
to four false alarms when the RHW methodology is performed (4a). This change
is detected 3 days later by the RHW-SC monitoring, whence a reinitialization and
reduction of the number of false alarms. The second example shows an extension of
the RHW smoothing to seasonal time series (Reference6)
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(a) Seasonal HW (b) Seasonal RHW

Figure 5: An industrial and seasonal time series

Figure 5 points out the sensitivity of the HW method to outliers. The abnormal
observation of the third week has deformed the seasonal component. Because of the
overestimation of this seasonality, the 26th observation that is really aberrant is not
detected. Moreover, it leads to four false alarms the two following weeks. These
problems no longer exist with the seasonal RHW smoothing.

4.2 The multivariate case

In our company, several indicators are tracked daily. So, monitoring them separately
leads to false alarms every day. This is foreseeable given that the theoretical false
alarms risk tends to 100% when the number of independent variables approaches 100:
Whence the necessity to perform a multivariate monitoring. Notice that there are a
lot of possible approaches in the multivariate framework (see e.g. Bersimis et al.2),
and our aim is neither to do a comparative study nor to propose a best one. Rather,
we show how the new robust methodology can be adapted to the multivariate case.
Thus, as an example, we constitute groups of variables. For each group of p variables
we use the following strategy :

1. Perform the RHW smoothing for each variable of the group.

2. Use a robust Hotelling T2 control chart to analyze simultaneously the p vectors
of residuals given by step 1.

Among existing robust Hotelling T2 control charts (see e.g. Rousseeuw,15 Alfaro
et al.1) we consider here the computation of the confidence ellipsoid with the Mini-
mum Covariance Determinant criterion introduced by Rousseuw et al.15,16 . There

16



are two identified difficulties: A poor orientation of the confidence ellipsoid and an
underestimation of its size. To face these problems, we use recent solutions found
in the literature. Firstly, the orientation is improved by choosing a subset of the 75
% best points for the MCD criterion instead of 50% (Huber et al.9). Secondly, the
size estimation is improved by using two correcting factors: One asymptotic factor
of consistency to the chi square distribution (Rousseeuw et al.17) and one empirical
result for small samples (Pison et al.14).

Now, we present an example with a group of p = 4 variables. Each day, the chi
square statistic is computed for this group. The result is plotted in Figure 6. This
control chart has successfully detected the 6 most important outliers but does not say
where the problems come from. This is the well known problem of multidimensional
out of controls interpretation. As an example, let us focus on the alarm on date 56.
Its cause can be known by looking at each variable separately. Then, Figure 7 shows
that the variable BIN2 is mainly responsible for it.

Figure 6: Chi squared daily statistics for a group of 4 variables
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(a) Variable BIN1 (b) Variable BIN2

(c) Variable BIN3 (d) Variable BIN4

Figure 7: RHW smoothing for the four variables of the group

Nevertheless, this solution is not realistic for an industrial use because it pro-
duces too many graphs that need to be examined. Among the numerous existing
criteria to interpret multivariate signals, the partial relative contributions mentioned
by Montgomery13 are very popular for their efficiency. In Figure 7, these relative
contributions at date 56 confirm the influence of BIN2.
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Figure 8: Partial contributions to variability at date 56

5 Conclusion

In this paper, we have studied a monitoring based on robust Holt-Winters smoothing,
as proposed by Gelper et al.6 and Croux et al.4 Based on an industrial application
of this method at STMicroelectronics and simulation studies, we can confirm its
high robustness. However, as poor results were noticed in case of structural changes,
we have also proposed and evaluated an improved dynamical approach, for a better
integration of changing environments. The efficiency of this robust and dynamical
method has been demonstrated on real univariate and multivariate STMicroelec-
tronics case studies. This contribution has been developed as an improvement for
the STMicroelectronics IT system monitoring, but it could be applied to any other
industrial applications, where time dependent variables has to be statistically con-
trolled.

For further research, there are several interesting outstanding questions. Firstly,
some tuning choices could be investigated. Hence, the truncation parameter was set
to k = 2 and the smoothing parameter λσ to 0.3 (still proposed by References4,6).
These values could be discussed: Do they always provide optimal results or should
they be contextually adapted? Secondly, when structural changes occur, we decided
to reinitialize the Holt-Winters parameters. An alternative could be to use dynami-
cal smoothing parameters that may change over time, as proposed by Williams21 or
Taylor20 . Finally, in our methodology, we chose a Chow test to detect structural
breakpoints, since it is easily adapted to the robust framework. Nonetheless, as men-
tioned earlier, other approaches exist (other F statistics, fluctuation tests, maximum
likelihood scores). Their potential of application in our monitoring procedure and a
comparative study or their performance may bring to interesting further insights.
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Appendix

We prove the Proposition presented in Section 2.3.1: If t1, t1 + 2, . . . , t1 + p− 1 is a
suspicious period, then the sequence ŷt1 , ŷt1+1, . . . ŷt1+p−1 is given by a deterministic
and monotonic function f which does not depend on any observation posterior to
date t1.

Proof

The period t1, t1 + 1, . . . t1 + p− 1 is defined by either Equation 15 or Equation 16.
Without lost of generality, consider Equation 15. By combining this definition 15
and Equation 8, we obtain the equation:

σ̂2
t = (1 + λσ(k2 − 1))σ̂2

t−1 t1 + 1 ≤ t ≤ t1 + p (21)

which shows that the predicted errors σ̂t follow a geometric progression with common
ratio,

r =
√

1 + λσ(k2 − 1) (22)

Consequently, by denoting t0 := t1 − 1, the date before t1, the predicted errors are
given by:

σ̂t = rt−t0σ̂t0 t1 + 1 ≤ t ≤ t1 + p (23)

With the common choice k = 2, λσ = 0.3, we have r ≈ 1.378 > 1. Thus, the expected
error goes increasing exponentially. Furthermore, the cleaned time series y∗t becomes
:

y∗t = k.rt−t0σ̂t0 + ŷt (24)

Now, relying on the equivalence with ARIMA(0,2,2) model (see e.g. Hyndman10),
the forecast values of the Holt-Winters smoothing with parameters (λ1, λ2) follow the
recursive scheme:

ŷt+1 = (2− θ1) y∗t + θ1ŷt − (1 + θ2) y
∗
t−1 + θ2ŷt−1 (25)

where θ1 and θ2 are the parameters of the corresponding ARIMA(0, 2, 2) model (See
Equations 19 and 20). Given Equation 24, this scheme becomes:

ŷt+1 − 2ŷt + ŷt−1 = P (t) (26)

with:
P (t) = k[(2− θ1) r − (1 + θ2)]r

(t−1−t0)σ̂t0 (27)
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This is a linear equation, whose solutions are given by the sum of the solutions of
the homogeneous linear equation and a particular solution:

ŷt = f(t) =
rt+1

(r − 1)2
+ a.t+ b (28)

The values of the constants a and b are imposed by ŷt1 and ŷt1+1. This shows indeed
that the predicted values are purely deterministic and increasing exponentially during
the suspicious period.
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