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of Chains of Nonlinear
Sliding Beams

Chains of nonlinear shear indeformable beams with distributed mass, resting on movable
supports, are considered. To defermine the dynamic response of the system, the fransfer-
matrix approach is merged with the harmonic balance method and a perfurbation
method, thereby fransforming the original space-temporal continitous problem into a
discrete one-dimensional map X, =F(x;) expressed in ferms of the stafe variables x; af
the interface befween adjacent beams. Such fransformation does not imply any discreti-
zation, because if is oblained by integrating the single-element field equations. The state
variables consisi of both first-order variables, namely, fransversal displacement and

couples, and second-order variables, which are longitudinal displacement and axial
Jorces. Therefore, while ihe linear problem is monocoupled, the nonlinear one becomes
mitlticoupled. The procedure is applied fo defermine frequency-response relationship un-
der free and forced vibrations.

1 Introduction

The transfer matrix method has been widely nsed to analyze the
dynamics of linear periodic systems [1,2]. In this realm, analyti-
cal, design, and computational aspects have been recently inves-
tigated by the authors, respectively, in [3-5]. Although its appli-
cability is restricted, due to numerical problems, to a limited
number of periodic units, the method allows one to reduce the
dimension of the problem to the number of degrees of freedom of
the single element.

It is well known that the disturbance propagation through mul-
ticoupled linear periodic structures is governed by the frequency-
dependent transfer-matrix eigenvalues. On the frequency axis,
there exist intervals or bands where disturbances propagate har-
monically without attenuation (pass bands), in which the eigen-
values are complex with unitary modulus, and bands where the
disturbances decay (sfop bands), in which the eigenvalues are real
and different from 1. As soon as the coupling coordinates are
more than 1, there exist further frequency bands characterized by
disturbance harmonic propagation with attenuation (complex
bands) where pairs of complex conjugate eigenvalues, with modu-
lus different from 1, exist. Moreover, the natural frequencies fall
within the pass bands.

In contrast to the vast literature concerning linear periodic
structures, few works have thus far appeared in the mechanical
context on the dynamics of nonlinear periodic systems. Mono-
coupled periodic systems of infinite extent with material nonlin-
earities have been addressed in [6] Two different asymptotic ap-
proaches have been devised for studying standing (stop-band) and
traveling (pass-band) waves; amplitude-dependent frequencies
bounding nenlinear propagation and attenuation zones have been
found. In [7], an array of elastic oscillators coupled through buck-
ling sensitive elastica has been addressed both numerically and
experimentally. The existence of transition from solitonlike mo-
tions to spatially and temporally disordered motions due to a sud-
den excitation has been shown relying on a modified Toda lattice
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model. An extension of the transfer-matrix approach to post-
buckling problems of periodic systems has been proposed in [8].
In this work, the latter approach is further developed to analyze
free and forced dynamics of chains of multicoupled nonlinear
beams. In Sec. 2, the nonlinear continuous-beam model is derived.
Afterward, in Sec. 3, the nonlinear element transfer function is
derived through a perturbation method. By iterating the nonlinear
element map, a consistent system transfer function is obtained in
Sec. 4. Free and forced oscillations are studied in Sec. 5, and the
relevant numerical results are eventually shown in Sec. 6.

2 Continuous Beam on Sliding Supports

A chain of N shear indeformable beams with distributed mass
m, resting on movable supports, as schematically depicted in Fig.
1, is considered. The single beam, of length [ and flexural stiffness
El, is also axially indeformable. The displacement field is defined
by the longitudinal and transverse components #(s) and v(s), re-
spectively, and by a rotation «(s) of the beam cross section, s
being the abscissa. The conditions of zero transverse shear and
elongation, imply, respectively,

e=Vill+u )+ -1=0 (1)

from which the curvature x follows:

singp=v';

U!f

Ki= g T (2)

The equations of motion are derived from the stationarity of the
constrained Hamiltonian

ol
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H=J J |:Em(bl2+t)2)—EEIK2—}\E dsdt + grity + ey
n 4o

+&plip + MpPp (3)
whete #g, ¢ i My, (H=L,R) ate the end displacements and
forces and the Lagrangian parameter A(s) has been introduced. By
considering the series expansionms, x=v”[1+{u'%/2)], e=u’
+%u’2, the stationarity condition leads to the set of partial differ-
ential equations

v+ B [0 ) ) =) =0 (4a)
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Fig. 1 (a) Chain of nonlinear beams and (b) inextensible and
shear indeformable single beam
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where the following nondimensional quantities have been used:
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where w represents a frequency to be specified later and the over-
bars have been omitted. By prescribing the force gp and all the
displacements except ug, the boundary conditions follow:

v(0,7=0 (6a)
v'(0,7) + év’3(0, 7) =@ (6b)
v(l,7)=0 (6¢)

’ 1 13
v (I,T)+gv (1,7) = @g (6d)
u(0,7) =u, (6e)
)\(177.) =8r (6ﬂ

where the series expansion gozv’+%v’3 has been used. Having
solved the boundary value problem (4) and (6), by using the
moment-curvature relation, the unknown variables at both ends

are obtained
" 1 /)
mp=—|v"+=-v"v (7a)
2 0,7

ev)'-B =0
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N=28'u=0
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mg= [v" + %v”v’z] . (7b)
ug=u(l,7) (7c)
gr=-N\0,7) (7d)

In view of the transfer-matrix formulation, it is convenient to pa-
rametrize the solution in terms of the left-hand variables
(¢r,my,gr,up); therefore, Egs. (6d) and (6f) are replaced by Egs.
(7a) and (7d).

3 Nonlinear Element Transfer Function

To solve the nonlinear problem (4), with the proper boundary
conditions (6) and (7), use is made of the harmonic balance
method. By retaining only the first harmonic in v(s, 7), Egs. (4¢)
and (4b) ordinately provide with the time dependence of u(s, 7)
and \(s, 7), namely,

A(s,7) = N(s)cos 27
(®)

Consequently, o in Eq. (5) is the frequency of the (prevailing)
transversal motion. The space-dependent functions (s), #(s), and

v(s, ) =0(s)cos 7, u(s, D =ii(s)cos’ 7,

X(s) are then expanded in series of an artificially introduced small
bookkeeping parameter e, having the meaning of transversal mo-
tion amplitude, i.e., e=(O|d(s)|)). Aiming at considering only sig-
nificant (non-vanishing) quantities, incomplete series are adopted,
according to the following considerations. If Eq. (4) admit the
solution (v,u,\), they also admit the solution (-v,u,\), which
describes a state of the beam symmetrical with respect to its un-
deformed axis. Therefore, by changing the sign of the amplitude
&, v must change sign (i.e., it is an odd function of &), whereas u
and N must keep their sign (i.e., they are even functions of €). By
also taking into account Eq. (6) and (7), the following unknowns
series expansions and ordering of the boundary terms are intro-
duced

D=sv +&v3+ ..., d=%ur+ ..., N=eh\+...

Pp=8fy, U= SzﬁHv 8H= 825711 (H=L,R) )
From Egq. (9) it turns out that the longitudinal displacement u and
the axial force N are second-order variables with respect to the
transversal displacement v. They allow the kinematical inextensi-
bility condition (4¢) and the equilibrium in the longitudinal direc-
tion (4b) to be satisfied in the nonlinear range.

By substituting Egs. (9) into Eq. (4), Egs. (6a)-(6¢), (6e), (Ta),
and (7d), and by omitting hat and tilde, the perturbation equations
follow

01(0)=0, v{(0) = ¢,
n m
vy(1)=0, v.(0)=—E—j

uy(0) = uy,

\(0)=—g, (10)
v5(0)=0, v5(1)=0

1
v5(0) + gv{3(0) =0

n 1 ! n
v5(0) + Evlz(O)vl(O) =0
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Fig. 2 First four natural frequencies-amplitude relationship for
a four four-bay beam: thick lines, nonlinear; thin lines, linear

By solving Eq. (10) according to the increasing powers of &, the
corresponding solutions are obtained in the form

€ 01(5) = @LF (8) 4 myF, (5)

1,
uz(s) = L‘Z(O) - Ef Ulzds =up+ ()D%,quzp(s) + m%me(S)
0

+ <AOL’nLF‘ <pm(s)
€: M (5) =\,(0) + 2,84f uyds =
0

—8rt 2184[MLS + QDiG¢¢(S) + miGmm(s) + (PLmLGwn(s)]

€3 U?( ) QDLF(W(F( )+ @LmLF (pm( )+ gDLmLF(pmm(‘)

+ mLmem(S)

+ g1l H (s) + myH, ()] + u[ @ K (s) +m K,(s)]
(11)
where F,, Foo Foaa Gaw Hae and K, with a=¢, m, are com-
binations of circular, hyperbolic, and polynomial functions. As
expected, v;(s) and v;(s) are linear and cubic, respectively, with
respect to ¢;, m;. Moreover vs(s) is bilinear in the products of ¢;
and mj, with the second-order variables u;, g;.
Given the perturbative expansions, the remaining Egs. (6d),
(6/), (7b), and (7¢) are rewritten as

eQr= sv1(1)+8[v3(1)+ vf(l)] (12a)
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Fig. 3 Second four natural frequencies-amplitude relationship
for a four-bay beam: thick lines, nonlinear; thin lines, linear
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Fig. 4 First natural frequencies-amplitude relationship for a
chain with number of beams increasing from 1 to 4 (2, w: non-
linear and linear frequency)

emp=—¢ev|(1) - &> (1)+ v (l)viz(l) (12b)
&2up = euy(1) (12¢)
e’gr=—2&"\y(1) (12d)

They represent the nonlinear relationship between right and left-
hand variables. Continuity and equilibrium at the generic node k
imply dg x=d; jp1 = di(d=@,u) and fg==fp g1 =il f=m,g), re-
spectively, where the second index labels the element. By substi-
tuting in Egs. (12) v,(s), v3(s), up(s) and \,(s), as given by Eq.
(11), the element transfer function, linking the state variables at
adjacent interfaces, is obtained

3 tar T(§D7m ,u»g)
8(@) =8|:dd dj:|<ﬁp> +83( O\ Phs Mo U, S g (13)
M/ et lra gy JNm /g T (@1, U 81)

U _ 2 1 0|fu T(‘Pk,mk)
e = (14)
8/ ks -2 1 T(‘Pkamk)
where ,,, (p.q)=(d.[), are the usual entries of the monocoupled

linear transfer matrix [9] and 7, (e=¢,m,u,g), are the compo-
nents of the nonlinear part of the element transfer function.

4 Nonlinear System Transfer Function

In order to link the state variables at the end of the chain, the
map ((13) and (14)) must be iterated consistently with the ap-
proximation order. Toward this goal, the discrete counterpart of
the perturbation scheme adopted for the continuous problem is
followed. By setting v=(¢,m) and u=(u,g), after reabsorbing &,
the Egs. (13) and (14) are rewritten as

v(k+1) = T,v(k) = T,[v(k),u(k)]

u(k+1) - T,u(k)=T,[v(k)] (15)

By defining T, =T,(B) and T, =T,(Bo) and performing the fol-
lowing series expansions in analogy to Eq. (9):

v=ev +€v; u=éu, L=+,

T,=Ty+€EB,TL, with a=u,v (16)
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Fig.5 First and second mode of a four-bay beam: (a) first mode (B8=m) a=0.04, (b) first mode
(B=w) a=0.087, (c) second mode (B=3.393) a=0.047, and (d) second mode (B=3.393) a
=0.087; thick lines, nonlinear; thin lines, linear

the following perturbation equations are obtained:

€. Vl(k + 1) - TUOV](k) =0

e uy(k+1)-T

u, 0

uy(k) =7,[v,(k)]

€1 va(k+1) =Ty v3(k) = BT, vi(k) + T[v, (k). us(K)] (17)

The solutions of the difference equations (17) are

k=1

v3(0) =5 v3(0) + 2 ByT) T; Ty ' v, (0)

. Yo Yo Yo
J=0

Yo

k-1
+ 2 T T V1 (0). (k= 1= )]
Jj=0

(18¢)

(184d)

By introducing the global transfer matrix S, iT[U\i ; the state at the

(19a)

v (k) = T';Ov 1(0) (184) the : \
end of the periodic beams is then obtained from Eq. (18) for k
k-1 =N
(k) =T uy(0) + X T, T,[TS ' 7v,(0)] (18b)
J=0 vi(N) =8,v,(0)
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Fig. 6 Third and fourth mode of a 4-bay beam: (a) third mode (8=3.926) a=0.04, (b) third
mode (B=3.926) a=0.067, (c¢) fourth mode (B8=4.464) a=0.027, and (d) fourth mode (B

=4.464) a=0.035; thick lines, nonlinear; thin lines, linear
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Fig. 7 Frequency-response relationship for a four-bay beam with my,

=0.0,0.001,0.005,0.01: (a) first mode, (b) second mode, (¢) third mode, and (d) fourth

mode (Q, : nonlinear and linear frequency)

u2(N) = Suu2(0) + Su[vl(o)’o] (19[))
v3(N) =S,v3(0) + B,S,v,(0) + S,[v,(0),U,] (19¢)
where
N-1
Sux.Y) = X T T[T X y(N - 1-))] a=uv
j=0
N-1
S,= 2> T T, Ty (20)
j=0

with Y=[y(0), -+, y(N=-1)]

5 Frequency-Amplitude Relationship

An illustrative example consisting of a hinged-roll supported
chain of beams loaded by a couple my acting on the left-most
support, is considered. The boundary conditions read

m(0) = £ my (21a)
m(N)=0 (210)
u(0)=0 (21¢)
gN)=0 (21d)

where the = in Eq. (21a) is due to the force being either in-phase
or counterphase with the response. By using Eq. (16a) and (16b),
the boundary conditions for the perturbation equation (19) follow:

e:my(0)=my, m;(N)=0 (22a)

£ uy(0)=0, g,(N)=0 (22b)

e my(0)=0, my(N)=0 (22¢)
5.1 Free Oscillations. The frequency-amplitude relation for
free vibrations (my=0) is sought. To define the amplitude of the
modal shape, the normalization condition ¢(0)=er is chosen,
with e being a scaling factor representing the midspan displace-
ment to length ratio in the linear approximation. Consequently,

@1(0) =7 and ¢5(0)=0 (23)

are the normalization conditions for the perturbation equations
(194a) and (19c¢). The order € equations (19a) read

e (‘PI(N) ) _ |:S<ptp Swn :|((Pl(0) )
. m](N) Sm(p Smm ml(o)
From the second line of Equation (24), by accounting for the
boundary condition (22a) and (22b)

(24)

Smgo(ﬂ(]) =0 (25)

provides with the roots ﬁok corresponding to the natural frequen-
cies of the small-amplitude oscillations. By iterating (18a), with
v;(0)=(r,0), the linear modal shape is obtained.

The equations (19b) read

u SLIL( SLl u O Sll[v (0)’0]
(90 [ 0 (st}
gZ(N) Sgu Sgg gZ(O) Sg[Vl(O),O]
By taking into account the boundary condition (22b), the second
line of Eq. (26) yields the axial force at the left end of the beams



Sg[vl (0)70]
Sgg

consequently u,(0)=[0,g,(0)]. By iterating Eq. (18b), starting
from the known values of u,(0) and v,(0), u,(k) is evaluated at
any node of the chain. Equations (19¢) read

6’;’ <§D3(N)>_|:S(pgo S(pm:|<()03(0))+ﬁ |:S;;(p S(’pm:|<¢l(0))
NN ) LS Sy [\ms(0)) " 2L, S0, 1 \my(0)
+ (S(p[vl(O)SUZ])

Sm[vl (O)’U2]

From the second line of Eq. (28), by using the boundary condi-
tions (22a) and (22¢) and the normalization conditions (23), the
natural frequency correction is derived as

_ Sm[vl (O)vUZ]

’
'n'Sm¢

82(0)=- (27)

(28)

)= (29)
Finally, by iterating (18¢) with v3(0)=(0,0), the nonlinear correc-
tion v3(k) to the linear mode is obtained.

5.2 Forced Resonant Oscillations. In forced resonant mo-
tions the frequency B=B,+ €28, is prescribed, with B8, represent-
ing a detuning parameter. At first, the boundary conditions (22a)
are introduced in the second line of Eq. (24) to obtain the first-
order approximation of the left end rotation ¢;(0). From Eq.
(18a), the first approximation of the chain response is then ob-
tained by using the boundary conditions (22b), g,(0) is deter-
mined through the second line of Eq. (26). Once u,(0) and v,(0)
are known, u,(k) at any node of the chain is obtained by iterating
Eq. (18b). From the second line of Eq. (28), the boundary condi-
tions (22a) and (22¢) and choosing ¢3(0)=0 as normalization con-
dition, the frequency-amplitude relation follows:

S,[v1(0),U,]

_———— (30)
®1 (O)qup + m()Smm

Br=

6 Numerical Results

A chain of four simply supported beams, each of length /, with
the left end hinged, is considered. The frequency-amplitude rela-
tion in (16) is evaluated by using either Eq. (29) and (30), for the
free and forced case, respectively. The perturbation parameter €
entering equation in (16) is expressed either e=a/m or €
=a/¢;(0) in the two cases, where a= ¢(0) is the amplitude. The
backbone curves of the free motion of the chain are first drawn.
Figures 2 and 3 show these curves for the natural frequencies of
the first four modes and for modes from the fifth to the eighth,
respectively. The two sets of four curves have been shown sepa-
rately as they belong to the first (w<<8<4.730) and second (27
< 8<7.853) pass band, respectively, of the corresponding linear
model. As the amplitude of oscillations increases, all the natural
frequencies trespass the lower frequency boundary of the corre-
sponding linear pass band. The curves relevant to the third, fourth,
seventh, and eighth modes are characterized by slopes higher than
that of the neighboring ones, entailing crossings among several
backbone curves. A softening type of behavior can be observed.
This is due to the prevailing effect of the inertia nonlinearity with
respect to the hardening effect of the elastic one [10]. Moreover,
such a softening effect increases with the number of beams in the
chain, as shown in Fig. 4 where the first (dimensional) natural
frequency corrections versus the amplitude of the free oscillation
are drawn for increasing number of beams entering the chain.
Such a behavior is explained by the fact that each beam of the
chain, in addition to the longitudinal displacements caused by the
own transversal displacements, undergoes a longitudinal transla-
tion equal to the sum of the shortenings of all the preceding
beams. Therefore, the longer the chain, the more important the

0.1

0.08

0.06

T

af

0.04

0.02

Fig. 8 Frequency-response relationship in the first linear pass
band for a four-bay beam; my=0.01

longitudinal kinetic energy. The curve corresponding to the single
beam coincides with the one obtained in [10], where the nonlinear
dynamics of beams on movable supports have been studied. Fig-
ures 5 and 6 show the first four modal shapes; the comparison
between the linear and nonlinear modes are depicted for increas-
ing amplitude of oscillations. The nonlinear shortening effect de-
stroys the symmetry of the linear modes; it can be best noted at
the right end of the chain.

As far as the forced oscillations is concerned, Fig. 7 shows the
frequency-response curves for the first four modes separately, for
different intensities of the couple m . As shown in Fig. 8, where
the frequency-response curves are drawn next to each other, such
intensity must be limited in order for the present unimodal analy-
sis to be meaningful.

7 Conclusions

The free and forced harmonic response of a chain of nonlinear
beams resting on sliding supports has been determined. The peri-
odicity of the system has been exploited by using an asymptotic
approximation of the nonlinear transfer function. In analogy to the
linear case, the approach leads to an algebraic set of equations
whose dimensions are equal to the number of coupling degrees of
freedom. Starting from the single inextensible and shear inde-
formable beam transfer function, the global transfer function has
been derived in order to obtain the frequency-amplitude relation-
ship. Because of the movable supports, the system is not symmet-
ric with respect to longitudinal displacement and forces that enter
the problem as second-order variables. For the beam model con-
sidered, it has been found that the softening effect due to the
longitudinal inertia increases with the number of elements of the
chain. Future investigations are in order to extend the procedure to
multimodal analysis to assess the influence of closely spaced
modes.
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