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where � represents a frequency to be specified later and the over-
bars have been omitted. By prescribing the force gR and all the
displacements except uR, the boundary conditions follow:

v�0,�� = 0 �6a�
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v�3�0,�� = �L �6b�

v�1,�� = 0 �6c�
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v�3�1,�� = �R �6d�

u�0,�� = uL �6e�

��1,�� = gR �6f�

where the series expansion �	v�+ 1
6v�3 has been used. Having

Fig. 1 „a… Chain of nonlinear beams and „b… inextensible and
shear indeformable single beam
solved the boundary value problem �4� and �6�, by using the
moment-curvature relation, the unknown variables at both ends
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uR = u�1,�� �7c�

gL = − ��0,�� �7d�
In view of the transfer-matrix formulation, it is convenient to pa-
rametrize the solution in terms of the left-hand variables
��L ,mL ,gL ,uL�; therefore, Eqs. �6d� and �6f� are replaced by Eqs.
�7a� and �7d�.

3 Nonlinear Element Transfer Function
To solve the nonlinear problem �4�, with the proper boundary

conditions �6� and �7�, use is made of the harmonic balance
method. By retaining only the first harmonic in v�s ,��, Eqs. �4c�
and �4b� ordinately provide with the time dependence of u�s ,��
and ��s ,��, namely,

v�s,�� = v̂�s�cos �, u�s,�� = û�s�cos2 �, ��s,�� = �̂�s�cos 2�

�8�

Consequently, � in Eq. �5� is the frequency of the �prevailing�
transversal motion. The space-dependent functions v̂�s�, û�s�, and

�̂�s� are then expanded in series of an artificially introduced small
bookkeeping parameter �, having the meaning of transversal mo-
tion amplitude, i.e., �= �O
v̂�s�
�. Aiming at considering only sig-
nificant �non-vanishing� quantities, incomplete series are adopted,
according to the following considerations. If Eq. �4� admit the
solution �v ,u ,��, they also admit the solution �−v ,u ,��, which
describes a state of the beam symmetrical with respect to its un-
deformed axis. Therefore, by changing the sign of the amplitude
�, v must change sign �i.e., it is an odd function of ��, whereas u
and � must keep their sign �i.e., they are even functions of ��. By
also taking into account Eq. �6� and �7�, the following unknowns
series expansions and ordering of the boundary terms are intro-
duced

v̂ = �v1 + �3v3 + . . . , û = �2u2 + . . . , �̂ = �2�2 + . . .

�H = ��̃H, uH = �2ũH, gH = �2g̃H �H = L,R� �9�

From Eq. �9� it turns out that the longitudinal displacement u and
the axial force � are second-order variables with respect to the

transversal displacement v. They allow the kinematical inextensi-
bility condition �4c� and the equilibrium in the longitudinal direc-
are obtained

mL = − �v� +
1

2
v�v�2�

0,�
�7a�

tion �4b� to be satisfied in the nonlinear range.
By substituting Eqs. �9� into Eq. �4�, Eqs. �6a�–�6c�, �6e�, �7a�,

and �7d�, and by omitting hat and tilde, the perturbation equations
follow
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By solving Eq. �10� according to the increasing powers of �, the
corresponding solutions are obtained in the form

�: v1�s� = �LF��s� + mLFm�s�

u2�s� = u2�0� −
1

2�
0

s

v1�
2ds = uL + �L

2F���s� + mL
2Fmm�s�

+ �LmLF�m�s�

�2: �2�s� = �2�0� + 2�4�
0

s

u2ds =

− gL + 2�4�uLs + �L
2G���s� + mL

2Gmm�s� + �LmLG�m�s��

�3: v3�s� = �L
3F����s� + �L

2mLF��m�s� + �LmL
2F�mm�s�

+ mL
3Fmmm�s�

+ gL��LH��s� + mLHm�s�� + uL��LK��s� + mLKm�s��
�11�

where F	, F		, F			, G		, H	, and K	, with 	=�, m, are com-
binations of circular, hyperbolic, and polynomial functions. As
expected, v1�s� and v3�s� are linear and cubic, respectively, with
respect to �L, mL. Moreover v3�s� is bilinear in the products of �L

and mL, with the second-order variables uL, gL.
Given the perturbative expansions, the remaining Eqs. �6d�,

�6f�, �7b�, and �7c� are rewritten as

��R = �v1��1� + �3�v3��1� +
1

6
v1�

3�1�� �12a�

Fig. 2 First four natural frequencies-amplitude relationship for
a four four-bay beam: thick lines, nonlinear; thin lines, linear
Fig. 3 Second four natural frequencies-amplitude relationship
for a four-bay beam: thick lines, nonlinear; thin lines, linear
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�mR = − �v1��1� − �3�v3��1� +
1

2
v1��1�v1�

2�1�� �12b�

�2uR = �2u2�1� �12c�

�2gR = − �2�2�1� �12d�

They represent the nonlinear relationship between right and left-
hand variables. Continuity and equilibrium at the generic node k
imply dR,k=dL,k+1�dk�d=� ,u� and fR,k=−fL,k+1� fk�f =m ,g�, re-
spectively, where the second index labels the element. By substi-
tuting in Eqs. �12� v1�s�, v3�s�, u2�s� and �2�s�, as given by Eq.
�11�, the element transfer function, linking the state variables at
adjacent interfaces, is obtained

���
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tfd tf f
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where tpq, �p ,q�= �d , f�, are the usual entries of the monocoupled
linear transfer matrix �9� and T	, �	=� ,m ,u ,g�, are the compo-
nents of the nonlinear part of the element transfer function.

4 Nonlinear System Transfer Function
In order to link the state variables at the end of the chain, the

map ��13� and �14�� must be iterated consistently with the ap-
proximation order. Toward this goal, the discrete counterpart of
the perturbation scheme adopted for the continuous problem is
followed. By setting v= �� ,m� and u= �u ,g�, after reabsorbing �,
the Eqs. �13� and �14� are rewritten as

v�k + 1� − Tvv�k� = Tv�v�k�,u�k��

u�k + 1� − Tuu�k� = Tu�v�k�� �15�

By defining Tu =Tu��0� and Tv =Tv��0� and performing the fol-

Fig. 4 First natural frequencies-amplitude relationship for a
chain with number of beams increasing from 1 to 4 „�, �: non-
linear and linear frequency…
0 0

lowing series expansions in analogy to Eq. �9�:

v = �v1 + �3v3 u = �2u2 � = �0 + �2�2

T	 = T	0 + �2�2T	0� with 	 = u,v �16�
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the following perturbation equations are obtained:

�: v1�k + 1� − Tv0v1�k� = 0

�2: u2�k + 1� − Tu0
u2�k� = Tu�v1�k��

�3: v3�k + 1� − Tv0
v3�k� = �2Tv0

� v1�k� + Tv�v1�k�,u2�k�� �17�

The solutions of the difference equations �17� are

v1�k� = Tv0

k v1�0� �18a�

u2�k� = Tu0

k u2�0� + 

j=0

k−1

Tu0

j Tu�Tv0

k−1−jv1�0�� �18b�

Fig. 5 First and second mode of a four-bay be
„�=�… a=0.08�, „c… second mode „�=3.393
=0.08�; thick lines, nonlinear; thin lines, linea
Fig. 6 Third and fourth mode of a 4-bay beam:
mode „�=3.926… a=0.06�, „c… fourth mode „�
=4.464… a=0.035�; thick lines, nonlinear; thin lin
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v3�k� = Tv0

k v3�0� + 

j=0

k−1

�2Tv0

j Tv0
� Tv0

k−1−jv1�0� �18c�

+ 

j=0

k−1

Tv0

j Tv�Tv0

k−1−jv1�0�,u2�k − 1 − j�� �18d�

By introducing the global transfer matrix Sv�Tv0

N , the state at the
end of the periodic beams is then obtained from Eq. �18� for k
=N

v1�N� = Svv1�0� �19a�

: „a… first mode „�=�… a=0.04�, „b… first mode
=0.04�, and „d… second mode „�=3.393… a
„a… third mode „�=3.926… a=0.04�, „b… third
=4.464… a=0.02�, and „d… fourth mode „�

es, linear

APRIL 2006, Vol. 128 / 193



ip
ec

y…
u2�N� = Suu2�0� + Su†v1�0�,0‡ �19b�

v3�N� = Svv3�0� + �2Sv�v1�0� + Sv†v1�0�,U2‡ �19c�

where

S	�x,Y� � 

j=0

N−1

T	0
j T	�Tv0

N−1−jx,y�N − 1 − j�� 	 = u,v

Sv� � 

j=0

N−1

Tv0

j Tv0
� Tv0

N−1−j �20�

with Y= �y�0� , ¯ ,y�N−1��

5 Frequency-Amplitude Relationship
An illustrative example consisting of a hinged-roll supported

chain of beams loaded by a couple m0 acting on the left-most
support, is considered. The boundary conditions read

m�0� = ± m0 �21a�

m�N� = 0 �21b�

u�0� = 0 �21c�

g�N� = 0 �21d�
where the 
 in Eq. �21a� is due to the force being either in-phase

Fig. 7 Frequency-response relationsh
=0.0,0.001,0.005,0.01: „a… first mode, „b… s
mode „�, �: nonlinear and linear frequenc
or counterphase with the response. By using Eq. �16a� and �16b�,
the boundary conditions for the perturbation equation �19� follow:

�: m1�0� = m0, m1�N� = 0 �22a�

�2: u2�0� = 0, g2�N� = 0 �22b�
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�3: m3�0� = 0, m3�N� = 0 �22c�

5.1 Free Oscillations. The frequency-amplitude relation for
free vibrations �m0=0� is sought. To define the amplitude of the
modal shape, the normalization condition ��0�=�� is chosen,
with � being a scaling factor representing the midspan displace-
ment to length ratio in the linear approximation. Consequently,

�1�0� = � and �3�0� = 0 �23�

are the normalization conditions for the perturbation equations
�19a� and �19c�. The order � equations �19a� read

�: ��1�N�
m1�N�

� = �S�� S�m

Sm� Smm
���1�0�

m1�0�
� �24�

From the second line of Equation �24�, by accounting for the
boundary condition �22a� and �22b�

Sm���0� = 0 �25�

provides with the roots �0k
corresponding to the natural frequen-

cies of the small-amplitude oscillations. By iterating �18a�, with
v1�0�= �� ,0�, the linear modal shape is obtained.

The equations �19b� read

for a four-bay beam with m0
ond mode, „c… third mode, and „d… fourth
�2: �u2�N�
g2�N�

� = �Suu Sug

Sgu Sgg
��u2�0�

g2�0�
� + �Su�v1�0�,0�

Sg�v1�0�,0� � �26�

By taking into account the boundary condition �22b�, the second
line of Eq. �26� yields the axial force at the left end of the beams
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g2�0� = −
Sg�v1�0�,0�

Sgg
�27�

consequently u2�0�= �0,g2�0��. By iterating Eq. �18b�, starting
from the known values of u2�0� and v1�0�, u2�k� is evaluated at
any node of the chain. Equations �19c� read

�3: ��3�N�
m3�N�

� = �S�� S�m

Sm� Smm
���3�0�

m3�0�
� + �2�S��� S�m�

Sm�� Smm�
���1�0�

m1�0�
�

+ �S��v1�0�,U2�

Sm�v1�0�,U2� � �28�

From the second line of Eq. �28�, by using the boundary condi-
tions �22a� and �22c� and the normalization conditions �23�, the
natural frequency correction is derived as

�2 = −
Sm�v1�0�,U2�

�Sm��
�29�

Finally, by iterating �18c� with v3�0�= �0,0�, the nonlinear correc-
tion v3�k� to the linear mode is obtained.

5.2 Forced Resonant Oscillations. In forced resonant mo-
tions the frequency �=�0+�2�2 is prescribed, with �2 represent-
ing a detuning parameter. At first, the boundary conditions �22a�
are introduced in the second line of Eq. �24� to obtain the first-
order approximation of the left end rotation �1�0�. From Eq.
�18a�, the first approximation of the chain response is then ob-
tained by using the boundary conditions �22b�, g2�0� is deter-
mined through the second line of Eq. �26�. Once u2�0� and v1�0�
are known, u2�k� at any node of the chain is obtained by iterating
Eq. �18b�. From the second line of Eq. �28�, the boundary condi-
tions �22a� and �22c� and choosing �3�0�=0 as normalization con-
dition, the frequency-amplitude relation follows:

�2 = −
Sm�v1�0�,U2�

�1�0�Sm�� ± m0Smm�
�30�

6 Numerical Results
A chain of four simply supported beams, each of length l, with

the left end hinged, is considered. The frequency-amplitude rela-
tion in �16� is evaluated by using either Eq. �29� and �30�, for the
free and forced case, respectively. The perturbation parameter �
entering equation in �16� is expressed either �=a /� or �
=a /�1�0� in the two cases, where a���0� is the amplitude. The
backbone curves of the free motion of the chain are first drawn.
Figures 2 and 3 show these curves for the natural frequencies of
the first four modes and for modes from the fifth to the eighth,
respectively. The two sets of four curves have been shown sepa-
rately as they belong to the first �����4.730� and second �2�
���7.853� pass band, respectively, of the corresponding linear
model. As the amplitude of oscillations increases, all the natural
frequencies trespass the lower frequency boundary of the corre-
sponding linear pass band. The curves relevant to the third, fourth,
seventh, and eighth modes are characterized by slopes higher than
that of the neighboring ones, entailing crossings among several
backbone curves. A softening type of behavior can be observed.
This is due to the prevailing effect of the inertia nonlinearity with
respect to the hardening effect of the elastic one �10�. Moreover,
such a softening effect increases with the number of beams in the
chain, as shown in Fig. 4 where the first �dimensional� natural
frequency corrections versus the amplitude of the free oscillation

are drawn for increasing number of beams entering the chain.
Such a behavior is explained by the fact that each beam of the
chain, in addition to the longitudinal displacements caused by the
own transversal displacements, undergoes a longitudinal transla-
tion equal to the sum of the shortenings of all the preceding
beams. Therefore, the longer the chain, the more important the
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longitudinal kinetic energy. The curve corresponding to the single
beam coincides with the one obtained in �10�, where the nonlinear
dynamics of beams on movable supports have been studied. Fig-
ures 5 and 6 show the first four modal shapes; the comparison
between the linear and nonlinear modes are depicted for increas-
ing amplitude of oscillations. The nonlinear shortening effect de-
stroys the symmetry of the linear modes; it can be best noted at
the right end of the chain.

As far as the forced oscillations is concerned, Fig. 7 shows the
frequency-response curves for the first four modes separately, for
different intensities of the couple m0. As shown in Fig. 8, where
the frequency-response curves are drawn next to each other, such
intensity must be limited in order for the present unimodal analy-
sis to be meaningful.

7 Conclusions
The free and forced harmonic response of a chain of nonlinear

beams resting on sliding supports has been determined. The peri-
odicity of the system has been exploited by using an asymptotic
approximation of the nonlinear transfer function. In analogy to the
linear case, the approach leads to an algebraic set of equations
whose dimensions are equal to the number of coupling degrees of
freedom. Starting from the single inextensible and shear inde-
formable beam transfer function, the global transfer function has
been derived in order to obtain the frequency-amplitude relation-
ship. Because of the movable supports, the system is not symmet-
ric with respect to longitudinal displacement and forces that enter
the problem as second-order variables. For the beam model con-
sidered, it has been found that the softening effect due to the
longitudinal inertia increases with the number of elements of the
chain. Future investigations are in order to extend the procedure to
multimodal analysis to assess the influence of closely spaced
modes.
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Fig. 8 Frequency-response relationship in the first linear pass
band for a four-bay beam; m0=0.01
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