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␤ 4 u ¨-Ј = 0 ͑4b͒ uЈ + 1 2 vЈ 2 = 0 ͑4c͒
where the following nondimensional quantities have been used:

v ¯= v l , u ¯= u l , s ¯= s l , = t, ␤ 4 = m 2 EI l 4 , ¯= l 2 EI m ¯= ml EI , ͑•͒ = d d ͑5͒
where represents a frequency to be specified later and the overbars have been omitted. By prescribing the force g R and all the displacements except u R , the boundary conditions follow:

v͑0,͒ = 0 ͑6a͒ vЈ͑0,͒ + 1 6 vЈ 3 ͑0,͒ = L ͑6b͒ v͑1,͒ = 0 ͑6c͒ vЈ͑1,͒ + 1 6 vЈ 3 ͑1,͒ = R ͑6d͒ u͑0,͒ = u L ͑6e͒ ͑1,͒ = g R ͑6f͒
where the series expansion Ӎ vЈ + 1 6 vЈ 3 has been used. Having solved the boundary value problem ͑4͒ and ͑6͒, by using the moment-curvature relation, the unknown variables at both ends are obtained

m L = -ͫvЉ + 1 2 vЉvЈ 2 ͬ 0, ͑7a͒ m R = ͫvЉ + 1 2 vЉvЈ 2 ͬ 1, ͑7b͒ u R = u͑1,͒ ͑ 7c͒ g L = -͑0,͒ ͑ 7d͒
In view of the transfer-matrix formulation, it is convenient to parametrize the solution in terms of the left-hand variables ͑ L , m L , g L , u L ͒; therefore, Eqs. ͑6d͒ and ͑6f͒ are replaced by Eqs. ͑7a͒ and ͑7d͒.

Nonlinear Element Transfer Function

To solve the nonlinear problem ͑4͒, with the proper boundary conditions ͑6͒ and ͑7͒, use is made of the harmonic balance method. By retaining only the first harmonic in v͑s , ͒, Eqs. ͑4c͒ and ͑4b͒ ordinately provide with the time dependence of u͑s , ͒ and ͑s , ͒, namely,

v͑s,͒ = v ˆ͑s͒cos , u͑s,͒ = u ˆ͑s͒cos 2 , ͑s,͒ = ˆ͑s͒cos 2 ͑8͒
Consequently, in Eq. ͑5͒ is the frequency of the ͑prevailing͒ transversal motion. The space-dependent functions v ˆ͑s͒, u ˆ͑s͒, and ˆ͑s͒ are then expanded in series of an artificially introduced small bookkeeping parameter , having the meaning of transversal motion amplitude, i.e., = ͑Oʈv ˆ͑s͒ʈ͒. Aiming at considering only significant ͑non-vanishing͒ quantities, incomplete series are adopted, according to the following considerations. If Eq. ͑4͒ admit the solution ͑v , u , ͒, they also admit the solution ͑-v , u , ͒, which describes a state of the beam symmetrical with respect to its undeformed axis. Therefore, by changing the sign of the amplitude , v must change sign ͑i.e., it is an odd function of ͒, whereas u and must keep their sign ͑i.e., they are even functions of ͒. By also taking into account Eq. ͑6͒ and ͑7͒, the following unknowns series expansions and ordering of the boundary terms are introduced

v ˆ= v 1 + 3 v 3 + . . . , u ˆ= 2 u 2 + . . . , ˆ= 2 2 + . . . H = ˜H, u H = 2 u ˜H, g H = 2 g ˜H ͑H = L,R͒ ͑9͒
From Eq. ͑9͒ it turns out that the longitudinal displacement u and the axial force are second-order variables with respect to the transversal displacement v. They allow the kinematical inextensibility condition ͑4c͒ and the equilibrium in the longitudinal direction ͑4b͒ to be satisfied in the nonlinear range. By substituting Eqs. ͑9͒ into Eq. ͑4͒, Eqs. ͑6a͒-͑6c͒, ͑6e͒, ͑7a͒, and ͑7d͒, and by omitting hat and tilde, the perturbation equations follow By solving Eq. ͑10͒ according to the increasing powers of , the corresponding solutions are obtained in the form

⑀: v 1 ЉЉ -␤ 4 v 1 = 0 v 1 ͑0͒ = 0, v 1 Ј͑0͒ = L v 1 ͑1͒ = 0, v 1 Љ͑0͒ = - m L EI ⑀ 2 : u 2 Ј + 1 2 v 1 Ј 2 = 0 2 Ј -2␤ 4 u 2 = 0 u 2 ͑0͒ = u L 2 ͑0͒ = -g L ⑀ 3 : v 3 ЉЉ -␤ 4 v 3 = - 1 2 ͑ 2 v 1 Ј͒Ј - 3 4 ͓v 1 Ј͑v 1 Јv 1 Љ͒Ј͔Ј v 3 ͑0͒ = 0, v 3 ͑1͒ = 0 v 3 Ј͑0͒ + 1 6 v 1 Ј 3 ͑0͒ = 0 v 3 Љ͑0͒ + 1 2 v 1 Ј 2 ͑0͒v 1 Љ͑0͒ = 0 ͑10͒
⑀: v 1 ͑s͒ = L F ͑s͒ + m L F m ͑s͒ u 2 ͑s͒ = u 2 ͑0͒ - 1 2 ͵ 0 s v 1 Ј 2 ds = u L + L 2 F ͑s͒ + m L 2 F mm ͑s͒ + L m L F m ͑s͒ ⑀ 2 : 2 ͑s͒ = 2 ͑0͒ + 2␤ 4 ͵ 0 s u 2 ds = -g L + 2␤ 4 ͓u L s + L 2 G ͑s͒ + m L 2 G mm ͑s͒ + L m L G m ͑s͔͒ ⑀ 3 : v 3 ͑s͒ = L 3 F ͑s͒ + L 2 m L F m ͑s͒ + L m L 2 F mm ͑s͒ + m L 3 F mmm ͑s͒ + g L ͓ L H ͑s͒ + m L H m ͑s͔͒ + u L ͓ L K ͑s͒ + m L K m ͑s͔͒ ͑11͒
where F ␣ , F ␣␣ , F ␣␣␣ , G ␣␣ , H ␣ , and K ␣ , with ␣ = , m, are combinations of circular, hyperbolic, and polynomial functions. As expected, v 1 ͑s͒ and v 3 ͑s͒ are linear and cubic, respectively, with respect to L , m L . Moreover v 3 ͑s͒ is bilinear in the products of L and m L , with the second-order variables u L , g L . Given the perturbative expansions, the remaining Eqs. ͑6d͒, ͑6f͒, ͑7b͒, and ͑7c͒ are rewritten as

R = v 1 Ј͑1͒ + 3 ͫv 3 Ј͑1͒ + 1 6 v 1 Ј 3 ͑1͒ ͬ ͑12a͒ m R = -v 1 Љ͑1͒ -3 ͫv 3 Љ͑1͒ + 1 2 v 1 Љ͑1͒v 1 Ј 2 ͑1͒ ͬ ͑12b͒ 2 u R = 2 u 2 ͑1͒ ͑ 12c͒ 2 g R = -2 2 ͑1͒ ͑ 12d͒
They represent the nonlinear relationship between right and lefthand variables. Continuity and equilibrium at the generic node k

imply d R,k = d L,k+1 Џ d k ͑d = , u͒ and f R,k =-f L,k+1 Џ f k ͑f = m , g͒, re- spectively,
where the second index labels the element. By substituting in Eqs. ͑12͒ v 1 ͑s͒, v 3 ͑s͒, u 2 ͑s͒ and 2 ͑s͒, as given by Eq. ͑11͒, the element transfer function, linking the state variables at adjacent interfaces, is obtained

ͩ m ͪ k+1 = ͫ t dd t df t fd t f f ͬͩ m ͪ k + 3 ͩ T ͑ k ,m k ,u k ,g k ͒ T m ͑ k ,m k ,u k ,g k ͒ ͪ ͑13͒ 2 ͩ u g ͪ k+1 = 2 ͫ 1 0 -2␤ 4 1 ͬͩ u g ͪ k + 2 ͩ T u ͑ k ,m k ͒ T g ͑ k ,m k ͒ ͪ ͑14͒
where t pq , ͑p , q͒ = ͑d , f͒, are the usual entries of the monocoupled linear transfer matrix ͓9͔ and T ␣ , ͑␣ = , m , u , g͒, are the components of the nonlinear part of the element transfer function.

Nonlinear System Transfer Function

In order to link the state variables at the end of the chain, the map ͑͑13͒ and ͑14͒͒ must be iterated consistently with the approximation order. Toward this goal, the discrete counterpart of the perturbation scheme adopted for the continuous problem is followed. By setting v = ͑ , m͒ and u = ͑u , g͒, after reabsorbing , the Eqs. ͑13͒ and ͑14͒ are rewritten as

v͑k + 1͒ -T v v͑k͒ = T v ͓v͑k͒,u͑k͔͒ u͑k + 1͒ -T u u͑k͒ = T u ͓v͑k͔͒ ͑15͒
By defining T u 0 = T u ͑␤ 0 ͒ and T v 0 = T v ͑␤ 0 ͒ and performing the following series expansions in analogy to Eq. ͑9͒: 

v = ⑀v 1 + ⑀ 3 v 3 u = ⑀ 2 u 2 ␤ = ␤ 0 + ⑀ 2 ␤ 2 T ␣ = T ␣0 + ⑀ 2 ␤ 2 T ␣0 Ј with ␣ = u,v ͑16͒
⑀: v 1 ͑k + 1͒ -T v0 v 1 ͑k͒ = 0 ⑀ 2 : u 2 ͑k + 1͒ -T u 0 u 2 ͑k͒ = T u ͓v 1 ͑k͔͒ ⑀ 3 : v 3 ͑k + 1͒ -T v 0 v 3 ͑k͒ = ␤ 2 T v 0 Ј v 1 ͑k͒ + T v ͓v 1 ͑k͒,u 2 ͑k͔͒ ͑17͒
The solutions of the difference equations ͑17͒ are

v 1 ͑k͒ = T v 0 k v 1 ͑0͒ ͑ 18a͒ u 2 ͑k͒ = T u 0 k u 2 ͑0͒ + ͚ j=0 k-1 T u 0 j T u ͓T v 0 k-1-j v 1 ͑0͔͒ ͑18b͒ v 3 ͑k͒ = T v 0 k v 3 ͑0͒ + ͚ j=0 k-1 ␤ 2 T v 0 j T v 0 Ј T v 0 k-1-j v 1 ͑0͒ ͑18c͒ + ͚ j=0 k-1 T v 0 j T v ͓T v 0 k-1-j v 1 ͑0͒,u 2 ͑k -1 -j͔͒ ͑18d͒
By introducing the global transfer matrix S v Џ T v 0 N , the state at the end of the periodic beams is then obtained from Eq. ͑18͒ for k 

= N v 1 ͑N͒ = S v v 1 ͑0͒ ͑ 19a͒
u 2 ͑N͒ = S u u 2 ͑0͒ + S u †v 1 ͑0͒,0 ‡ ͑19b͒ v 3 ͑N͒ = S v v 3 ͑0͒ + ␤ 2 S v Јv 1 ͑0͒ + S v †v 1 ͑0͒,U 2 ‡ ͑19c͒
where

S ␣ ͑x,Y͒ Џ ͚ j=0 N-1 T ␣0 j T ␣ ͓T v 0 N-1-j x,y͑N -1 -j͔͒ ␣ = u,v S v Ј Џ ͚ j=0 N-1 T v 0 j T v 0 Ј T v 0 N-1-j ͑20͒ with Y = ͓y͑0͒ , ¯, y͑N -1͔͒
5 Frequency-Amplitude Relationship

An illustrative example consisting of a hinged-roll supported chain of beams loaded by a couple m 0 acting on the left-most support, is considered. The boundary conditions read

m͑0͒ = ± m 0 ͑21a͒ m͑N͒ = 0 ͑21b͒ u͑0͒ = 0 ͑21c͒ g͑N͒ = 0 ͑21d͒
where the Ϯ in Eq. ͑21a͒ is due to the force being either in-phase or counterphase with the response. By using Eq. ͑16a͒ and ͑16b͒, the boundary conditions for the perturbation equation ͑19͒ follow:

:

m 1 ͑0͒ = m 0 , m 1 ͑N͒ = 0 ͑22a͒ 2 : u 2 ͑0͒ = 0, g 2 ͑N͒ = 0 ͑22b͒ 
3 : m 3 ͑0͒ = 0, m 3 ͑N͒ = 0 ͑22c͒

5.1 Free Oscillations. The frequency-amplitude relation for free vibrations ͑m 0 =0͒ is sought. To define the amplitude of the modal shape, the normalization condition ͑0͒ = is chosen, with being a scaling factor representing the midspan displacement to length ratio in the linear approximation. Consequently, 1 ͑0͒ = and 3 ͑0͒ = 0 ͑23͒ are the normalization conditions for the perturbation equations ͑19a͒ and ͑19c͒. The order ⑀ equations ͑19a͒ read

⑀: ͩ 1 ͑N͒ m 1 ͑N͒ ͪ=ͫ S S m S m S mm ͬͩ 1 ͑0͒ m 1 ͑0͒ ͪ ͑24͒
From the second line of Equation ͑24͒, by accounting for the boundary condition ͑22a͒ and ͑22b͒

S m ͑␤ 0 ͒ = 0 ͑25͒
provides with the roots ␤ 0 k corresponding to the natural frequencies of the small-amplitude oscillations. By iterating ͑18a͒, with v 1 ͑0͒ = ͑ ,0͒, the linear modal shape is obtained. The equations ͑19b͒ read

⑀ 2 : ͩ u 2 ͑N͒ g 2 ͑N͒ ͪ=ͫ S uu S ug S gu S gg ͬͩ u 2 ͑0͒ g 2 ͑0͒ ͪ+ͩ S u ͓v 1 ͑0͒,0͔ S g ͓v 1 ͑0͒,0͔ ͪ ͑26͒
By taking into account the boundary condition ͑22b͒, the second line of Eq. ͑26͒ yields the axial force at the left end of the beams 

S gg ͑27͒

consequently u 2 ͑0͒ = ͓0,g 2 ͑0͔͒. By iterating Eq. ͑18b͒, starting from the known values of u 2 ͑0͒ and v 1 ͑0͒, u 2 ͑k͒ is evaluated at any node of the chain. Equations ͑19c͒ read

⑀ 3 : ͩ 3 ͑N͒ m 3 ͑N͒ ͪ=ͫ S S m S m S mm ͬͩ 3 ͑0͒ m 3 ͑0͒ ͪ+␤ 2ͫ S Ј S m Ј S m Ј S mm Ј ͬͩ 1 ͑0͒ m 1 ͑0͒ ͪ + ͩ S ͓v 1 ͑0͒,U 2 ͔ S m ͓v 1 ͑0͒,U 2 ͔ ͪ ͑28͒
From the second line of Eq. ͑28͒, by using the boundary conditions ͑22a͒ and ͑22c͒ and the normalization conditions ͑23͒, the natural frequency correction is derived as

␤ 2 = - S m ͓v 1 ͑0͒,U 2 ͔ S m Ј ͑29͒
Finally, by iterating ͑18c͒ with v 3 ͑0͒ = ͑0,0͒, the nonlinear correction v 3 ͑k͒ to the linear mode is obtained.

Forced Resonant Oscillations.

In forced resonant motions the frequency ␤ = ␤ 0 + ⑀ 2 ␤ 2 is prescribed, with ␤ 2 representing a detuning parameter. At first, the boundary conditions ͑22a͒ are introduced in the second line of Eq. ͑24͒ to obtain the firstorder approximation of the left end rotation 1 ͑0͒. From Eq. ͑18a͒, the first approximation of the chain response is then obtained by using the boundary conditions ͑22b͒, g 2 ͑0͒ is determined through the second line of Eq. ͑26͒. Once u 2 ͑0͒ and v 1 ͑0͒ are known, u 2 ͑k͒ at any node of the chain is obtained by iterating Eq. ͑18b͒. From the second line of Eq. ͑28͒, the boundary conditions ͑22a͒ and ͑22c͒ and choosing 3 ͑0͒ = 0 as normalization condition, the frequency-amplitude relation follows:

␤ 2 = - S m ͓v 1 ͑0͒,U 2 ͔ 1 ͑0͒S m Ј ± m 0 S mm Ј ͑30͒

Numerical Results

A chain of four simply supported beams, each of length l, with the left end hinged, is considered. The frequency-amplitude relation in ͑16͒ is evaluated by using either Eq. ͑29͒ and ͑30͒, for the free and forced case, respectively. The perturbation parameter ⑀ entering equation in ͑16͒ is expressed either ⑀ = a / or ⑀ = a / 1 ͑0͒ in the two cases, where a Џ ͑0͒ is the amplitude. The backbone curves of the free motion of the chain are first drawn. Figures 2 and3 show these curves for the natural frequencies of the first four modes and for modes from the fifth to the eighth, respectively. The two sets of four curves have been shown separately as they belong to the first ͑ Ͻ ␤ Ͻ 4.730͒ and second ͑2 Ͻ ␤ Ͻ 7.853͒ pass band, respectively, of the corresponding linear model. As the amplitude of oscillations increases, all the natural frequencies trespass the lower frequency boundary of the corresponding linear pass band. The curves relevant to the third, fourth, seventh, and eighth modes are characterized by slopes higher than that of the neighboring ones, entailing crossings among several backbone curves. A softening type of behavior can be observed. This is due to the prevailing effect of the inertia nonlinearity with respect to the hardening effect of the elastic one ͓10͔. Moreover, such a softening effect increases with the number of beams in the chain, as shown in Fig. 4 where the first ͑dimensional͒ natural frequency corrections versus the amplitude of the free oscillation are drawn for increasing number of beams entering the chain. Such a behavior is explained by the fact that each beam of the chain, in addition to the longitudinal displacements caused by the own transversal displacements, undergoes a longitudinal translation equal to the sum of the shortenings of all the preceding beams. Therefore, the longer the chain, the more important the longitudinal kinetic energy. The curve corresponding to the single beam coincides with the one obtained in ͓10͔, where the nonlinear dynamics of beams on movable supports have been studied. As far as the forced oscillations is concerned, Fig. 7 shows the frequency-response curves for the first four modes separately, for different intensities of the couple m 0 . As shown in Fig. 8, where the frequency-response curves are drawn next to each other, such intensity must be limited in order for the present unimodal analysis to be meaningful.

Conclusions

The free and forced harmonic response of a chain of nonlinear beams resting on sliding supports has been determined. The periodicity of the system has been exploited by using an asymptotic approximation of the nonlinear transfer function. In analogy to the linear case, the approach leads to an algebraic set of equations whose dimensions are equal to the number of coupling degrees of freedom. Starting from the single inextensible and shear indeformable beam transfer function, the global transfer function has been derived in order to obtain the frequency-amplitude relationship. Because of the movable supports, the system is not symmetric with respect to longitudinal displacement and forces that enter the problem as second-order variables. For the beam model considered, it has been found that the softening effect due to the longitudinal inertia increases with the number of elements of the chain. Future investigations are in order to extend the procedure to multimodal analysis to assess the influence of closely spaced modes. 

Fig. 1

 1 Fig. 1 "a… Chain of nonlinear beams and "b… inextensible and shear indeformable single beam

Fig. 2

 2 Fig. 2 First four natural frequencies-amplitude relationship for a four four-bay beam: thick lines, nonlinear; thin lines, linear

Fig. 5

 5 Fig. 5 First and second mode of a four-bay beam: "a… first mode "␤ = … a = 0.04, "b… first mode "␤ = … a = 0.08, "c… second mode "␤ = 3.393… a = 0.04, and "d… second mode "␤ = 3.393… a = 0.08; thick lines, nonlinear; thin lines, linear

Fig. 7

 7 Fig. 7 Frequency-response relationship for a four-bay beam with m 0 = 0.0, 0.001, 0.005, 0.01: "a… first mode, "b… second mode, "c… third mode, and "d… fourth mode "⍀, : nonlinear and linear frequency…

   show the first four modal shapes; the comparison between the linear and nonlinear modes are depicted for increasing amplitude of oscillations. The nonlinear shortening effect destroys the symmetry of the linear modes; it can be best noted at the right end of the chain.

Fig. 8

 8 Fig. 8 Frequency-response relationship in the first linear pass band for a four-bay beam; m 0 = 0.01
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