(Takens-Bogdanova-Arnold) bifurcations (points B, F and DZ of Fig. 1, respectively). Finally, some numerical results are illustrated to describe the mechanical behavior of the beam around bifurcations.

Equations of motion

A cantilever beam with narrow rectangular cross-section, loaded at the free end by a non-conservative force p and a conservative couple m, acting in the plane of major inertia, is considered. The relevant non-linear equations of motion (Eq. (20) of Part I) and boundary conditions (Eqs. ( 23), (24) of Part I) were derived in Part I. In view of a perturbation analysis by the MSM, it is convenient to recast them in firstorder form, as follows:

ẏ = L(p)y + N(p, y 3 ) in D, B(p)y + N b (p, y 3 ) = 0 on jD, (1) 
where D is the domain, jD its boundary, p=[p m] T the control parameter vector and

y = u U , L = 0 I -K -C , N = 0 n (2) 
are the state vector, the linear system operator and the nonlinear operator, respectively. In them u = [v, ϑ] T collects the transversal displacement field v=v(s) and the torsional rotation ϑ = ϑ(s), U = u, and moreover

K = - D 4 + pD 2 -mD 2 2 mD 2 2 D 2 , C = - 2 v 0 0 2 ϑ , n = n v n ϑ (3)
are the stiffness operator, the damping operator and non-linear vector, respectively, in which D k = d k /ds k stands for the kth derivatives with respect the non-dimensional abscissa s. With reference to Eq. (1 2 ) the following quantities have been defined:

B = ( B 0), N b = 0 n b (4) with B = [B T ge B T me ],
where B ge and B me are the geometrical and mechanical boundary operators, and having set

B ge = 1 0 D 0 0 1 s=0 , B me = D 3 -mD -D 2 0 2 mD 2 D s=1 , n b = b t b T b M s=1
.

(5)

The adjoint problem

With the aim to apply the MSM, it is necessary to solve the adjoint problem of the linearized equation Eq. ( 1), useful to enforce solvability conditions. By applying the well known Green identity [START_REF] Oden | Variational Methods in Theoretical Mechanics[END_REF], the following non-dimensional equations are obtained:

va + 2 v va + v IV a -mϑ a + pv a = 0, θa + 2 ϑ θa -2 ϑ a -2 mv a = 0 (6)
with the associated kinematic boundary conditions:

v a = 0, v a = 0, ϑ a = 0 in s = 0 (7)
and the mechanical boundary conditions:

2 ϑ a + 2 mv a = 0, v a -mϑ a + pv a = 0 in s = 1, v a + pv a = 0, (8) 
where the index a stands for the adjoint variables. It is easy to verify that Eqs. ( 6)-( 8) are the linearized equations of the generalized Reut's cantilever beam [START_REF] Leipholz | Direct Variational Methods and Eigenvalue Problems in Engineering[END_REF]. Eqs. ( 6)-( 8) are equivalently written in the first-order form, as follows:

Ua ua = 0 -K I -C U a u a , B a u a = 0, (9) 
where 

B a = [B T a,
v IV a + 2 (p, m)v a = 0 ( 11 
)
with the condensed associated boundary conditions

v a = 0, v a = 0 in s = 0, v a + 2 (p, 0)v a = 0, v a + 2 (p, m)v a = 0 in s = 1. (12) 
Solution of Eq. ( 11) takes the same analytical form of the direct problem, where the coefficients are now evaluated by Eq. ( 12). (
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The Keldysh's chain of eigenvectors

It is well known that the solution of the evolutionary differential equations Eq. ( 1) (with non-linearities neglected) and Eq. ( 9) depends by the multiplicity of the critical eigenvalue. At the double-zero critical point, since the zero frequency is attained with multiplicity equal to two, the linearized direct dynamic problem Eq. ( 1) and the adjoint linear problem Eq. ( 9) do not admit proper orthogonal bases. Therefore, the Keldysh generalized eigenfunctions chains [START_REF] Keldysh | On eigenvalues and eigenfunctions of certain classes of not self-adjoint equations[END_REF] have to be evaluated. For the direct problem, by letting (u, U) = (, ), these are solution of

0 I -K -C 1 1 = 0 0 , B 1 = 0, 0 I -K -C 2 2 = 1 1 , B 2 = 0, (15) 
while, for the adjoint problem, by letting (U a , u a ) = ( , ), they satisfy the following equations:

0 -K I -C 2 2 = 0 0 , B a 2 = 0, 0 -K I -C 1 1 = 2 2 , B a 1 = 0. (16) 
It should be noted that indices 1 and 2 are exchanged in the two problems ( 15) and ( 16). Details about orthogonality and normalization conditions are given in Appendix A.

For the beam under examination, the following expressions are found for the displacement transversal component v of the proper and generalized right eigenvectors:

v 1 = -cos s + cot sin s -cot s + 1, v 1 = 0, v 2 = 1 + a 1 s + a 2 s 2 + a 3 s 3 + (a 4 + a 5 s) sin s + (a 6 + a 7 s) cos s + v 1 , v 2 = v 1 ( 17 
)
and of the proper and generalized left eigenvectors

v 2 = (cos s -1), v 2 = 2 v v 2 , v 1 = (b 0 + b 1 s + b 2 s 2 + (b 3 + b 4 s) sin s + b 5 cos s) + v 2 , v 1 = (2 v v 1 + v 2 ) + v 2 , ( 18 
)
where the real parameters (a i , b j ) are reported in Appendix B for v = ϑ = . About the torsional rotation component ϑ, in the proper right and left eigenvectors the ( ϑ 1 , ϑ 2 ), are directly proportional to the corresponding v components ( v 1 , v 2 ). In the generalized right and left eigenvectors the torsional components ϑ, ( ϑ 2 , ϑ 1 ) are furnished by the following condensed boundary values problem: It is worth noting that the orthogonality condition between the right and left proper eigenvectors Eq. (A.3) (for i =1, j =2) furnishes one additional method for determining the doublezero point DZ. In fact, the curve expressing this orthogonality condition, when parameterized in the (p, m) variables, intersects the buckling curve at the DZ point.

ϑ 2 = - 2 m 2 v 2 + 2 ϑ 2 m 3 v 1 , ϑ 2 (0) = 0, ϑ 2 (1) = - 2 m 2 v 2 , ϑ 1 = - 2 m 2 v 1 + 2 ϑ 2 m 3 v 2 , ϑ 1 (0) = 0, ϑ 1 (1) = - 2 m 2 v 1 . ( 19 
)

Bifurcation analysis

The multiple scale method is applied to analyze the system behavior at a buckling, a flutter and the double-zero points (Fig. 1 points B, F, DZ respectively). A perturbation parameter is introduced as a measure of the distance of a generic point from a bifurcation point in the parameter space (p, m). Also, different -dependent time scales t k = k t are introduced and the state variables y expanded in McLaurin series of . By equating terms of the same power of , a set of linear equations is obtained, and then solved in chain for the series coefficients y k (k = 1, 2, . . .). Of these, the first is homogeneous while the higher-order equations are of non-homogeneous type, as follows:

(d 0 -L 0 )y k = f k (µ, y j )e 0 t 0 + NST, j < k, k = 2, 3, . . . in D, B 0 y k = g k (µ, y j ) on jD, (20) 
where L 0 and B 0 are the field and boundary operators evaluated at the bifurcation point p 0 = (p 0 , m 0 ), t 0 the fast time scale, 0 the critical eigenvalue and f k , g k are known non-linear terms depending on the solutions of order less than k and on the control parameters µ = pp 0 . Moreover, NST denotes 'no secular terms', i.e. terms of frequency different from 0 and any other natural frequency (internal resonances are excluded). By letting y k (s, t 0 ) = w k (s)e 0 t 0 + NST, the problems:

(L 0 -0 )w k = -f k , B 0 w k = g k , k = 2, 3, . . . ( 21 
)
must be solved. Eq. ( 21) admit a solution if and only if the terms appearing on the right-hand side of both field and boundary conditions respect the solvability condition (see e.g. [START_REF] Iooss | Elementary Stability and Bifurcation Theory[END_REF])

1 0 H a f k ds + [(B a a ) H g k ] s=1 = 0, (22) 
where a stand for the proper left eigenfunction, i.e. a := [ ] T and H denotes transpose complex conjugate while B a is the boundary adjoint operator evaluated at the bifurcation point. Solvability conditions, Eq. ( 22), when combined on true time scale t (according to the so-called reconstitution method [START_REF] Nayfeh | Perturbation methods in nonlinear dynamics[END_REF]), furnish the normal form of the bifurcation equations, governing the asymptotic dynamics of the system, reduced to the center manifold.

In the following, the bifurcation equations are derived in details, separately for linear codimension-1 and codimension-2 problems:

(a) Codimension-1 bifurcations: 0 is a simple eigenvalue, namely 0 = 0 (buckling bifurcation) or 0 = ±i (simple Flutter bifurcation). (b) Codimension-2 bifurcation: 0 is a double-zero eigenvalue (Takens-Bogdanova-Arnold bifurcation).

Divergence and Hopf bifurcation equations

A single real load parameter (e.g. = mm 0 ) describes the transition through the bifurcation point. The equations of motion are rewritten as ẏ = L 0 y + L 0 y + N 0 (y 3 ),

B 0 y + B 0 y = N b0 (y 3 ), ( 23 
)
where

L 0 = L(p 0 ), B 0 = B(p 0 ), N 0 (y 3 ) = N(p 0 , y 3 ), N b0 (y 3 ) = N b (p 0 , y 3 ); moreover, L 0 ≡ L m (p 0 ), B 0 ≡
B m (p 0 ) represent the derivative of the operators L, B with respect of the parameter load m evaluated at m = m 0 . Due to the symmetry of the system, only the even power of are significant in the series expansions. Therefore, by ordering also the control parameter as = 2 ˆ and omitting the hat, the following perturbation equations up to the third order are obtained

: (d 0 -L 0 )y 1 = 0, B 0 y 1 = -B 0 y 1 , 3 : ⎧ ⎨ ⎩ (d 0 -L 0 )y 3 = -d 2 y 1 + L 0 y 1 +N 0 (y 3 1 ), B 0 y 3 = -B 0 y 1 + N b0 (y 3 1 ). ( 24 
)
The static and dynamic cases are studied separately in the following.

(a) Buckling. When 0 = 0, Eq. (24 1 ) furnishes

y 1 = a(t 2 , t 4 , . . .) (s). ( 25 
)
where a(t 2 , t 4 , . . .) is a real amplitude depending by slowly varying time scales and = ( ) T . Substituting Eq. ( 26) in Eq. ( 243 ) returns

(d 0 -L 0 )y 3 = -d 2 a + aL + a 3 N( 3 )
,

By 3 = -aB + a 3 g( 3 ). ( 26 
)
By enforcing solvability, Eq. ( 22), the following bifurcation equation for buckling is obtained

ȧ = R a + R 3 a 3 , (27) 
where R and R 3 are real parameters defined as follows:

R = 1 0 T a L 0 ds -[(B a a ) T B 0 ] s=1 , R 3 = 1 0 T a N 0 ( 3 ) ds + [(B a a ) T N b0 ( 3 )] s=1 . ( 28 
)
The ratio R /R 3 versus m * along the buckling curve, ruling the amplitude evolution of the bifurcated solutions, is shown in Fig. 5a. In Fig. 5b it is shown the bifurcation diagram obtained from the amplitude modulation equation, Eq. ( 27), in three points A, B, C, Fig. 5a. From this figure clearly appear that the divergence bifurcations are of supercritical type, with the amplitude a decreasing with m * . Hence, the follower force has a stabilizing effect on the post-critical behavior as well as on the buckling linear boundary. (b) Flutter. When 0 = i 0 Eq. (24 1 ) furnishes

y 1 = A(t 2 , t 4 , . . .) (s)e i 0 t 0 + c.c., (29) 
where A(t 2 , t 4 , . . .) is a complex amplitude and c.c. denotes complex conjugate. Substituting Eq. ( 29) in Eq. ( 242 ) returns 

(d 0 -L 0 )y 3 = -i 0 d 2 A + AL 0 +3A 2 ĀN 0 ( 2 ¯ ) e i t 0 + c.c. + NST,
B 0 y 3 = -AB 0 + 3A 2 ĀN b0 ( 2 ¯ ) + c.c. + NST. (30) 
By enforcing solvability, Eq. ( 22), and assuming for the complex amplitude A(t 2 , t 4 , . . .) the polar form

A = 1 2 a(t 2 , t 4 , . . .)e i (t 2 ,t 4 ,...) (31) 
the following bifurcation equation for the flutter is obtained [START_REF] Troger | Nonlinear Stability and Bifurcation Theory[END_REF] 

ȧ = R a + R 3 a 3 , (32) 
where R and R 3 are the real parts of the following complex coefficients: 

C = i 0 1 0 H a L ds - i 0 [(B a a ) H B ] s=1 ,
C 3 = 3i 0 1 0 H a N( 2 ¯ ) ds + 3i 0 [(B a a ) H g( 2 ¯ )] s=1 . (33) 
The ratio R /R 3 versus m * along the flutter curve, ruling the amplitude evolution of the bifurcated solutions, is shown in 

Double-zero bifurcation equations

Since the double-zero bifurcation has codimension two, the relevant analysis requires two bifurcation parameters [START_REF] Troger | Nonlinear Stability and Bifurcation Theory[END_REF]. A 

: (d 0 -L 0 )y 1 = 0, B 0 y 1 = 0, 2 : (d 0 -L 0 )y 2 = d 1 y 1 , B 0 y 2 = 0, 3 : (d 0 -L 0 )y 3 = -d 2 y 1 + L 0 µ y 1 + N 0 (y 3 1
), B 0 y 3 = -B 0 µ y 1 + N b0 (y 3 1 ). 4 :

⎧ ⎨ ⎩ (d 0 -L 0 )y 4 = -d 1 y 3 -d 2 y 2 -d 3 y 1 +L 0 µ y 2 + 3N 0 (y 2 1 y 2 ), B 0 y 4 = -B 0 µ y 2 + 3N b0 (y 2 1 y 2 ). ( 35 
)
The eigenvalue problems Eqs. (35 12 ) admit the solution

y 1 = a(t 1 , t 2 , . . .) 1 (s), y 2 = d 1 a(t 1 , t 2 , . . .) 2 (s), ( 36 
)
where a(t 1 , t 2 , . . .) is a real, arbitrary amplitude and j (s) = ( j j ) T are the proper (j = 1) and generalized (j = 2) right eigenfunctions, respectively. With the solutions Eq. ( 36), the 3 -order equations becomes

(d 0 -L 0 )y 3 = -d 2 a 1 -d 2 1 a 2 + a 3 N 0 ( 3 1 ) + aL 0 µ 1 , B 0 y 3 = -aB 0 µ 1 + a 3 N b0 ( 3 1 ). ( 37 
)
By enforcing solvability Eq. ( 22), the following differential equation is found for the amplitude:

d 2 1 a = aR µ + a 3 R 3 , (38) 
where

R = 1 0 H a L 0 1 ds -[(B a a ) H B 0 1 ] s=1 , R 3 = 1 0 H a N 0 ( 3 1 ) ds + [(B a a ) H N b0 ( 3 1 )] s=1 , ( 39 
) having set R = [R p R m ]
. Solution of Eq. ( 353 ) reads as follows:

y 3 = -d 2 a 2 + a 3 z 3 + aZ µ, ( 40 
)
where z 3 is found as particular solution of the following boundary value problem:

(d 0 -L 0 )z 3 = N 0 ( 3 1 ) -R 3 2 , B 0 z 3 = N b0 ( 3 1 ), (41) 
while Z = [z p z m ] is obtained solving the boundary value problems

(d 0 -L 0 )z j = L 0 j 1 -R j 2 , B 0 z j = -B 0 j 1 (42)
with j = p, m. By using the achieved results, the 4 -order perturbation equation reads:

(d 0 -L 0 )y 4 = -d 1 (d 2 a) 2 -d 2 (d 1 a) 2 -d 3 a 1 + d 1 aL 0 µ 2 -d 1 (d 2 a 2 -z 3 a 3 -Z µa) + 3a 2 d 1 aN 0 ( 2 1 2 ), B 0 y 4 = -d 1 aB 0 µ 2 + 3a 2 d 1 a N b0 ( 2 1 2 ). ( 43 
)
By defining

S = 1 0 H a L 0 2 ds -[(B a a ) H B 0 2 ] s=1 + 1 0 H a Z ds, S 3 = 3 1 0 H a N 0 ( 2 1 2 ) ds + 3 1 0 H a z 3 ds + 3[(B a a ) H N b0 ( 2 1 2 )] s=1 (44) 
with S = [S p S m ], solvability of Eq. (42) supplies

2d 1 (d 2 a) = S 3 a 2 d 1 a + S µd 1 a. ( 45 
)
By coming back to the true time, that is recombining Eqs. ( 38), (45), the following equation is found:

ä = R µa + S µ ȧ + R 3 a 3 + S 3 a 2 ȧ. (46) 
It is the bifurcation equation for the double-zero bifurcation, directly appearing in the Bogdanova-Arnold form. It can be more conveniently rewritten as

ä + ȧ + a -S 3 a 2 ȧ -R 3 a 3 = 0, (47) 
where and are the unfolding parameters (see e.g. [START_REF] Troger | Nonlinear Stability and Bifurcation Theory[END_REF]) whose geometrical meaning is illustrated in Fig. 7; the remaining coefficients are equal to S 3 = 26.2206, R 3 = -0.7167. Non-trivial steady-state solutions of Eq. (47) (in addition to the trivial one a = 0) are found by letting ä = ȧ = 0. The resultant equation describes a pitchfork static bifurcation. The stability of both trivial and non-trivial solutions is governed by the variational equation of the bifurcation equation (47). It leads to a quadratic eigenvalue problem whose solutions determine the quality of the equilibrium. The scenario is represented in the bifurcation diagram of Fig. 8, where the phase portraits of each region of the parameter plane have been sketched. The divergence (B) and Hopf boundaries (F) of the trivial equilibrium are coincident with the unfolding parameter axes. At F NT the non-trivial solution undergoes a Hopf bifurcation, from which a large, unstable, limit cycle arises; at F OM a homoclinic bifurcation occurs. Stable limit cycles exist in a small region of the plane in which the beam oscillates around the buckled configuration. Moreover, the N-labeled curves represent manifolds of nilpotent systems to which the critical system belongs, i.e. the locus of systems having two coincident eigenvalues.

Conclusion

The flexural-torsional bifurcations of a cantilever beam loaded by a tangential force and a conservative couple have been analyzed. For different combinations of the parameters the system undergoes buckling, flutter or a combination of the two instabilities. By using the multiple scale method, a perturbation analysis has been performed to investigate the system behavior around bifurcations in the parameter space. The analysis calls for solving two eigenvalues problems, the direct and the adjoint problems, and evaluating a chain of Keldish generalized eigenvectors at the multiple (nilpotent) bifurcation. It has been found that buckling is of supercritical type, while flutter is of supercritical type far from the doublezero bifurcation, but is of subcritical type close to this point. Therefore interaction between the two instability forms leads to a erosion of the system mechanical properties. Around the interaction point the coexistence of stable and unstable limit cycles causes an homoclinic bifurcation to occur. 
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	2 D -D 3 -pD mD B a,2 mD	(10)
	D 2 + p	0 s=1
	are the geometrical and mechanical boundary adjoint operator,
	respectively. Solutions of Eqs. (6)-(8) are called left (or adjoint)
	eigenvectors.	
	(a) Adjoint buckling eigenfunctions. The adjoint buckling
	eigenfunctions are obtained by the same procedure outlined in
	Part I for the direct problem. By reducing the two-dimensional
	field equations to one ordinary differential equation of the v a
	variable only, it follows	

Appendix A. Keldysh chain of eigenfunctions

Solutions of Eqs. [START_REF] Oden | Variational Methods in Theoretical Mechanics[END_REF] return:

where 1 is a solution of the homogeneous boundary problem (K 1 = 0, B 1 = 0) while 2 is a solution of the nonhomogeneous boundary problem (K 2 = -C 1 , B 2 = 0). Solutions of Eqs. ( 16) return:

where ˆ 2 is a solution of the homogeneous boundary prob-

In Eqs. (A.1,A.2) , and are real constants to be determined by the following bi-orthogonality conditions 1 0

ij being the Kronecher symbol and the apex H denotes transpose complex conjugate.

Appendix B. Coefficients appearing in Eqs. (17)-(18)

The coefficients appearing in Eqs. ( 17)-(18), for v = ϑ = , by setting 0 = (p, 0) and introducing the following nondimensional parameter Q to simplify the notation

are defined as follows: