
HAL Id: hal-00790133
https://hal.science/hal-00790133v1

Submitted on 19 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

compression mechanisms in working memory
Benoît Lemaire, Vivien Robinet, Sophie Portrat

To cite this version:
Benoît Lemaire, Vivien Robinet, Sophie Portrat. compression mechanisms in working memory. Math-
ématiques et Sciences Humaines, 2012, 199 (3), pp.71-84. �10.4000/msh.12301�. �hal-00790133�

https://hal.science/hal-00790133v1
https://hal.archives-ouvertes.fr

COMPRESSION MECHANISMS IN WORKING MEMORY

Benoît LEMAIRE1, Vivien ROBINET2, Sophie PORTRAT1

SUMMARY – Working memory capacity is limited and much work has been done for
decades on estimating that value. However, if stimuli contain redundancies, compression
mechanisms probably appear which change the point of view on that capacity. By means
of a behavioral study and a computational simulation, we aim at showing that working
memory is not just a fixed number of items. We first present a theoretical framework in
the domain of information theory in order to analyze this point of view. Then, we show
the results of an experiment studying the effects of some regularities on memory recall
performance, as well as a simulation using a model of chunking and two different
memory models. Our results show that it is probably wrong to consider working
memory capacity as a fixed number of items. It is better to express it in terms of a
quantity of information.

KEYWORDS – working memory, information theory, information compression,
minimum description length, human experiment, simulation

RÉSUMÉ – Mécanismes de compression en mémoire de travail.
La capacité de la mémoire de travail est limitée et de nombreux travaux cherchent
depuis plusieurs décennies à estimer sa valeur. Or, dès lors que l’on considère des
stimuli contenant des régularités, des mécanismes de compression d’information
opèrent probablement, changeant ainsi le point de vue sur cette capacité. A travers une
étude comportementale suivie d’une simulation computationnelle, nous cherchons à
montrer que la capacité de la mémoire de travail ne se résume pas à un nombre fixe
d’items. Nous présentons tout d’abord un cadre théorique dans le champ de la théorie
de l’information pour analyser ce point de vue. Ensuite, nous décrivons les résultats
d’une expérience visant à étudier les effets de certaines régularités dans les stimuli sur
les performances de rappel en mémoire, ainsi qu’une simulation utilisant un modèle de
chunking et deux modèles de mémoire différents. Nos résultats montrent qu’il devient
probablement erroné de considérer la capacité de la mémoire de travail comme un nom-
bre fixe d’items et qu’il est préférable de l’exprimer en terme de quantité d’information.

1 Laboratoire de Psychologie et NeuroCognition, Université Grenoble 2, BP 47, 38040 Grenoble Cedex
9, France, Benoit.Lemaire@upmf-grenoble.fr, Sophie.Portrat@upmf-grenoble.fr

2 UMR Espace-Dev, centre IRD de Cayenne, Route de Montabo, BP 165, 97323 Cayenne Cedex,
France, Vivien.Robinet@guyane.univ-ag.fr

MOTS-CLÉS – Mémoire de travail, théorie de l’information, compression
d’informations, longueur de description minimale, expérience, simulations

1. INTRODUCTION

Assessing the capacity of human working memory (WM) has been a constant concern
for researchers since the seminal paper from Miller [1956] which estimated that capacity
to be about 7±2 items. The capacity is often measured by presenting participants with
sequence of letters, numbers, visual items, etc. and asking them to immediately recall as
much items as possible. If participants have some prior knowledge about relationships
between items, they can improve their performance by grouping several items into what
is called a chunk. It is defined as “a collection of elements having strong associations
with one another, but weak associations with elements within other chunks” [Gobet et
al., 2001]. For instance, although it contains 7 items, memorizing U S S R U S A is
very easy because it is composed of only two chunks (USSR and USA).

Classically, researchers make sure to carefully control these relationships and
therefore avoid any extra regularities in the input. As a consequence, the dominant trend
in the scientific community is that all chunks take the same space in WM. However, in
everyday life, inputs are full of redundancies that we may take advantage of to encode
and memorize more information. Indeed, information theory tells us that redundancies
in the input lead to code information in a shorter way, because redundancies allow
compression. Compression mechanisms may therefore occur in WM and some very
recent papers address that issue. For example, Mathy & Feldman [in press] study how
humans take into account regularities in sequences of numbers in order to store them in
a efficient way in memory.

This kind of compression could be called a within-stimulus compression. All
stimuli are independent but each one may contain some redundancy that allows
compression. Another kind of compression is between-stimuli. Compression is made
possible because there are some redundancies over all stimuli. This last approach is
interesting because there is no need to rely on participant’s prior knowledge since
redundancies can be built over trials. Brady et al. [2009] presented an experiment in
which participants were asked to recall colors in a display in which some pairs tend to
occur next to each other more frequently than other pairs. They showed that participants
take this redundancy into account to compress the representation, store more
information in memory and therefore improve their performance.

Compression may be seen as a byproduct of the stimulus representation, which is
based on previous knowledge about redundancy that may occur in the input.
Representing (and thus memorizing) USSRUSA as two chunks, requires both USSR and
USA to be recognized as a chunk, i.e. as a sufficiently strong regularity. As an example,
in the field of verbal stimuli, compression is closely related to the classic speech
segmentation task [Perruchet & Vinter, 1998][Robinet & Lemaire, 2009], which has
been broadly studied in the literature [Saffran et al., 1996][Swingley, 2005].

Compression mechanisms may occur because they offer a way to store more
information in the limited WM buffer. There is no reason to deny the fact that WM may
included these powerful mechanisms. If they really exist, then WM capacity may be
better expressed as a fixed quantity of information, instead of as a fixed amount of
chunks which is the unit that is often used since Miller’s work.

2. COMPRESSION
�
Our hypothesis is that memory encoding would be based on an economy principle that
would tend to store the most concise (or simplest [Chater & Vitanyi, 2003]) structures.
This can be modeled by considering the amount of information that each stimulus
contains.

2.1 Algorithmic complexity

A rigorous and general formalism called Algorithmic complexity (or Kolmogorov
complexity) [Solomonoff, 1964][Chaitin, 1966][Kolmogorov, 1968] has been defined to
quantify the amount of information carried by a finite discrete stimulus s. It is defined as
the “length of the shortest program �, that is able to reproduce the stimulus �, and then
halt”.The program � is run on a Turing machine Ti [Turing, 1936]. It is an automaton
whose behavior is defined by an action table i.

Within this theoretical framework, it has been shown that the complexity KTi(s), or
amount of information carried by s, is independent on the particular Turing machine Ti
used to run the program. This invariance theorem [Solomonoff, 1964][Chaitin, 1966]
[Kolmogorov, 1968]:

��(T1,T2), s, K� T2(s) � KT1(s) + �(T1,T2)

ensures the generality of the measure. It is true up to an additive constant � �only
depending on the action tables of the considered Turing machines T1 and T2. In
particular, it is independent on s. The constant �(T1,T2) is the size of the emulator able
to translate the instructions of the Turing machine T1 into instructions for T2.

Without loss of generality, it is possible to consider an universal Turing machine
U whose programs pU are a concatenation of the definition i of the action table
characterizing the particular Turing machine Ti, followed by a program pi written in
language Ti:

 pU
 = i � pi

where � is the concatenation operator. One of the most important theorem in algorithmic
complexity is probably the Coding Theorem [Levin, 1974] establishing the relation
between the size KU(s) of the shortest program pU for s, and the probability QU(s) that a
random self-delimiting program produces s as an output :

KU(s) = log2 (1/QU(s)) + O(1) (1)

The algorithmic complexity of a given stimulus s is intractable in practice, nonetheless,
the latter theorem gives a hint on the way complexity can be deduced from probability.
One way to model these compression mechanisms is therefore to rely on information
theory [Shannon, 1948]. Within this formalism, the quantity of information carried by a
stimulus s is estimated by its codelength C(s):

C(s) = log2 (1/P(s)) (2)

This is the quantity of information (expressed in bits) necessary to isolate the stimulus s
from all other possible stimuli s’. The difference between eq. (1) and eq. (2) is that QU is
an absolute probability measure on the stimuli space induced by the natural
Solomonoff’s [1960] probability measure on the program space, whereas P is simply the
empirical probability of the stimulus in a set of observations.

Rare events carry more information than frequent ones. For example, in the
following sequence of ����������������������	�AAB���C�D�EF����stimuli

a, b, a, a, c, d, a, b

the stimulus a is more frequent than d (P(a) = 1/2, P(d) = 1/8). Trying to predict the
next stimulus in the sequence, leads a to be the best candidate with P(a) = 1/2. Thus,
knowing that a is the next stimulus gives only C(a) = log2(2) = 1bit of information: the
bit is the quantity of information necessary to separate two eventualities having equal
probabilities. In the present case, it is the quantity of information necessary to separate
the stimulus a from the other stimuli b, c and d.

A sequence of independent and equally distributed stimuli can be optimally
compressed using a Shannon-Fano code associating a codeword of length C(s), to each
stimulus s. In this particular case, C(s) cannot differ significantly from K�(s) [Leung-
Yan-Cheong & Cover, 1978].

2.2 Minimum Description Length

Compressing information addresses the problem of separating compressible information
from noise (incompressible information). In the formalism of algorithmic complexity,
this bias-variance dilemma may be represented in the following manner. A program p
for s may be separated into a compressible part pS and an incompressible part ps|�

(noise):

length(p) = length(p�) + length(ps|�) + O(1)

This separation between model and noise may be formalized using the Kolmogorov
structure functions [Kolmogorov, 1974]. These functions are broadly studied in
Vereshchagin & Vitanyi [2002]. The structure of the following paragraphs is based on
this publication.

The stimulus s is discrete and composed of symbols from a finite alphabet, so
without loss of generality, s can be represented by a finite length binary string:

s � � {0, 1}� � where {0,1}* is the set of all finite length binary sequences
The compressible part (or “model”) is equivalently defined by its program p� or by the
set of its elements � = {s1, … , sm}. Indeed, p � can be seen as the shortest program able
to separate {s1, … , sm} from all other finite length binary strings {0, 1}�.
We consider the following quantities:

� K(�) is the size of the shortest program p� able to isolate the set s1, … , sm

from all other possible stimuli.
� K(s|�) is the size of the shortest program ps|� able to isolate s = si � � from

all other possible sj � �.

� log2(Card(�)) is the minimal number of bits necessary to isolate one index
i {1, … , m� } from the others.

Because log2(Card(�)) is the highest quantity of information necessary to isolate
si without using its structure :

K(s��) ≤ log2(Card(�)) + O(1)

and the difference

(s� ��) = log2(Card(�)) − K(s��)

is called randomness deficiency.
The three Kolmogorov structure functions are:

� The minimal randomness deficiency estimator:

�s() = � min�{ (s� ��): s � �, K(�) ≤ }�

� The maximum likelihood estimator:
hs() = � min�{log2(Card(�)): s � �, K(�) ≤ }�

� The minimum description length estimator:
�s() = � min�{K(�) + log2(Card(�)): s � �, K(�) ≤ }�

When increasing the threshold �, the model � tends to catch more and more information
from the stimulus s. Increasing model complexity may lead to overtraining (the model
catches some incompressible information carried by s) and overfitting (the model
catches information not carried by s). Both increase the generalization error and are
difficult to distinguish in practical cases.

When increasing � :
� The minimal randomness deficiency estimator minimizes (s� ��) and thus

selects the smallest typical set � for s. When � contains all the compressible
information, the statistic remains constant.

� The maximum likelihood estimator minimizes Card(�). It catches the most
compressible information first, and then incompressible information, thus
leading to an overtraining of the data s.

� The minimum description length estimator catches the most compressible
information first and then remains constant over incompressible information:
adding one bit to K(�) decreases log2(Card(�)) by one bit.

Vitanyi [2005] provides detailed information about the properties of the
Kolmogorov structure functions. The behavior of the three estimators are summarized in
Figure 1.

Figure 1: Evolution of the model � with respect to overtraining and overfitting,
when increasing its complexity �. (1) thin line corresponds to undertraining, (2) normal

line to overtraining and (3) thick line to overfitting. (4) the dot represent the minimal
sufficient statistic. Dashed line corresponds to a constant value of the statistic.

While it remains compressible information, adding 1 bit to the model � decreases
log2(Card(�)) of at least 1 bit, thus part (1) is strictly convex. It becomes linear in part
(2) when the model catches incompressible information. Catching extra-information
does not change log2(Card(�)).

The maximum likelihood estimator tends to overtrain the model. �s and �s do not
suffer from this drawback (Figure 2).

Figure 2: Evolution of the three Kolmogorov statistics as functions of �.

The minimal randomness deficiency estimator is not computable in practice with a
sufficient precision, thus we used the minimum description length (MDL) to estimate
the model complexity. For this work, we focused on the simplest MDL estimator called
MDL two-part coding [Rissanen, 1978], in which the two parts, “model” and “noise”,
are explicitly separated, such as p� and ps|� in the previous formalism. The “model” part
catches regularities that are sufficiently strong to be used in order to compress the
stimulus. The “noise” part contains non-significant information that are nonetheless
necessary to reconstruct the stimuli.

The codelength of each part is computed using a Shannon-Fano code [Shannon,
1948]. The criterion used to select the best model � for the set of stimuli is the overall
codelength of the two parts. Using this formalism allows to solve the bias-variance
dilemma without explicitly specifying a threshold in order to separate regularity and
noise.

We now present both an experiment and a simulation using a chunking model
which is based on the ideas presented so far.

3. EXPERIMENT

Because we suspect that frequency plays a role in the way information is encoded into

memory, in this experiment we aimed at experimentally test these ideas by varying the
frequency of chunks exposure and observe if the capacity of WM is affected or not.

Such an experiment was not easy to set up. Because we aimed at properly control
the frequency of the chunks exposure, participants should not have known the chunks
beforehand and individual differences in memory strategies should have been as much
as possible minimized. For these reasons, we chose to set up an experiment involving
visuo-spatial WM. Indeed, while two words or letters are most probably differently
linked together across individual semantic networks, there is no reason for two locations
on a computer screen to be more strongly associated for one participant than for another.
Hence, in our experiment, first, the chunks should not have been previously encountered
per se and, second, the stimuli should not be rehearsed mentally using the phonological
loop [Baddeley, 1986]. This visuo-spatial WM task, that will be called location task
from that point, is inspired by the Corsi-blocks task [Milner, 1971] and requires
maintenance of visually presented sequences of random locations in a 5�5 grid for
further manual recall. To study compression in WM, sequences contained a specific pair
of items forming a chunk. For each participant, there were three different chunks that
appeared according to three frequency values (1/2, 1/4 and 1/8), the remaining 1/8
sequences being entirely randomized (no chunks).

Thirty participants (mean age = 22.7 years) took part in this experiment. The
frequency values (1/2, 1/4 and 1/8) were manipulated within subjects and the
experiment was decomposed in three successive phases: a span evaluation phase, a
chunk learning phase and finally, the location task per se for a total duration of
approximately 25 minutes.

All along the experiment, the participant was sited at about 60 cm in front of a
computer screen in which the instructions as well as the experimental material were
displayed using a JavaScript program. The 5�5 grid was centered on screen, each
constitutive square was grey on a white background.

The first span evaluation phase aimed at measuring each individual’s visuo-
spatial WM raw capacity. To this end, each participant had to perform a classical
location span task. Participants were presented with sequences of locations of ascending
length started with sequences of three locations and, using the computer mouse, they
had to manually recall the sequences in correct order by clicking sequentially on the
appropriate squares immediately after the presentation of the last item of each sequence.
There were three sequences of each length and a stop rule was applied according to
which the span evaluation ended when the participant failed to recall the locations of all
the three sequences at a particular level. Each correctly recalled series counted as one
third; the total number of thirds added up to 2 (considering arbitrarily that the sequences
of one and two locations that had not been performed were successfully recalled)
provided a span score (e.g., [Barrouillet et al., 2011][Conlin, Gathercole, & Adams,
2005]). For example, the correct recall of all of the series of three locations, of two
series of four locations, and of one series of five locations resulted in a span of 2 + (3 +
2 + 1) � 1/3 = 4. The presentation of the stimuli was temporally constrained: each
location appeared for 500 ms and was followed by a 250 ms delay. After the last post-
location delay of a given sequence, a mask (made of randomized pixels) was displayed
for 1500 ms to minimize retinal persistence. Finally, the blank recall grid was displayed
on screen up to the end of the participant’s response (Figure 3).

Figure 3: Sequence of images shown to the participant before recall, in the span
evaluation phase for a sequence length of 3.

The second phase was devoted to the learning of the three chunks. Each chunk
consisted in a sequential pair of two given locations. The pairs were randomly chosen by
the computer for each participant according to the two following restrictive criteria: the
four corner positions as well as the central position of the grid were never used and the
two positions were never on the same line, column or diagonal. ���C��	D���D������D��
���A��������������������F�A������D��	�C��������DB�C�D������C� First of all, the participant,
who was instructed to learn the associations of locations because they should be useful
for the following part of the experiment, was presented with seven sequences of two
locations following the three frequency values of exposure (1/2 for the first chunk
hereafter called AA, 1/4 for the second chunk hereafter called BB and 1/8 for the third
chunk hereafter called CC). To control the effective learning, the first position of each
chunk was then presented and the participant had to click on the appropriate second
associated location. The chunk learning phase ended when the participant reached 100
% of success on the three chunks three times in a row. The temporal characteristics of
the stimuli were similar to the span evaluation phase : locations were presented for 500
ms and followed by a 250 ms delay. A 2000 ms delay was inserted between the
presentation of two successive to-be-learned chunks and there were no temporal
restriction for recall.

Finally, the location task itself was administered to the participant who was
presented with 64 sequences of constant length of locations. The number of locations
that had to be memorized by each participant in each sequence was determined
according to its personal raw visuo-spatial memory capacity evaluated in the first phase.

Because we expected that the learning of chunks should enhanced memory
performance, we choose to present sequences containing the span score of the given
participant raised by two further locations. Eight blocks of eight to-be-memorized
sequences were presented. In each block, four sequences started with the chunk AA, two

sequences started with the chunk BB, one sequence with the chunk CC and the
remaining sequence began by random locations that did not pertain to any learned
chunks (hereafter called XX) and that were different across blocks. As previously, each
location was presented for 500 ms and followed by a 250 ms delay. A 1500 ms mask
followed the last post-location delay of each sequence to minimize retinal persistence
and the recall phase was self-paced. The same spatial restrictions were applied to the
random choice of the positions in a given sequence: the four corners and the central
positions of the grid were avoided and two successive positions were never on the same
line, column or diagonal.

Besides the span scores evaluating the raw individual visuo-spatial memory
capacity in the first phase and revealing a mean memory performance of 4.01 locations
across the thirty participants, three scores have been computed to measure memory
performance in the location task: a mean quantity score evaluating the raw number of
locations that can be memorized in correct order (this variable did not take the length of
the sequence into account), a percentage of locations recalled in correct order and a
percentage of locations recalled irrespective of the order. While these different scores
could have distinct theoretical justifications, we did not observe any significant
differences on behavioural results across them. Indeed, on average, whatever the
considered memory measure, behavioural results revealed that recall performance were
better on sequences containing high-frequency chunks than on sequences containing
low-frequency chunks. Indeed, while participants recall on average 71 % of locations in
correct order in the AA chunk condition, their performance fell to 67 %, 67 % and 64 %
for the BB, CC and XX conditions respectively. The AA condition showed significantly
superior memory performance from all the three other conditions of frequency values of
exposure (t(29) = 2.97, p-value < 0.01; t(29) = 2.03, p-value < 0.05 and t(29) = 3.56, p-
value < 0.001, respectively). However, none of memory performance observed in these
three conditions differed significantly from another (all p-values greater than 5%).

These results show that all chunks do not seem to take the same space in working
memory, since the encoding of a very frequent chunks like AA leads to an increase of
recall performance. More items can be stored when the chunk AA is part of the stimuli
probably because AA has been better compressed and therefore leaves more space for
the other items.

4. SIMULATION

In order to go one step further in the study of the WM capacity, this section describes
the simulation of the previous experiment, using a model of chunking based on the
theoretical background presented previously. The idea is to simulate the creation of
chunks by participants instead of assuming that chunks were perfectly learned by
participants.

This model of chunking, called MDLChunker [Robinet et al., 2011] describes the
time course of chunk creation, stimulus after stimulus. In this model, each stimulus is a
sequence of “letters” that could represent a word of an artificial language [Robinet &
Lemaire, 2009], a set of visual items [Robinet et al., 2011] or any component of an
individual item. Here, a stimulus is a sequence of grid locations which are coded by a
number between 1 and 25. All stimuli that have been presented to a given participant are
therefore represented by a list of 64 sequences of about 5 to 7 numbers (depending on
individual’s visuo-spatial WM raw capacities measured by the span evaluation phase).
For instance (AA chunk is “22 5”, BB chunk is “18 10” and CC chunk is “6 23”):

22 5 18 11 23 10
18 10 17 6 23 16
22 5 23 2 15 1
6 23 2 21 13 1
22 5 21 10 2 9
22 5 17 6 15 14
18 10 23 2 19 6
11 8 19 5 2 13
...

This is the material the model learns from. In the model, a chunk is a group of
“letters” that tend to occur together in the stimuli. As mentioned previously,
MDLChunker is based on rewriting the stimuli using two parts: chunks (model) and
data given the chunks (noise). For instance, the previous example could be rewritten in
different ways. The first one would be not to consider chunks:

CHUNKS = {}
DATA|CHUNKS = { (22,5,18,11,23,10), (18,10,17,6,23,16), (22,5,23,2,15,1), … }

The second way would be to create a chunk for the sub-sequence 22,5 which
seems to appear quite often. The codelength of the first part would be longer, but the
second part would be a bit lower:

CHUNKS = {A = 22,5}
DATA|CHUNKS = { (A,18,11,23,10), (18,10,17,6,23,16), (A,23,2,15,1), … }

In MDLChunker, several chunks could be considered (even chunks containing
chunks themselves, although this does not occur in this work). For instance:

CHUNKS = {A = 22,5 ; B = 18,10}
DATA|CHUNKS = { (A,18,11,23,10), (B,17,6,23,16), (A,23,2,15,1), … }

The best way is the one that has the shortest overall codelength. MDLChunker
computes the lengths of the codes for representing the chunks (previously called ��) and
the lengths of the codes for representing the input data knowing these chunks (����), and
minimizes their sum. Codelengths are estimated by means of Shannon’s formula, saying
that a symbol s, occurring with probability P(s), can be ideally compressed with a
binary code whose length is C(s) = 	log2(P(s)). In our case, P(s) is estimated by the
frequency of s.

MDLChunker processes the sequences that a participant has been exposed to,
constantly testing whether it is worth creating chunks. It looks for possible chunks at
any position in sequences but since we only create regularities on the first two positions,
it can only find chunks there. As soon as the creation of a chunk (a group of two grid
locations) leads to a smaller overall codelength, the chunk is created. Figure 4 presents
an example of the time course of chunk creation over the 64 sequences of a trial. In that
simulation, no learning phase occurred as opposed to the human experiment. Chunk AA
was created at iteration 11. At that time, it had been seen 5 times. Chunk BB was created
at iteration 23 and chunk CC was created at iteration 56. On the 30 simulations, chunks
AA was created between iterations 9 and 12, chunk BB was created between iterations
17 and 25 and chunk CC was created after iterations 40 (and may be not created at all in
some cases).

Now that a model of chunking is available, we can supplement it with two
models of working memory with different capacities and ask the model to recall items
according to their capacities. The integrated models will then be compared to human
data.

In the first model, capacity is a fixed number of chunks, M. For instance, if that
value is 4, only 4 items would be memorized at iteration 7 of Figure 4. However, after
chunk AA has been learned (at iteration 11 and after), the recall score would be 5 if the
chunk AA is part of the stimulus because AA would count only 1. Therefore one more
item could be memorized.

In the second model, capacity is a fixed quantity of information of N bits. After
each sequence is presented, the recall score is the maximum number of first items
whose total codelength is equal or less than N. If a chunk exists, it is obviously
considered. Codelengths change constantly because there are based on frequencies.

Each model is based on a parameter for the capacity (M or N). This parameter
was learned for each model on data from 30 participants such that the recall score is the
same as the participants’ recall score after the first block of 8 sequences (0.67). We
found M = 3.85 and N = 12.7 bits.

Figure 5 shows the percentage of correct recall for all blocks of 8 sequences for
participants and models. It is worth noting that participants were exposed to the chunks
prior to the experiment, which is not the case for the models. This is a drawback of the
simulation, but it is not straightforward to mimic that prior learning. Therefore, we will
mainly consider a comparison between the two models.

Both models show a burst of learning after the second sequence because there is
much to learn. However, the model based on a fixed number of items keeps improving
its performance. The model based on a quantity of information is rapidly as stable as
participants.

Figure 5: Percentage of correct recall for all blocks of 8 sequences for participants
and models

In addition, Figure 6 (left side) shows that the model whose capacity is based on a fixed
number of items converges to a situation with identical performance whatever the chunk
presented in the sequence: the chunk with 50% frequency is learned earlier, but when all
three chunks have been learned, there is no difference at all. However, the model based
on a fixed quantity of information (right side) always makes a difference between the
three sequences: those containing the most frequent chunk are better recalled. Indeed,
given the high frequency of the chunk, their codelengths are shorter.

5. CONCLUSION

A theoretical framework, an experiment and a simulation lead us to consider that the
capacity of the human working memory may be better expressed as a quantity of
information rather than a fixed number of chunks. It is likely that humans are able to
compress information in order to improve their performance of storage in memory and if
so, an information theoretic measure is more likely to represent what is stored.

Many questions remain open. To what extent do humans rely on information
compression? Are we optimal information compressors? More experiments should be
conducted to compare human performance and mathematical models of information
compression. As we mentioned previously, this is not an easy task because it has to be
mainly based on novel material, for which the frequency can be easily controlled. It is
true that another way could be to rely on existing corpora in order to estimate the
frequency to which people are exposed to some stimuli, but the design of such
experiments is probably not trivial.

Our model suggests a way of compressing information which is based on the
frequency of chunks, defined as conjunctions of elementary units. However, other
mechanisms of compression may occur that ought to be studied. In particular, chunks
may be more complex than conjunctions.

This work is in line with a general point of view on cognition which is that
humans tend to select simple structures [Chater & Vitanyi, 2003]: given several ways of
understanding the world, we would retain the simplest one. Modeling this approach
requires two distinct mechanisms: a generator of hypotheses and a way to select the
simplest one. The nice thing is that information theory offers a way to quantify
simplicity: simple explanations are those with the shortest codelengths.

BIBLIOGRAPHY

BADDELEY, A.D. (1986). Working memory. Oxford: Calendron Press.
BARROUILLET, P., PORTRAT, S., & CAMOS, V. “On the law relating processing to
storage in working memory”. Psychological Review, 118 (2), (2011), p 175-192.
BRADY, T.F., KONKLE, T., & ALVAREZ, G.A. “Compression in visual working
memory: using statistical regularities to form more efficient memory representations”.
Journal of Experimental Psychology: General, 138(4), (2009), p. 487-502.
CHAITIN, G. “On the length of programs for computing finite binary sequences”.
Journal of the ACM, 13(4), (1966), p. 547-569.
CHATER, N., & VITANYI, P.M. “Simplicity: A unifying principle in cognitive
science?” Trends in Cognitive Sciences, 7(1), (2003), p. 19–22.
CONLIN, J.A., GATHERCOLE, S.E., & ADAMS, J.W. “Stimulus similarity
decrements in children’s working memory span”. Quarterly Journal of Experimental
Psychology: Human Experimental Psychology, 58(A), (2005), p. 1434–1446.
GOBET, F., LANE, P., CROKER, S., CHENG, P., JONES, G., OLIVER, I., & PINE,
J.M. “Chunking mechanisms in human learning”. Trends in Cognitive Sciences, 5(6),
(2001), p. 236–243.
KOLMOGOROV, A. “Three approaches to the quantitative definition of information”
International Journal of Computer Mathematics, 2(1), (1968), p. 157- 168.
KOLMOGOROV, A. “Complexity of algorithms and objective definition of
randomness”. Uspekhi Mat. Nauk, 29(4), (1974).p. 155.
LEUNG-YAN-CHEONG, S., & COVER, T. “Some equivalences between Shannon
entropy and Kolmogorov complexity”, IEEE Transactions on Information Theory, 24(3),
(1978), p. 331-338.
LEVIN, L. “Laws of information conservation (nongrowth) and aspects of the
foundation of probability theory”. Problemy Peredachi Informatsii, 10(3), (1974), p.30-
35.
MATHY, F. & FELDMAN, J. “What’s magic about magic numbers? Chunking and data
compression in short-term memory”. Cognition, in press.

MILLER, G.A. “The magical number seven, plus or minus two: Some limits on our
capacity to process information”, Psychological Review 63(2), (1956), p. 81-97.
MILNER, B. “Interhemispheric differences in localization of psychological processes in
man”, British Medical Bulletin, 27(3), (1971), p. 272-.
PERRUCHET, P., & VINTER, A. “PARSER: A model for word segmentation”. Journal
of Memory and Language, 39(2), (1998), p. 246–263.
RISSANEN, J. “Modeling by shortest data description”. Automatica, 14(5), (1978), p.
465-471.
ROBINET, V., LEMAIRE, B. “MDLChunker: a MDL-based model of word
segmentation”. In Proceedings of the 31st Annual Conference of the Cognitive Science
Society, Amsterdam, Netherland. Cognitive Science Society (2009), p. 2866-2871.
ROBINET, V., LEMAIRE, B, GORDON, M. “MDLChunker: a MDL-based Cognitive
Model of Inductive Learning”. Cognitive Science 35(7), (2011), p. 1352-1389.
SAFFRAN, J.R., NEWPORT, E.L., & ASLIN, R.N. “Word segmentation: the role of
distributional cues”. Journal of Memory and Language, 35(4), (1996), p. 606-621.
SHANNON, C. “A mathematical theory of communication”, Bell System Tech. Journal,
27(3), (1948), p. 379-423.
SOLOMONOFF, R. “A preliminary report on a general theory of inductive inference”,
Zator Co, Report V-131, 1, (1960).
SOLOMONOFF, R. “A formal theory of inductive inference. Parts I and II”.

Information and Control, 7(2), (1964), p. 224-254.
SWINGLEY, D. “Statistical clustering and the contents of the infant vocabulary”.
Cognitive Psychology, 50(1), (2005), p. 86-132.
TURING, A. “On computable numbers: With an application to the
Entscheidungsproblem”. Proceeding of the London Mathematical Society, 2, (1936), p.
230-265.
VERESHCHAGIN, N., & VITANYI, P. “Kolmogorov’s structure functions with an
application to the foundations of model selection”. In Proc. 47th IEEE symp. found.
comput. Sci. (FOCS02), (2002).
VITANYI, P. “Algorithmic statistics and Kolmogorov’s structure function”. In Advances
in Minimum Description Length : Theory and Applications. The MIT Press (2005),
p.151-174.

	1. INTRODUCTION
	2. COMPRESSION
	2.1 Algorithmic complexity
	2.2 Minimum Description Length
	3. EXPERIMENT
	4. SIMULATION
	5. CONCLUSION
	BIBLIOGRAPHY

