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COMPRESSION MECHANISMS IN WORKING MEMORY

Benoît LEMAIRE1, Vivien ROBINET2, Sophie PORTRAT1

SUMMARY – Working memory capacity is limited and much work has been done for 
decades on estimating that value. However, if stimuli contain redundancies, compression 
mechanisms probably appear which change the point of view on that capacity. By means 
of a behavioral study and a computational simulation, we aim at showing that working 
memory is not just a fixed number of items. We first present a theoretical framework in 
the domain of information theory in order to analyze this point of view. Then, we show 
the results of an experiment studying the effects of some regularities on memory recall 
performance,  as  well  as  a  simulation  using  a  model  of  chunking and  two different 
memory  models.  Our  results  show  that  it  is  probably  wrong  to  consider  working 
memory capacity as a fixed number of items. It is better to express it in terms of a  
quantity of information.

KEYWORDS  –  working  memory,  information  theory,  information  compression, 
minimum description length, human experiment, simulation

RÉSUMÉ – Mécanismes de compression en mémoire de travail. 
La  capacité  de  la  mémoire  de  travail  est  limitée  et  de  nombreux  travaux cherchent 
depuis  plusieurs  décennies  à  estimer  sa  valeur.  Or,  dès  lors  que  l’on  considère  des 
stimuli  contenant  des  régularités,  des  mécanismes  de  compression  d’information 
opèrent probablement, changeant ainsi le point de vue sur cette capacité. A travers une 
étude  comportementale  suivie  d’une  simulation  computationnelle,  nous  cherchons  à 
montrer que la capacité de la mémoire de travail ne se résume pas à un nombre fixe 
d’items.  Nous présentons tout d’abord un cadre théorique dans le champ de la théorie 
de l’information pour analyser ce point de vue.  Ensuite, nous décrivons les résultats 
d’une expérience visant à étudier les effets de certaines régularités dans les stimuli sur 
les performances de rappel en mémoire, ainsi qu’une simulation utilisant un modèle de 
chunking et deux modèles de mémoire différents. Nos résultats montrent qu’il devient 
probablement erroné de considérer la capacité de la mémoire de travail comme un nom-
bre fixe d’items et qu’il est préférable de l’exprimer en terme de quantité d’information.
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1. INTRODUCTION

Assessing the capacity of human working memory (WM) has been a constant concern 
for researchers since the seminal paper from Miller [1956] which estimated that capacity 
to be about 7±2 items. The capacity is often measured by presenting participants with 
sequence of letters, numbers, visual items, etc. and asking them to immediately recall as 
much items as possible. If participants have some prior knowledge about relationships 
between items, they can improve their performance by grouping several items into what 
is called a chunk. It is defined as “a collection of elements having strong associations  
with one another, but weak associations with elements within other chunks”  [Gobet et 
al., 2001]. For instance, although it contains 7 items, memorizing   U S S R U S A is 
very easy because it is composed of only two chunks (USSR and USA). 

Classically,  researchers  make  sure  to  carefully  control  these  relationships  and 
therefore avoid any extra regularities in the input. As a consequence, the dominant trend 
in the scientific community is that all chunks take the same space in WM. However, in 
everyday life, inputs are full of redundancies that we may take advantage of to encode 
and memorize more information. Indeed, information theory tells us that redundancies 
in  the input  lead to  code information in  a  shorter  way,  because redundancies  allow 
compression.  Compression  mechanisms may therefore occur  in  WM and some very 
recent papers address that issue. For example, Mathy & Feldman [in press] study how 
humans take into account regularities in sequences of numbers in order to store them in 
a efficient way in memory. 

This  kind  of  compression  could  be  called  a  within-stimulus  compression.  All 
stimuli  are  independent  but  each  one  may  contain  some  redundancy  that  allows 
compression.  Another kind of compression is between-stimuli.  Compression is made 
possible because there are some redundancies over all  stimuli.  This last  approach is 
interesting  because  there  is  no  need  to  rely  on  participant’s  prior  knowledge  since 
redundancies can be built over trials.  Brady et al. [2009] presented an experiment in 
which participants were asked to recall colors in a display in which some pairs tend to 
occur next to each other more frequently than other pairs. They showed that participants 
take  this  redundancy  into  account  to  compress  the  representation,  store  more 
information in memory and therefore improve their performance.

Compression may be seen as a byproduct of the stimulus representation, which is 
based  on  previous  knowledge  about  redundancy  that  may  occur  in  the  input. 
Representing (and thus memorizing) USSRUSA as two chunks, requires both USSR and 
USA to be recognized as a chunk, i.e. as a sufficiently strong regularity. As an example, 
in  the  field  of verbal  stimuli,  compression  is  closely  related  to  the classic  speech 
segmentation task [Perruchet & Vinter,  1998][Robinet & Lemaire,  2009],  which  has 
been broadly studied in the literature [Saffran et al., 1996][Swingley, 2005].

Compression  mechanisms  may  occur  because  they  offer  a  way  to  store  more 
information in the limited WM buffer. There is no reason to deny the fact that WM may 
included these powerful mechanisms. If they really exist, then WM capacity may be 
better  expressed as a fixed quantity  of information,  instead of as a  fixed amount of 
chunks which is the unit that is often used since Miller’s work.



2. COMPRESSION
�
Our hypothesis is that memory encoding would be based on an economy principle that 
would tend to store the most concise (or simplest [Chater & Vitanyi, 2003]) structures. 
This  can  be  modeled  by  considering  the  amount  of  information  that  each  stimulus 
contains.

2.1 Algorithmic complexity

A  rigorous  and  general  formalism  called  Algorithmic  complexity  (or  Kolmogorov 
complexity) [Solomonoff, 1964][Chaitin, 1966][Kolmogorov, 1968] has been defined to 
quantify the amount of information carried by a finite discrete stimulus s. It is defined as 
the “length of the shortest program �, that is able to reproduce the stimulus �, and then 
halt”.The program � is run on a Turing machine  Ti [Turing, 1936]. It is an automaton 
whose behavior is defined by an action table i.

Within this theoretical framework, it has been shown that the complexity KTi(s), or 
amount of information carried by s, is independent on the particular Turing machine Ti 
used to run the program. This invariance theorem [Solomonoff, 1964][Chaitin, 1966]
[Kolmogorov, 1968]:

��(T1,T2), s, K� T2(s) � KT1(s) + �(T1,T2)

ensures  the  generality  of  the  measure.  It  is  true  up to  an  additive  constant  � �only 
depending  on  the  action  tables  of  the  considered  Turing  machines  T1  and T2.  In 
particular, it is independent on s. The constant �(T1,T2) is the size of the emulator able 
to translate the instructions of the Turing machine T1 into instructions for T2.

Without loss of generality, it is possible to consider an universal Turing machine 
U whose  programs  pU  are  a  concatenation  of  the  definition  i of  the  action  table 
characterizing the particular Turing machine  Ti, followed by a program  pi written in 
language Ti:

 pU
 = i � pi 

where �  is the concatenation operator. One of the most important theorem in algorithmic 
complexity  is  probably  the  Coding  Theorem [Levin,  1974]  establishing  the  relation 
between the size KU(s) of the shortest program pU  for s, and the probability QU(s) that a 
random self-delimiting program produces s as an output :

KU(s) = log2 (1/QU(s)) + O(1) (1)

The algorithmic complexity of a given stimulus s is intractable in practice, nonetheless, 
the latter theorem gives a hint on the way complexity can be deduced from probability. 
One way to model these compression mechanisms is therefore to rely on information 
theory [Shannon, 1948]. Within this formalism, the quantity of information  carried by a 
stimulus s is estimated by its codelength C(s):

C(s) = log2 (1/P(s)) (2)

This is the quantity of information (expressed in bits) necessary to isolate the stimulus s 
from all other possible stimuli s’. The difference between eq. (1) and eq. (2) is that QU is 
an  absolute  probability  measure  on  the  stimuli  space  induced  by  the  natural 
Solomonoff’s [1960] probability measure on the program space, whereas P is simply the 
empirical probability of the stimulus in a set of observations.

Rare  events  carry  more  information  than  frequent  ones.  For  example,  in  the 
following sequence of ����������������������	�AAB���C�D�EF����stimuli



a, b, a, a, c, d, a, b

the stimulus  a is more frequent than  d (P(a) = 1/2,  P(d) = 1/8). Trying to predict the 
next stimulus in the sequence, leads a to be the best candidate with P(a) = 1/2. Thus, 
knowing that a is the next stimulus gives only C(a) = log2(2) = 1bit of information: the 
bit is the quantity of information necessary to separate two eventualities having equal 
probabilities. In the present case, it is the quantity of information necessary to separate 
the stimulus a from the other stimuli b, c and d.

A  sequence  of  independent  and  equally  distributed  stimuli  can  be  optimally 
compressed using a Shannon-Fano code associating a codeword of length C(s), to each 
stimulus  s. In this particular case,  C(s) cannot differ significantly from K�(s) [Leung-
Yan-Cheong & Cover, 1978].

2.2 Minimum Description Length

Compressing information addresses the problem of separating compressible information 
from noise (incompressible information). In the formalism of algorithmic complexity, 
this bias-variance dilemma may be represented in the following manner.  A program p 
for  s  may be  separated  into a  compressible  part  pS  and  an  incompressible  part  ps|� 

(noise):

length(p) = length(p�) + length(ps|�) + O(1)

This separation between model  and noise may be formalized using the Kolmogorov 
structure  functions  [Kolmogorov,  1974].  These  functions  are  broadly  studied  in 
Vereshchagin & Vitanyi [2002]. The structure of the following paragraphs is based on 
this publication.

The stimulus  s is discrete and composed of symbols from a finite alphabet, so 
without loss of generality, s can be represented by a finite length binary string:  

s  � �  {0, 1}�  � where {0,1}* is the set of all finite length binary sequences
The compressible part (or “model”) is equivalently defined by its program p� or by the 
set of its elements � = {s1, … , sm}. Indeed, p  � can be seen as the shortest program able 
to separate {s1, … , sm} from all other finite length binary strings {0, 1}�.
We consider the following quantities:

� K(�) is the size of the shortest program p� able to isolate the set s1, … , sm 

from all other possible stimuli.
� K(s|�) is the size of the shortest program ps|�  able to isolate s = si   � � from 

all other possible sj  � �.

� log2(Card(�)) is the minimal number of bits necessary to isolate one index 
i  {1, … , m� } from the others.

Because log2(Card(�)) is the highest quantity of information necessary to isolate 
si without using its structure :

K(s��) ≤ log2(Card(�)) + O(1)

and the difference

(s� ��) = log2(Card(�)) − K(s��)

is called randomness deficiency.
The three Kolmogorov structure functions are:

� The minimal randomness deficiency estimator:



�s( ) = � min�{ (s� ��): s  � �, K(�) ≤ }�

� The maximum likelihood estimator:
hs( ) = � min�{log2(Card(�)): s  � �, K(�) ≤ }�

� The minimum description length estimator:
�s( ) = � min�{K(�) + log2(Card(�)): s  � �, K(�) ≤ }�

When increasing the threshold �, the model � tends to catch more and more information 
from the stimulus s. Increasing model complexity may lead to overtraining (the model 
catches  some  incompressible  information  carried  by  s) and  overfitting  (the  model 
catches information not carried by s).  Both increase the generalization error and are 
difficult to distinguish in practical cases.

When increasing � :
� The minimal randomness  deficiency estimator minimizes  (s� ��) and thus 

selects the smallest typical set � for s. When � contains all the compressible 
information, the statistic remains constant.

� The maximum likelihood estimator minimizes  Card(�). It catches the most 
compressible  information  first,  and then  incompressible  information,  thus 
leading to an overtraining of the data s.

� The minimum description length estimator catches the most compressible 
information first and then remains constant over incompressible information: 
adding one bit to K(�) decreases log2(Card(�)) by one bit.

Vitanyi  [2005]  provides detailed  information  about  the  properties  of  the 
Kolmogorov structure functions. The behavior of the three estimators are summarized in 
Figure 1.



Figure 1: Evolution of the model � with respect  to overtraining and overfitting, 
when increasing its complexity �. (1) thin line corresponds to undertraining, (2) normal 

line to overtraining and (3) thick line to overfitting. (4) the dot represent the minimal 
sufficient statistic. Dashed line corresponds to a constant value of the statistic.

While it remains compressible information, adding 1 bit to the model � decreases 
log2(Card(�)) of at least 1 bit, thus part (1) is strictly convex. It becomes linear in part 
(2)  when  the  model  catches  incompressible  information.  Catching  extra-information 
does not change log2(Card(�)).

The maximum likelihood estimator tends to overtrain the model. �s and �s do not 
suffer from this drawback (Figure 2).

Figure 2: Evolution of the three Kolmogorov statistics as functions of �.

The minimal randomness deficiency estimator is not computable in practice with a 
sufficient precision, thus we used the minimum description length (MDL) to estimate 
the model complexity. For this work, we focused on the simplest MDL estimator called 
MDL two-part coding [Rissanen, 1978], in which the two parts, “model” and “noise”, 
are explicitly separated, such as p� and ps|� in the previous formalism. The “model” part 
catches  regularities  that  are sufficiently  strong to  be  used  in  order  to  compress  the 
stimulus.  The “noise”  part  contains  non-significant  information  that  are  nonetheless 
necessary to reconstruct the stimuli.

The codelength of each part is computed using a Shannon-Fano code [Shannon, 
1948]. The criterion used to select the best model � for the set of stimuli is the overall 
codelength of  the two parts.  Using this  formalism allows to solve the  bias-variance 
dilemma without explicitly specifying a threshold in order to separate regularity and 
noise.

We now present both an experiment and a simulation using a chunking model 
which is based on the ideas presented so far.

3. EXPERIMENT

Because we suspect that frequency plays a role in the way information is encoded into 



memory, in this experiment we aimed at experimentally test these ideas by varying the 
frequency of chunks exposure and observe if the capacity of WM is affected or not.

Such an experiment was not easy to set up. Because we aimed at properly control 
the frequency of the chunks exposure, participants should not have known the chunks 
beforehand and individual differences in memory strategies should have been as much 
as possible minimized. For these reasons, we chose to set up an experiment involving 
visuo-spatial  WM. Indeed,  while  two words  or  letters  are most  probably  differently 
linked together across individual semantic networks, there is no reason for two locations 
on a computer screen to be more strongly associated for one participant than for another. 
Hence, in our experiment, first, the chunks should not have been previously encountered 
per se and, second, the stimuli should not be rehearsed mentally using the phonological 
loop [Baddeley, 1986]. This visuo-spatial WM task, that will be called  location task 
from  that  point,  is  inspired  by  the  Corsi-blocks  task  [Milner,  1971]  and  requires 
maintenance of visually presented sequences of random locations in a 5�5 grid for 
further manual recall. To study compression in WM, sequences contained a specific pair 
of items forming a chunk. For each participant, there were three different chunks that 
appeared  according to  three  frequency  values  (1/2,  1/4  and 1/8),  the  remaining 1/8 
sequences being entirely randomized (no chunks).

Thirty participants  (mean age = 22.7 years)  took part  in  this  experiment.  The 
frequency  values  (1/2,  1/4  and  1/8)  were  manipulated  within  subjects  and  the 
experiment  was decomposed in  three  successive  phases:  a  span evaluation  phase,  a 
chunk  learning  phase  and  finally,  the  location  task  per  se  for  a  total  duration  of 
approximately 25 minutes.

All along the experiment, the participant was sited at about 60 cm in front of a 
computer screen in which the instructions  as well  as the experimental material  were 
displayed using  a  JavaScript  program.  The  5�5 grid  was  centered  on  screen,  each 
constitutive square was grey on a white background.

The  first  span  evaluation  phase  aimed  at  measuring  each  individual’s  visuo-
spatial  WM  raw  capacity.  To  this  end,  each  participant  had  to  perform a  classical 
location span task. Participants were presented with sequences of locations of ascending 
length started with sequences of  three locations and, using the computer mouse, they 
had to manually recall the sequences in correct order by clicking sequentially on the 
appropriate squares immediately after the presentation of the last item of each sequence. 
There were three sequences of each length and a stop rule was applied according to 
which the span evaluation ended when the participant failed to recall the locations of all  
the three sequences at a particular level. Each correctly recalled series counted as one 
third; the total number of thirds added up to 2 (considering arbitrarily that the sequences 
of  one  and  two  locations  that  had  not  been  performed  were  successfully  recalled) 
provided a span score (e.g.,  [Barrouillet  et  al.,  2011][Conlin,  Gathercole,  & Adams, 
2005]). For example, the correct recall of all of the series of three locations, of two 
series of four locations, and of one series of five locations resulted in a span of 2 + (3 + 
2 + 1)  � 1/3 = 4. The presentation of the stimuli was temporally constrained: each 
location appeared for 500 ms and was followed by a 250 ms delay. After the last post-
location delay of a given sequence, a mask (made of randomized pixels) was displayed 
for 1500 ms to minimize retinal persistence. Finally, the blank recall grid was displayed 
on screen up to the end of the participant’s response (Figure 3).



Figure 3: Sequence of images shown to the participant before recall, in the span 
evaluation phase for a sequence length of 3.

The second phase was devoted to the learning of the three chunks. Each chunk 
consisted in a sequential pair of two given locations. The pairs were randomly chosen by 
the computer for each participant according to the two following restrictive criteria: the 
four corner positions as well as the central position of the grid were never used and the 
two positions were never on the same line, column or diagonal.  ���C��	D���D������D��
���A��������������������F�A������D��	�C��������DB�C�D������C� First of all, the participant, 
who was instructed to learn the associations of locations because they should be useful 
for the following part of the experiment, was presented with seven sequences of two 
locations  following  the  three  frequency  values  of  exposure  (1/2  for  the  first  chunk 
hereafter called AA, 1/4  for the second chunk hereafter called BB and 1/8 for the third 
chunk hereafter called CC). To control the effective learning, the first position of each 
chunk was then presented and the participant had to click on the appropriate second 
associated location. The chunk learning phase ended when the participant reached 100 
% of success on the three chunks three times in a row. The temporal characteristics of 
the stimuli were similar to the span evaluation phase : locations were presented for 500 
ms  and  followed  by  a  250  ms  delay.  A  2000  ms  delay  was  inserted  between  the 
presentation  of  two  successive  to-be-learned  chunks  and  there  were  no  temporal 
restriction for recall.

Finally,  the  location  task itself  was  administered  to  the  participant  who  was 
presented with  64 sequences of constant length of locations. The number of locations 
that  had  to  be  memorized  by  each  participant  in  each  sequence  was  determined 
according to its personal raw visuo-spatial memory capacity evaluated in the first phase. 

Because  we  expected  that  the  learning  of  chunks  should  enhanced  memory 
performance, we choose to present sequences containing the span score of the given 
participant  raised  by  two  further  locations.  Eight  blocks  of  eight  to-be-memorized 
sequences were presented. In each block, four sequences started with the chunk AA, two 



sequences  started  with  the  chunk  BB,  one  sequence  with  the  chunk  CC  and  the 
remaining  sequence  began  by random locations  that  did  not  pertain  to  any  learned 
chunks (hereafter called XX) and that were different across blocks. As previously, each 
location was presented for 500 ms and followed by a 250 ms delay. A 1500 ms mask 
followed the last post-location delay of each sequence to minimize retinal persistence 
and the recall phase was self-paced. The same spatial restrictions were applied to the 
random choice of the positions in a given sequence: the four corners and the central 
positions of the grid were avoided and two successive positions were never on the same 
line, column or diagonal.

Besides  the  span  scores  evaluating  the  raw  individual  visuo-spatial  memory 
capacity in the first phase and revealing a mean memory performance of 4.01 locations 
across  the thirty  participants,  three scores  have been computed  to  measure memory 
performance in the location task: a  mean quantity score evaluating the raw number of 
locations that can be memorized in correct order (this variable did not take the length of 
the sequence into account), a percentage of locations recalled in correct order and a 
percentage of locations recalled irrespective of the order. While these different scores 
could  have  distinct  theoretical  justifications,  we  did  not  observe  any  significant 
differences  on  behavioural  results  across  them.  Indeed,  on  average,  whatever  the 
considered memory measure, behavioural results revealed that recall performance were 
better  on sequences containing high-frequency chunks than on sequences  containing 
low-frequency chunks. Indeed, while participants recall on average 71 % of locations in 
correct order in the AA chunk condition, their performance fell to 67 %, 67 % and 64 % 
for the BB, CC and XX conditions respectively. The AA condition showed significantly 
superior memory performance from all the three other conditions of frequency values of 
exposure (t(29) = 2.97, p-value < 0.01; t(29) = 2.03, p-value < 0.05 and t(29) = 3.56, p-
value < 0.001, respectively). However, none of memory performance observed in these 
three conditions differed significantly from another (all p-values greater than 5%). 

These results show that all chunks do not seem to take the same space in working 
memory, since the encoding of a very frequent chunks like AA leads to an increase of 
recall performance. More items can be stored when the chunk AA is part of the stimuli 
probably because AA has been better compressed and therefore leaves more space for 
the other items.

4. SIMULATION

In order to go one step further in the study of the WM capacity, this section describes 
the simulation of the previous experiment,  using a model of chunking based on the 
theoretical  background presented previously.  The idea is  to  simulate  the  creation of 
chunks  by  participants  instead  of  assuming  that  chunks  were  perfectly  learned  by 
participants. 

This model of chunking, called MDLChunker [Robinet et al., 2011] describes the 
time course of chunk creation, stimulus after stimulus. In this model, each stimulus is a 
sequence of “letters” that could represent a word of an artificial language [Robinet & 
Lemaire, 2009], a set of visual items [Robinet et al.,  2011] or any component of an 
individual item. Here, a stimulus is a sequence of grid locations which are coded by a 
number between 1 and 25. All stimuli that have been presented to a given participant are 
therefore represented by a list of 64 sequences of about 5 to 7 numbers (depending on 
individual’s visuo-spatial WM raw capacities measured by the span evaluation phase). 
For instance (AA chunk is “22 5”, BB chunk is “18 10” and CC chunk is “6 23”):



22 5 18 11 23 10 
18 10 17 6 23 16 
22 5 23 2 15 1 
6 23 2 21 13 1 
22 5 21 10 2 9 
22 5 17 6 15 14 
18 10 23 2 19 6 
11 8 19 5 2 13 
...

This is the material the model learns from. In the model, a chunk is a group of 
“letters”  that  tend  to  occur  together  in  the  stimuli.  As  mentioned  previously, 
MDLChunker is based on rewriting the stimuli using two parts: chunks (model) and 
data given the chunks (noise). For instance, the previous example could be rewritten in 
different ways. The first one would be not to consider chunks:

CHUNKS = {}
DATA|CHUNKS = { (22,5,18,11,23,10), (18,10,17,6,23,16), (22,5,23,2,15,1), … }

The second way would be to create a chunk for the sub-sequence 22,5 which 
seems to appear quite often. The codelength of the first part would be longer, but the 
second part would be a bit lower:

CHUNKS = {A = 22,5}
DATA|CHUNKS = { (A,18,11,23,10), (18,10,17,6,23,16), (A,23,2,15,1), … }

In MDLChunker, several chunks could be considered (even chunks containing 
chunks themselves, although this does not occur in this work). For instance:

CHUNKS = {A = 22,5 ; B = 18,10}
DATA|CHUNKS = { (A,18,11,23,10), (B,17,6,23,16), (A,23,2,15,1), … }

The best way is the one that has the shortest overall codelength. MDLChunker 
computes the lengths of the codes for representing the chunks (previously called ��) and 
the lengths of the codes for representing the input data knowing these chunks (����), and 
minimizes their sum. Codelengths are estimated by means of Shannon’s formula, saying 
that  a  symbol  s,  occurring  with  probability  P(s),  can  be  ideally  compressed with  a 
binary code whose length is C(s) = 	log2(P(s)). In our case,  P(s) is estimated by the 
frequency of s.

MDLChunker processes the sequences that a participant has been exposed to, 
constantly testing whether it is worth creating chunks. It looks for possible chunks at 
any position in sequences but since we only create regularities on the first two positions, 
it can only find chunks there. As soon as the creation of a chunk (a group of two grid 
locations) leads to a smaller overall codelength, the chunk is created. Figure 4 presents 
an example of the time course of chunk creation over the 64 sequences of a trial. In that  
simulation, no learning phase occurred as opposed to the human experiment. Chunk AA 
was created at iteration 11. At that time, it had been seen 5 times. Chunk BB was created 
at iteration 23 and chunk CC was created at iteration 56. On the 30 simulations, chunks 
AA was created between iterations 9 and 12, chunk BB was created between iterations 
17 and 25 and chunk CC was created after iterations 40 (and may be not created at all in 
some cases).



Now that  a  model  of  chunking  is  available,  we can  supplement  it  with  two 
models of working memory with different capacities and ask the model to recall items 
according to their capacities. The integrated models will then be compared to human 
data.

In the first model, capacity is a fixed number of chunks, M. For instance, if that 
value is 4, only 4 items would be memorized at iteration 7 of Figure 4. However, after 
chunk AA has been learned (at iteration 11 and after), the recall score would be 5 if the 
chunk AA is part of the stimulus because AA would count only 1. Therefore one more 
item could be memorized.

In the second model, capacity is a fixed quantity of information of N bits. After 
each sequence is  presented,  the  recall  score  is  the  maximum number  of  first  items 
whose  total  codelength  is  equal  or  less  than  N.  If  a  chunk  exists,  it  is  obviously 
considered. Codelengths change constantly because there are based on frequencies.

Each model is based on a parameter for the capacity (M or  N). This parameter 
was learned for each model on data from 30 participants such that the recall score is the 
same as the participants’ recall score after the first block of 8 sequences (0.67). We 
found M = 3.85 and N = 12.7 bits.  

Figure 5 shows the percentage of correct recall for all blocks of 8 sequences for 
participants and models. It is worth noting that participants were exposed to the chunks 
prior to the experiment, which is not the case for the models. This is a drawback of the 
simulation, but it is not straightforward to mimic that prior learning. Therefore, we will 
mainly consider a comparison between the two models.

Both models show a burst of learning after the second sequence because there is 
much to learn. However, the model based on a fixed number of items keeps improving 
its performance. The model based on a quantity of information is rapidly as stable as 
participants.

Figure 5: Percentage of correct recall for all blocks of 8 sequences for participants 
and models



In addition, Figure 6 (left side) shows that the model whose capacity is based on a fixed 
number of items converges to a situation with identical performance whatever the chunk 
presented in the sequence: the chunk with 50% frequency is learned earlier, but when all 
three chunks have been learned, there is no difference at all. However, the model based 
on a fixed quantity of information (right side) always makes a difference between the 
three sequences: those containing the most frequent chunk are better recalled. Indeed, 
given the high frequency of the chunk, their codelengths are shorter. 

5. CONCLUSION

A theoretical framework, an experiment and a simulation lead us to consider that the 
capacity  of  the  human  working  memory  may  be  better  expressed  as  a  quantity  of 
information rather than a fixed number of chunks. It is likely that humans are able to  
compress information in order to improve their performance of storage in memory and if 
so, an information theoretic measure is more likely to represent what is stored. 

Many  questions  remain  open.  To  what  extent  do  humans  rely  on  information 
compression? Are we optimal information compressors? More experiments should be 
conducted  to  compare  human performance and mathematical  models  of  information 
compression. As we mentioned previously, this is not an easy task because it has to be 
mainly based on novel material, for which the frequency can be easily controlled. It is 
true  that  another  way could  be  to  rely on existing  corpora  in  order  to  estimate  the 
frequency  to  which  people  are  exposed  to  some  stimuli,  but  the  design  of  such 
experiments is probably not trivial.

Our model  suggests  a  way of  compressing information which is  based on the 
frequency  of  chunks,  defined  as  conjunctions  of  elementary  units.  However,  other 
mechanisms of compression may occur that ought to be studied. In particular, chunks 
may be more complex than conjunctions.

This  work  is  in  line  with  a  general  point  of  view on cognition  which  is  that 
humans tend to select simple structures [Chater & Vitanyi, 2003]: given several ways of 
understanding the world,  we would retain the simplest one.  Modeling this  approach 
requires two distinct mechanisms: a generator of hypotheses and a way to select the 
simplest  one.  The  nice  thing  is  that  information  theory  offers  a  way  to  quantify 
simplicity: simple explanations are those with the shortest codelengths.
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