N
N

N

HAL

open science

On the relationship between total ozone and

atmospheric dynamics and chemistry at mid-latitudes -
Part 1: Statistical models and spatial fingerprints of
atmospheric dynamics and chemistry
Linda Frossard, Harald Rieder, Mathieu Ribatet, Johannes Staehelin, J.
Maeder, S. Di Rocco, Anthony Davison, T. Peter

» To cite this version:

Linda Frossard, Harald Rieder, Mathieu Ribatet, Johannes Staehelin, J. Maeder, et al.. On the
relationship between total ozone and atmospheric dynamics and chemistry at mid-latitudes - Part

1: Statistical models and spatial fingerprints of atmospheric dynamics and chemistry. Atmospheric
Chemistry and Physics, 2013, 13 (1), pp.147-164. 10.5194/acp-13-147-2013 . hal-00790104

HAL Id: hal-00790104
https://hal.science/hal-00790104
Submitted on 26 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License


https://hal.science/hal-00790104
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Atmos. Chem. Phys., 13, 14¥64, 2013 iy —* -

www.atmos-chem-phys.net/13/147/2013/ Atmospherlc
doi:10.5194/acp-13-147-2013 Chemistry
© Author(s) 2013. CC Attribution 3.0 License. and Phys|cs

B

On the relationship between total ozone and atmospheric dynamics
and chemistry at mid-latitudes — Part 1: Statistical models and
spatial fingerprints of atmospheric dynamics and chemistry

L. Frossard?!, H. E. Rieder®", M. Ribatet!™, J. Staehelirf, J. A. Maeder?, S. Di Roccd-3, A. C. Davisort, and T. Peter

IMathematics Institute for Analysis and Applications, EPF Lausanne, Lausanne, Switzerland

2|nstitute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland

3Department for Geography, University of Zurich, Zurich, Switzerland

“now at: Lamont-Doherty Earth Observatory and Department of Applied Physics and Applied Mathematics,
Columbia University, New York, NY, USA

" now at: Institute of Mathematics and Mathematical Modeling, University Montpellier 1, Montpellier, France

Correspondence td:. Frossard (linda.frossard@epfl.ch) and H. E. Rieder (hr2302@ columbia.edu)

Received: 30 January 2012 — Published in Atmos. Chem. Phys. Discuss.: 25 May 2012
Revised: 5 November 2012 — Accepted: 28 November 2012 — Published: 8 January 2013

Abstract. We use statistical models for mean and extremethe dynamical covariates. Column ozone is enhanced over
values of total column ozone to analyze “fingerprints” of Labrador/Greenland, the North Atlantic sector and over the
atmospheric dynamics and chemistry on long-term ozoneNorwegian Sea, but is reduced over Europe, Russia and the
changes at northern and southern mid-latitudes on grid celEastern United States during the positive NAO phase, and
basis. At each grid cell, thelargest order statistics method vice-versa during the negative phase. The NAQO'’s southern
is used for the analysis of extreme events in low and highcounterpart, the AAO, strongly influences column ozone at
total ozone (termed ELOs and EHOs, respectively), andower southern mid-latitudes, including the southern parts of
an autoregressive moving average (ARMA) model is usedSouth America and the Antarctic Peninsula, and the central
for the corresponding mean value analysis. In order to desouthern mid-latitudes. Results for both NAO and AAO con-
scribe the dynamical and chemical state of the atmospherdirm the importance of atmospheric dynamics for ozone vari-
the statistical models include important atmospheric covari-ability and changes from local/regional to global scales.
ates: the solar cycle, the Quasi-Biennial Oscillation (QBO),
ozone depleting substances (ODS) in terms of equivalent
effective stratospheric chlorine (EESC), the North Atlantic
Oscillation (NAO), the Antarctic Oscillation (AAO), the 1 Introduction
El Nifio/Southern Oscillation (ENSO), and aerosol load af-
ter the volcanic eruptions of EI Chioh and Mt. Pinatubo. Interest in changes in total ozone is linked to its direct influ-
The influence of the individual covariates on mean and ex-ence on biologically active UV radiation (e.gallo et al,
treme levels in total column ozone is derived on a grid 2009, and since the detection of the Antarctic ozone hole
cell basis. The results show that “fingerprints”, i.e., signifi- (Farman et a).1985 the development of the Earth’s ozone
cant influence, of dynamical and chemical features are captayer has been a key focus in atmospheric research. The
tured in both the “bulk” and the tails of the statistical dis- global decrease in column ozone between the 1980s and the
tribution of ozone, respectively described by mean valuesl990s raised major concerns in the scientific community and
and EHOs/ELOs. While results for the solar cycle, QBO, general public. These paved the way for the “Montreal Pro-
and EESC are in good agreement with findings of earliertocol for the Protection of the Ozone Layer” (e.WMO,
studies, unprecedented spatial fingerprints are retrieved fot995 2003 2007, 2011), whose successful implementation
(e.g.,WMO, 2007 Mader et al.2010 led to a discussion on
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148 L. Frossard et al.: Total ozone and atmospheric dynamics and chemistry at mid-latitudes — Part 1

future ozone recovery and possible super-recovery expectednd/or have dealt with huge gridded data sets (€galey

in about 50 yr (e.g.WMO, 2007, 2011, Eyring et al, 2007, et al, 2007 Schliep et al.2010. Although several frame-

201Q SPARC CCMVa) 201Q Hegglin and Shepher@009 works exist for dealing with such data sets using Gaussian

Shepherg2008. processes, such as approximation by Gaussian Markov fields
In previous studies ozone changes on spatial scales havye.g.,Rue and Held2005 or through composite likelihoods

been addressed in statistical terms by large-scale averagés.g.,Varin, 2008, there is much less guidance for extremes.

over latitude bands (e.g¢&yMO, 2003 2007, 201Z; Fioletov But why is it important to distinguish between models for
and Shepher®005 Fioletov et al, 2002, or the application  extreme and non-extreme observations (e.g., mean values)?
of multiple regression models (e.&teinbrecht et al2006). Since extreme events are situated in the tails of the proba-

The former approach has difficulties, because the large-scalkility distribution and the focus of interest in this context is
spatial averages usually used for analysis, such as zonal meaften an event beyond any observed value, an accurate sta-
values, do not take spatial variability fully into account, while tistical description of the tails of the distribution is required.
ozone changes vary greatly in time and space, and thereA set of observations, however, contains only few extreme
fore cannot be addressed adequately by a large-scale averagdservations by nature, so that a model fitted to an entire
Applications of multiple regression models on large spatialdata set most likely approximates the bulk of the observations
scales and analyses on a grid cell basis, as for satellite dataell, but has little capacity to also precisely describe its tails.
sets, are rare for column ozone, and the results mostly deFor the latter purpose, EVT provides specific asymptotically-
scribe the influence of atmospheric dynamics and chemistryustified models which in practice are fitted just to extremal
on mean column ozone, leaving the extremes unaccountediata.
for. Steinbrecht et al(200§ compared multiple regression Recently, methods from EVT have been applied in to-
model output for the winter season on a global scale for obtal ozone research on local/regional scalBgeder et al.
servational data from TOMS and SBUV instruments with 2010ab, 2011). The present study extends these earlier sta-
results from Chemistry-Climate Models (CCMs). Further, tistical analyses to large spatial data sets and compares the re-
ozone changes have been addressed using global CCMs (e.gults for ozone extremes with those for mean values. The use
Eyring et al, 2007, 2010 SPARC CCMVaJ 2010 Waugh  of separate, more appropriate, models for these two entities
et al, 2009 Austin and Wilson 2009. Such CCM analy-  provides better insight into the behavior of total ozone. Mean
ses take spatial variability into account, as ozone changes anealues very often have a Gaussian distribution and hence can
computed on a grid cell basis, according to changes in atbe addressed by standard time series tools like autoregressive
mospheric dynamics and chemistry. Each CCM has its owrmoving average (ARMA) models. In contrast, the asymptotic
parameterizations for specific processes and therefore ittheory behind the EVT models establishes that the limiting
own strengths and deficiencies in its representation of atmodistribution of sample maxima is not Gaussian. Since these
spheric dynamics and chemistry. However, a lot of progres€EVT-based methods are less widely known, they will be pre-
has recently taken place in this field (e yring et al, 201Q sented in SecB8.1 of this paper.
SPARC CCMVa) 2010. Our analysis focuses on the influence of several atmo-
Statistical modeling of the spatial and temporal variabil- spheric covariates on total ozone across space. Because the
ity of column ozone requires one to account for the stochasdata cover the whole globe, a spatial model for extremes
tic nature of physicochemical processes and their spatial andiould be natural. One possibility is max-stable processes
temporal variability (e.g.Chiles and Delfiner1999 Dig- (seeDavison et al.2012 for an application-oriented review),
gle and Ribeirp2007). In particular, a better description of but as current fitting methods are computationally infeasible
extreme events and an assessment of whether their distribdier massive (gridded) data sets, we fit a model for univari-
tion has changed over time are needed to make progress ite extremes individually to each grid cell, as if the neigh-
answering important questions about ozone-climate interacboring cells did not exist. This pointwise approach naturally
tions. Although geostatistics is well developed for the treat-accounts for non-stationarity in space and avoids averaging
ment of average values, despite recent progress (gogley  effects, caused, for example, by averaging over zonal bands.
etal, 2006 Naveau et aJ2009 Padoan et al201Q Davison It also allows us to assess how spatial variation of the model
et al, 2012 a geostatistics of extremes that could be appliedparameters affects the grid cell extremes (which is of major
to massive data sets is still lacking. The modeling of extremesnterest for the study), but it does not allow us to model the
is becoming increasingly standard as extreme value theorjoint behavior of extremes. This is a topic of continuing re-
(EVT) develops (e.g.Coles 200% de Haan and Ferreira search.
2006, but only a few authors have so far analyzed spatial In order to ensure that the covariate effects are compara-
extremes (e.g.Buishand et a).2008 Padoan et al.2010 ble across the different models and space, the same covariate
information in form of a multiple linear regression term is
Lin this paper about a statistical analysis of past ozone data, thélsed for both means and extremes and for each grid cell. For
only “models” considered are statistical ones, even if this is not al-€ach of the three targets of interest (EHOs, ELOs, and mean
ways explicitly stated. values), we then estimate the coefficients of the covariates
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Table 1. Overview of data sets used in this study. Data sets indicated with * are not available for the entire study period.

Data Time range Source
(resolution)
Total Ozone 1979-2007 Bodeker Scientific, NIWA 2.7 data set
(daily) http://www.bodekerscientific.com/data/total-column-ozone
Solar Cycle 1979-2007 NOAA National Geophysical Data Center
(monthly) ftp://ftp.ngdc.noaa.gov/STP/SOLARATA/SOLAR_RADIO/FLUX/
PentictonAdjusted/monthly/MONTHPLT.ADJ
QBO at 30 and 50 hPa 1979-2007 NOAA National Weather Service Climate Prediction Center
(monthly) http://www.cpc.noaa.gov/data/indices/
Nino 3.4 Index 1979-2007 NCAR/UCAR Climate and Global Dynamics
(monthly) http://www.cgd.ucar.edu/cas/catalog/climind/TN84/index.html
NAO Index 1979-2007 NCAR/UCAR Climate and Global Dynamics
(monthly) http://climatedataguide.ucar.edu/guidance/
hurrell-north-atlantic-oscillation-nao-index-pc-based
AAQ Index 1979-2007 NOAA National Weather Service Climate Prediction Center
(monthly) http://www.cpc.noaa.gov/products/precip/CWIink/dadlg index/aao/
monthly.aao.index.b79.current.ascii
Sato Index 1979-2000 NASA Goddard Institute for Space Studies
(monthly)* http://data.giss.nasa.gov/modelforce/strataer/
ODS (interms of EESC)  1979-2007  NASA Goddard Institute for Space Studies
(monthly) http://acdb-ext.gsfc.nasa.gov/Datervices/automailer/

for each grid cell and produce maps of these estimates fothe NIWA assimilated total ozone data set Beeleker et al.

interpretation and comparison.

2 Data

2.1 Spatial ozone data

(2005, Mller et al.(2008, andStruthers et ali2009.

2.2 Covariates describing the state of the atmosphere,
atmospheric dynamics and chemistry

Various indices describing the dynamical and chemical state

of the atmosphere are used as covariates in this study, namely
In this Study, version 2.7 of the NIWA (National Institute of the 11_yr solar Cyc'e, the Quasi_Biennia| Oscillation (QBO),
Water and Atmospheric Research, New Zealand) total 0zongne E| Nifio/Southern Oscillation (ENSO), the North Atlantic
data set is analyzed for the time period 1979-2007 for thepscillation (NAO), the Antarctic Oscillation (AAO), ozone
northern (30-60N) and southern (30-6%) mid-latitudes.  depleting substances (ODS) in terms of equivalent effective
NIWA 2.7 contains daily data at a spatial resolution of .25 stratospheric chlorine (EESC) as calculatedNeyvman et al.
longitude by 1.0 latitude, adding up to 8640 grid cells for (2007, and finally the stratospheric aerosol load after the ma-
the mid-latitudes of each hemisphere. The data set is basqgr volcanic eruptions of EI Chidn and Mt. Pinatubo, as
on assimilated and homogenized data from the Total Ozon@iven bySato et al(1993. Tablel contains an overview of

Mapping Spectrometer (TOMS), the Global Ozone Moni- the data sets used and Figshows the temporal evolution of
toring Experiment (GOME), Solar Backscatter Ultra-Violet the indices.

(SBUV) retrievals and Ozone Monitoring Instrument (OMI)

retrievals. Drifts between measurements of different satellite

instruments have been corrected through inter-satellite in3  Methods

strument comparison and comparison with data from Dobson

and Brewer ground-based instruments, which contribute tdn this section we describe the two different models we are
the Global Atmosphere Watch Program (GAW) of the World using: (i) a model based on extreme value theory (EVT) to
Meteorological Organization (WMO). For further details on analyze extremely high (termed EHOs) and extremely low

www.atmos-chem-phys.net/13/147/2013/ Atmos. Chem. Phys., 13, 1464-2013
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Fig. 1. Temporal evolution of the covariates used in this study:
(a) solar cycle as light flux at 10.7 cnfb) Quasi-Biennial Oscil-
lation (QBO) Index at 30 hP4g) as (b) but at 50 hPa(d) Nino
3.4 Index describing the state of the EIfgiSouthern Oscilla-

tion (ENSO),(e) North Atlantic Oscillation (NAQO) Index (princi-
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els (i) and (i), while the remaining structure of each model
accounts for the nature of the underlying data (EHOS/ELOs
or mean values).

3.1 Model for total ozone extremes

We first give a short overview on extreme value theory and
some associated concepts. An accessible reference on this
topic isColes(2001).

3.1.1 Extreme value theory

A fundamental result of extreme value statistics implies that
the behavior of the sample maximum of a large number of
identically distributed random variables should, under mild
conditions, be well-approximated by the Generalized Ex-
treme Value (GEV) distribution. The GEV has three pa-
rameters, the location parameiee R, the scale parameter
o > 0, and the shape parametge R. Using the notation
x4 = max(x, 0), its probability distribution function is

F(y) = exp(— (1+s y;—“) ) ,

which is defined on the sty e R: 1+ & (y — w)/o > 0}.
The cas& = 0 is interpreted as the limit whenapproaches
zero.

Before presenting statistical models involving the GEV
distribution, observe that any model for very high extreme
events (maxima) can also be used for very low events (min-
ima) due to the equality

-1/
@)

+

min (¥;) =— max (=Y;).
i=1,..,n i=1,...n
Therefore it suffices to describe only models for maxima
hereafter.

There are several methods for modeling extremes of uni-
variate stationary time series. In the block maxima model,

pal components of the leading empirically-determined orthogonalthe data are grouped into blocks of length a given time per_iod
function of sea level pressure anomalies over the Atlantic secto(€.g., @ year or a month) and the sequence of block maxima

(20-8C' N, 9¢° W—4(C E), fromHurrell, 2009, (f) Antarctic Oscil-
lation (AAO) Index,(g) volcanic aerosol loading in terms of mean
optical thickness, Sato Indeséto et al. 1993 for the Northern
Hemisphere (major volcanic eruptions of El Chich(1982) and
Mt. Pinatubo (1991) are markedjh) as (g) but for the South-
ern Hemisphere, an() atmospheric loading of ODS in terms of

equivalent effective stratospheric chlorine (EESC). All covariates

are given on a monthly basis. For information on the sources of th
data sets for the individual covariates see Tdble

(termed ELOs) events in total ozone (see Sé&ct); and
(ii) an autoregressive moving average model (ARMA) for
the analysis of mean values (see S8c®). In order to as-
sess the effect of the covariates described in Se2bn the
different regions of the distribution function of total ozone,

is modeled as an independent sample from the GEV distri-
bution. The drawback of this method is that only one obser-
vation per block is retained, so some relevant extreme ob-
servations may be jettisoned. A remedy to this waste of data
is to fit a model to all observations exceeding a high thresh-
old (Davison and Smith1990; one possible model being
the Generalized Pareto Distribution, which was fitted to to-

Ral ozone data iRieder et al(2010a 2017). A major diffi-

culty with these threshold-based approaches is the selection
of the threshold, which amounts to a trade-off between bias
and variance and hence is crucial for the quality of the model.
Unfortunately, there are no reliable automatic selection meth-
ods, so that peaks over threshold models are unsuitable when
numerous thresholds have to be found.

For non-stationary data, threshold selection is even more

the same covariate-dependent expression is used in the modxasperating, as there is no theoretical guidance on which

Atmos. Chem. Phys., 13, 14764, 2013
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part(s) of the model for exceedances should incorporate nonthe GEV distribution vary over time. The time-dependent ex-
stationarity.Northrop and Jonathaf2011) suggest a rather pression is usually based on simple mathematical functions
complex approach that involves models for non-stationarityor covariates related to the analyzed phenomenon, and if pos-
in both extremes and the threshold, whetfeastoe and Tawn sible summarized as the product of a design matrand a
(2009 propose to preprocess the full data before modelingparameter vectgs.
the extremes. All the models described above rely on the implicit as-
In light of these difficulties, we use an alternative approachsumption that the underlying observations are independent,
that sidesteps threshold selection by using a fixed numbewhich considerably simplifies theoretical development and
r of observations per block. This is known as théargest  estimation procedures. For temporally correlated data, how-
order statistics modelQoles 2001, Sect. 3.5) and can be ever, extreme events tend to occur in clusters. The observa-
seen as a compromise between the block maxima and peak®ns retained in the extreme value model are thus dependent
over threshold methods. The data are split into blocks andn reality, unlike in the associated likelihood function. This
ther > 1 largest observations of each block are used in thdas a weakness of thelargest order statistics model, because
model. This amounts to using the exceedances of a thresholthe occurrence times of the extremes are not taken into ac-
that varies across blocks, while the blocks are assumed toount, implying that clusters of extremes are unrecognized
be independent. The analogue to threshold selection in thigither in the middle of a block or at the transition between
model is the choice of, which therefore also is a trade- two blocks. It can be shown that ignoring these clusters, and
off between bias and variance. But oncéas been fixed, applying standard likelihood theory based on E)ahyway,
the threshold values are determined automatically, so the ageads to estimators that are unbiased with standard errors that
proach is well-adapted to use with many parallel time seriesare somewhat too small. While declustering procedures ex-
We fit the r-largest order statistics model by maximum ist, estimators based on declustered data tend to be biased
likelihood estimation (brief explanations of useful statistical (Fawcett and Walshaw2012, so we have preferred to use
concepts are given in Appendix; see SectAl for maxi- the original, non-declustered data, and to bear in mind that
mum likelihood estimation). This can be done more or lessthe quoted standard errors are probably 10-20 % too small.
automatically and with acceptable computational effort evenDetailed treatment of clusters would be essential when mod-
for many grid cells, as there exists a closed-form likelihood. elling the dynamic behaviour of ELOs or EHOs.
Let y(l) - > yﬁ’) be ther largest observations in block,
or equalently time period; € {1,2,..., T}, define the pa- 3.1.2 Implementation for the ozone data
rametersu, o, and¢ as in the GEV distribution (EdL), and
again letr, = max(x, 0). Then the likelihood.; for block ¢ In this section, we give details on how thdargest order
based on the-largest order statistics model i§¢les 2001, statistics model is fitted to every grid cell of the NIWA data
p. 69) set in a region of interest. As mentioned above, we have cho-
_1/8 sen to use the-largest order statistics model instead of the
(r _ .
Vi ) 2) peaks over threshold model mainly because the latter would
have required a huge number of manual threshold selections
due to the number of grid cells and non-stationarity in time.
() —He-1 Our reasoning for the selection of the number of ex-
X 1_[ (l +& —) .

LZ(M705$) = exp - (14‘5
+

tremal observations used in each block of tHargest order
+ statistics model, is as follows: considering that a month has
This expression is related to the GEV distribution ().  about 30 days; should not exceed 3 for the observations to
whose probability density function is obtained on setting be “extreme”, because= 3 corresponds roughly to a thresh-
r =1, corresponding to using only the largest observationold at the 90th percentile. In view of the general uncertainty
,(l) of the ¢-th block for inference. The parameters o, that might govern the estimation due to the high number of
and ¢ have the same interpretation as in E#). (The as-  covariates, we chose= 3 to increase the precision of the
sumed independence of the blocks in théargest order estimates. Since usingtoo large may increase the bias, we
statistics model implies that the likelihood for the whole data also fitted the same model with= 1 andr = 2. The param-
is the product of the block contributions, (u, o, &) given eter estimates in these cases showed the same spatial patterns
in Eg. ). For a large sample size, i.e., a large number ofas forr = 3, but as anticipated, the standard errors of the esti-
blocksT, the asymptotic Gaussian distribution of the maxi- mates were larger than with= 3, and hence the-statistics
mum likelihood estimator is a good approximation and hencewere less significant.
the significance of the parameter estimates can be assessedror each grid cell, non-stationarity in time is handled
by z-tests (see Sech2). in two ways: firstly by including time-dependent covari-
The models described so far apply for stationary data, bueites in the location parameter (see the next two para-
environmental time series generally show trend and seasorgraphs for details) and secondly by choosing the blocks to
ality. One way to deal with this is to let the parameters of be months, which yields an individual threshold for each

www.atmos-chem-phys.net/13/147/2013/ Atmos. Chem. Phys., 13, 1464-2013



152 L. Frossard et al.: Total ozone and atmospheric dynamics and chemistry at mid-latitudes — Part 1

year-month-combination and also allows for non-stationaritygression parametergy, ..., 14 expresses the effect of its
effects other than seasonality. respective covariate over the whole year. Since the influ-
The r-largest order statistics model implemented has lo-ence of the covariates is likely to vary across the seasons,
cation parameter.(x,?), scale parameter(x), and shape we fitted a secondeasonal modéh which some covariates
parametert (x). All parameters depend on grid cell be- are split into four pieces, one for each season defined by
cause an individual model is fitted to every grid cell, and December-January-February, March-April-May, June-July-
the additional time-dependence in the location parameter acAugust, and September-October-November. For instance the
counts for temporal non-stationarity. As mentioned before,term 87(x)EESGr) in Eq. @) can be replaced by
non-stationarity is expressed by a multiple linear regression
term, i.e., B7, spring(*) EESGepring(t) + B7, summefx) EESGummef?)

(1) =Z(0B ), 3) =+ B7,fail (x) EESGal () + B7, winter(x) EESGyinter(?),

whereZ(¢) is a design matrix of purely time-dependent co- where EESG equals the EESC values for the months of sea-
variates, the same for every grid celleach of which hasits SON ¢ and equals zero for the other months. In this study
own coefficient vectog (x) due to pointwise modeling. The EESC, SOLAR, QB@ and QBQo, ENSO, and AAG/NAC
design matrixZ (¢) is composed of seasonality terms and co- Were split into seasonal components. The annual model
variates describing chemical and dynamical processes in thé&n be nested into the seasonal one by seffingring=
atmosphere (see Edl)(below and Figl). All covariates are ~ B-.summer= B.fall = B.winter, SO likelihood ratio tests allow
taken at a monthly resolution, so the same covariate value i@ne to assess whether these covariates have varying impacts
used for the- observations of each block, i.e., of each year- OVer the year (see Sedt]).

month-combination.

The use of the same design matrix for all grid cells, even
though in principle several covariates vary across space, h
the advantage that maps of the parameter estinjAtés) :

x € X} for each covariatéare interpretable and comparable.

3.2 ARMA model for total ozone mean values

S . L
aIn analogy to our model for extremes, we fit a univariate
model to the monthly mean values of total ozone at each grid

Consequently, an optimal set of covariates must be selecte eltle,ner\;irl::]hr%%grg ;?;é'lalim%izlsgg (jl?;%i (t;haelijrs:r?;:;ejse:?gf
for the whole region of interest in each hemisphere. Since y 9 9

fitting the model to the complete grid requires much com- exflfﬁ;nerﬁuémdlgel?::a\/rvorgdrgses?;ﬁremeoé(ljsgly Zvas"tggldeér 4 tool
putation time, it is infeasible to fit many different models for or anal zinp the contribgtions of individ’ual covariates to
each grid cell. Instead we identified the most promising set 01‘f yzing

covariates on a subset of 72 grid cells, using standard modeﬁzgg?Ezt'rr;]gsvar:;ar?;i;l;ls(t;;rﬁita(?{g}, St?éalvsécfﬂ((i'egr\glﬁﬁgd
selection techniques. The form of E§) €inally used is P : P

a multiple linear regression model in its simplest form, i.e.,

3 2t with independent errors, to the ozone mean values at both
Z(HB(x) = Po(x) + Z (,321'_1()6)003(7> (4 northern and southern mid-latitudes. However, the residuals
i=1 l of this model were significantly correlated, showing that the
+ Boi (x)sin<@>> + B7(x) EESGt) assumption of independent errors does not hold for our data.
i Autocorrelation in model residuals of total ozone has been
+ Bg(x) SOLAR(?) + Bg(x) QBOgq(1) reported in previous studie¥yushin et al.(2007), for ex-
ample, use a model with autocorrelated noise for total ozone,
+ 10(x) QBOso(1) + fra(x) ENSQ1) andvon Clarmann et ali2010 also suggest accounting for
+ Bra(x) { AAO (1) } + B13(x) CHICHON(1) correlations when analyzing atmospheric data.
NAO() In this study, we address temporal correlation using a clas-
+ B14(x) PINATUBO(?), sic model for stationary time series, the autoregressive mov-

where they; allow for 1-yr, 6-month, and 4-month season- ing average (ARMA) process (e.darockwell an_d Davi_s_
alities, i.e., (01, 92, ¢3) = (12, 6, 4). The other covariates 2003. The s_trengths of th.e ARMA model are its erX|b|I_—
in Eq. @) are listed in Sect2.2 The AAO and NAO are ity and parsimony, as a W|de_range of temporal correlation
only used for the Southern and the Northern Hemisphere, rePaterms can be expressed with only few parameters. A sta-
spectively; and the covariates for the volcanic eruptions offionary sequence of rgndom Va”at,’{%’}fe?r Is an ARMA
El Chichon and Mt. Pinatubo are extracted from the Sato-P'Ocess of ordegp. ) if it can be written as
Index for the corresponding hemisphere (see EjgA de- » q
tailed description of these covariates and their interactiony, — Zd’i Wi +e _i_Z@jgtfj’
with the ozone levels is given in Sedt. i1 =1

The model with location parametgrgiven in Eq. @) will
be referred to as thannual modebecause each of the re- where{e;}; <t is white noise.
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To express non-stationarity and assess the effect of the cawith light spatial correlation. Unfortunately, and as would be
variates on the mean values of total ozone at gridxcellY, anticipated, the NIWA data show very strong correlations,
we retain the linear terrd (r) (x) from Eq. ). More pre-  and this undermines the case for using the basic FDR ap-
cisely, the design matriX (¢) is identical with Eq. 4), and  proach. Another method often used in climate science, the
the coefficient vectoB (x) has the same structure as in the field significance method_{vezey and Chen1983, seems
extremes model but takes unrelated valueE (i, r) denotes  inappropriate in the setting of extremes. The topic of multi-
the mean value at cell € X' for year-month-combination ple testing is undergoing rapid development and a definitive

the stationarized process treatment in the present context cannot yet be provided, so
in order to assess the strength of the conclusions below, we
nx, 1) =Y(x, 1) —Z@)B(x), (5)  applied four approaches to thestatistics for the covariate

] ] effects on extremes: (i) making no correction for multiple
is an ARMA(p, q) process with orderg andq to be deter-  tegting: (ii) false discovery rate (FDRY); (iii) a conservative
mined (see next paragraph). _ version of FDR that allows for general correlation in the

Since the fitting of an ARMA model is much faster than gajistics: and (iv) the ultra-conservative Bonferroni correc-
for the r-largest order statistics model, we fitted severaljgp, (see SectA5 for a short explanation). We also used
ARMA models with different ordersp, q) and compared  y4rious scenarios with inflated standard errors to account for
their AIC (Akaike Information Criterion, see Sechd).  (jystering in the extremes. We comment briefly on the re-
There is no uniformly best model over all grid cells butin all gjs of this sensitivity analysis when discussing the specific
cases (north, south, annual, seasonal) the ARMA(L,1) modekfrects below, and in the companion paper to this article.
performs adequately in a majority of grid cells, so thah

Eqg. () becomes 4.1 Evaluation of the statistical models

nx,n)=¢x)nx,t =1 +ex,1)+60x)elx, 1 —1), This section briefly discusses two aspects of the evaluation of
_ ) ) _ ~ the statistical models described in Se&&;tnamely the com-
wheree(x, ) is taken to be Gaussian white noise, which is parison between the annual and seasonal models followed by

more appropriate for mean values than for extremes. diagnostics for the models of extremes and mean values.
Exactly as in the extremes model (see S8ct) we fit-

ted two ARMA models with different regression terms, an 4.1.1 Comparison between annual and seasonal model
annualmodel, where only one coefficient is used for each
covariate, and aeasonamodel, where some of the covari- Since the annual model is nested within the seasonal one
ates are split into four seasons (see the last paragraph d¢gee the end of Sec8.1.2, these two models can be com-
Sect.3.1.2. pared with a likelihood ratio test (see Se&8 for an expla-

nation). In the present context, the null hypothddjsis that

the simpler annual model fits the data well, i.e., the seasonal
4 Results model brings no improvement. Performed for every grid cell

. , and every model separately, these tests show that the use of

Inference about the effect of a single covariate based ofhe more complicated seasonal model is justified for both the
pointwise modeling of the grid cells may be performed by g\ and the ARMA model, sincélg is rejected for a major-
testing, for_each ce!l, the hypothes_is that the_covariate has nﬂy of grid cells (see Tablé for a complete summary). For the
effect, but interpreting the results is not straightforward, be'r-largest order statistics model the proportions of grid cells
cause of the large number of tests that must be perl‘ormeqﬂ,hereH0 is rejected at the 5 %-level lie far above 80 % for
based on highly correlated data. If the same false positivg,yih, hemispheres and types of extremes, whereas they are
ratea were used for every cell, and if all the_null hypotheses lower but still above 50 % for the ARMA model fitted to the
were true, then we would expect a proporterof them 0 eang This reduction in the proportion of rejections is prob-
be falsely rejected. Thus with 8640 cells and vatk=0.05, 411y due to the better incorporation of correlation between
we would expect to incorrectly find a significant effect of the 1o" gpservations in the ARMA model compared to the

covariate at 432 cells, and these cells will tend to be groupeqygest order statistics model, where the blocks are assumed
owing to spatial dependenceentura et al(2004 discuss 1 pe jndependent. Hence the proportions obtained for the
approaches to multiple testing that control the false discoveyT models are likely to be too high.

ery rate (FDR), i.e., the expected proportion of falsely re-

jected null hypotheses among the total number of rejected}.1.2 Model validation

null hypotheses. Using the FDR is attractive because in prac-

tice the number of rejected null hypotheses is known butChecking the goodness of fit of a statistical model usually in-
the number of true null hypotheses is not. The basic FDRvolves plots of the residuals or the fitted values. In the present
approach assumes independence of gh&alues, butven- context, both depend not only on space but also on time,
tura et al.(2009 suggest that it can also be used for datamaking model validation on the complete grid intractable.
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Table 2. Summary of the likelihood ratio tests between the an- (a) (b) (©)
nual (null hypothesiHp) and seasonal models for EHOs, ELOs, 1
and mean values (MV) at northern (NM) and southern (SM) mid-
latitudes. The column CN indicates the number of grid cells out of
8640 for whichHy is rejected at the 5%-level and the colurRn
gives the proportion of these grid cells (i.&8.= CN/8640).
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Fig. 2. Diagnostic plots of the extremes model with seasonal co-
variates for EHOs at two sample grid cefig—c) 45.5 N, 93° W
and(d)—f) 45.5° S, 138 E. Panelga) and(d) show “standardized”
Therefore we provide diagnostic plots for two representativeresidualyy(r) — 11(t)) /o with 95 %-confidence bounds; panéis
grid cells (one in each hemisphere), using the seasonal modind (e) their correlograms and pang(s) and (f) the GEV(0,15)

els for EHOs in Fig2 and those for mean values in Fig.  Q-Q plots with the identity line in red.

Overall the fit seems reasonable, despite a small bias in the
residuals for the EVT model (Fi@c, f); this, however, only
affects the intercept of our model, and not the regressiony
coefficients of the covariates. A comparison with the same$ ~{l-¢
model forr = 1 showed that estimates of the covariate coef- 5 ~
ficients from the two models are consistent, and diagnostic
plots of the model withr = 1 show a good fit and no bias, in-
dicating no fundamental trouble with the model whesn 1.

Simulations suggest that this bias stems from temporal cor- @ vear © Lag ( Theoretical Quantiles
relation in the underlying time series. In the residuals of both ¢ ., r
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Big. 3. Diagnostic plots of the ARMA(L,1) model with seasonal

covariates for monthly mean values of column ozone at two sample

grid cells(a)(c)45.5° N, 93 W and(d)—(f) 45.5° S, 138 E. Panels

4.2 Spatial patterns (a) and (d) show the standardized residuals with 95 %-confidence
bounds; panel¢b) and (d) their correlograms and pane(e) and

Our modeling approach allows separate analyses of the inff) the normal Q-Q plots with the identity line in red.

fluence of the individual covariates (see Figand Sect2.1)

on EHOs, ELOs, and mean values. For analytical and illus-

trative reasons it is convenient to plot maps of the regressiortovariate at a grid cell. We consider a covariate to be signif-

coefficient estimates for the covariates, their standard errordcant whenever the correspondipgvalue is less than 1%,

and thep-values of the likelihood-basegtest for signifi-  bearing in mind that the calculatedvalues are probably too

cance on a grid cell basis; although our analysis provides adsmall, owing to the temporal correlation in the extremes.

ditional information about the distribution of ozone extremes Below we focus on spatial patterns in the three “stan-

at each grid cell, such information is beyond the scope of thedard” covariates included in analyses of long-term ozone

present study. For lack of space, we only show the maps fochanges (e.g., in the WMO/UNEP Ozone Assessment Re-

estimates ang-values in this paper, but provide augmented ports: WMO, 2003, 2007, 2011), i.e., the solar cycle, QBO,

versions of the figures including standard errors in a suppleand EESC, and on additional frequently used dynamical co-

ment. Thep-values are useful to assess the significance of avariates, namely the NAO and AAO indices. A companion
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Fig. 4. Pointwise regression coefficient estimates (in D@ZW*lmsz) for the solar cycle on an annual basis fay EHOs,(b) ELOs,

and(c) mean values of total ozone at38 to 60° N; (d)—(f) show thep-values of pointwise significance tests for the estimatga)}(c).

(g)H(m) as(a)f) butat 30 S to 60 S. An augmented version of this figure including standard errors for all coefficient estimates is provided
in Fig. S1.

paper Rieder et al.2013 from here on referred to as Part 2) here), as during spring and winter significant influence of the
gives a detailed discussion on the spatial fingerprints of thesolar cycle is restricted towards lower latitudes, in agreement
volcanic eruptions of El Chidm and Mt. Pinatubo and of the with the strong influence of the solar cycle on ozone produc-
fingerprints of the El Nio/Southern Oscillation, on which tion in the tropical region. Sensitivity analysis shows that the
scientific interest has recently focused. Part 2 also reports oeffect persists when any of the corrections for multiple test-
the contribution of the individual covariates to long-term to- ing are applied, though the region of significance becomes
tal ozone changes for selected regions of interest at northersmaller.

and southern mid-latitudes.

4.2.2 Quasi-Biennial Oscillation (QBO)
4.2.1 Solarcycle

The QBO dominates the variability of the equatorial strato-

Solar variability described by the 11-yr solar cycle, describ-sphere. Seen as a composite of equatorial zonal winds, it
ing changes in solar irradiance through changes in sunspathows faster and more regular downward propagation dur-
number (see Fidla), influences stratospheric ozone, becausang the westerly phase, and stronger intensity and longer
UV-radiation varies with an amplitude of 6—8 % between so- duration during the easterly phase. The mean period of the
lar maxima and minima (e.gGhandra and McPeters994. QBO is about 28 months. Maxima in the variability are larger
Previous studies found that at mid-latitudes about 2 % of to-during the westerly than the easterly phase and are found
tal ozone variability can be explained through changes in theclose to the descending easterly and westerly shear zones
solar cycle. However, long-term trends in column ozone over(e.g., Baldwin et al, 2001). Although the QBO is a tropi-
the last decades cannot be explained by solar variability (e.ggal phenomenon, it affects stratospheric flow from pole to
Harris et al, 2008 Chandra and McPeters994). pole due to modulation of the effects of extra-tropical waves.

The p-values show that the solar cycle seems to be signifi-Connection between the QBO and the extra-tropical atmo-
cant on an annual basis for much of the northern and southersphere (e.g., mid-latitudes) must be seen in the context of
mid-latitudes (see Figd), in general agreement with earlier the seasonal cycle and variability of the extra-tropical strato-
studies (e.g.Steinbrecht et a/2006. However, two things  sphere. During winter, the high-latitude stratosphere cools
are important to note: the area showing highly significant in-and a deep westerly polar vortex is formed. During spring
fluence of the solar cycle is much larger for extremes thanand summer, the vortex diminishes and the westerlies are re-
for mean values; and on a seasonal basis, high variability iplaced by easterlies due to increased solar heating. As the
found in the spatial extent of the significance area (not showrNorthern Hemisphere has much greater land-mass than the
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Fig. 5. Pointwise regression coefficient estimates (in Dtls) for the Quasi-Biennial Oscillation at 30 hPa on an annual bas{af&HOs,

(b) ELOs, andc) mean values of total ozone at°3d to 60° N; (d)—f) show thep-values of pointwise significance tests for the estimates in
(a)Hc). (g)Hm) as(a)f) but at 30 S to 60 S. An augmented version of this figure including standard errors for all coefficient estimates is
provided in Fig. S2.

Southern Hemisphere, tropospheric waves have larger anthe wave driving of the Brewer-Dobson circulation. This sec-
plitudes in the Northern Hemisphere. Therefore, the north-ond significance region towards northern polar regions, iden-
ern hemispheric winter stratosphere is much more disturbedified in our analysis, is in good agreement with earlier work
than its southern counterpart. Consequently the northern padiscussing the influence of the QBO on column ozone at
lar vortex can already be disrupted by large-scale planetaryigh latitudes (e.g.Qltmans and Londgrl982 Garcia and
waves in mid-winter, when the exchange of westerlies withSolomon 1987 Lait et al, 1989 Randel and Cohhl994
easterlies in high latitudes causes strong sudden stratosphefBaldwin et al, 200]). The effects of QB@, are more impor-
warming events (e.gWaugh and Randell999. Further, tantthan those of QB&, with the latter becoming much less
various studies have also described an influence of the QB@triking under sensitivity analysis.
on other constituents of the atmosphere, such as methane and
water vapor (e.gBaldwin et al, 2007).

In this study, the QBO at two different pressure levels 4.2.3 Ozone depleting substances (ODS)
(30 and 50 hPa, with no lag) (see Fith, c) was used as

a covariate in the spatial models. Tlpevalues in Figs5 . . .
and 6 show that the QBO at both pressure levels seems tdAnthropogemc emissions of ODS (ozo_ne depleting sub-
stances such as chlorofluorocarbons) increased from the

be significant over large areas of the northern and south: .
ern mid-latitudes. Coefficient estimates for both QGg@nd early 1950s until the late 1980s, when the Montreal Pro-

QBOxsg are highly significant towards the equatorial regions tocol was s_|gned. The scale_of EESC (equivalent effecnv_e
of the northern and southern mid-latitudes. At northern mid_stratospherlc chlorine) describes the effect of stratospheric

latitudes the coefficient estimates for Qg&3how a smooth ozone depletion caused by anthropogenic emissions of O.DS
staggered gradient towards high latitudes, while the coeffi" @n integral way (note that we use the EESC scale for mid-
cient estimates for QB show a band-like structure where latitudes here). EESC peaked in the second half of the 1990s

regions towards low and high latitudes with significant ef- (see Fig.1i) because the t_ransport of EESC from the re- .
fects are split by a band with insignificant effects. While lease of ODS near surface into the stratosphere causes a shift

coefficient estimates are positive for lower latitudes, theybetween maximal emissions of ODS and EESC. Chemical

turn negative after the transition zone towards polar latitudes2ON€ depletion is particularly Iarge'durmg the_W|_n ter and
pring seasons when ozone destruction occurs inside the po-

This structure is possibly related to a connection between th . d by het hemical i tak
QBO and the Brewer-Dobson circulation,taklander etal, ' VOrteX, caused by NEIETOgENEoUs chemical reactions tak-

2006 showed that the mean zonal wind pattern can alteljng place on polar stratospheric clouds_(elge,ter 1.997’
(2009 W z wind p Solomon 1999. Apart from the atmospheric burden in ODS,
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Fig. 6. Pointwise regression coefficient estimates (in Dtlrs) for the Quasi-Biennial Oscillation at 50 hPa on an annual bas{af&HOs,

(b) ELOs, and(c) mean values of total ozone at38 to 60° N; (d)—f) show thep-values of pointwise significance tests for the estimates
in (a)—c). (g9Hm) as(a)«f) but at 30 S to 60 S. An augmented version of this figure including standard errors for all coefficient estimates
is provided in Fig. S3.

stratospheric temperature is the main driver of ozone losand Doblas-Reye2003. Here we use a NAO index follow-
within the polar vortex (e.gRex et al, 2004). ing Hurrell (2009 (see Fig.1e); it is built by the principal

At northern mid-latitudes the relation between EESC andcomponents of the leading empirically-determined orthogo-
column ozone is negative and significant in almost all ar-nal function of seasonal sea level pressure anomalies over the
eas (see Fig7), except in a region north to 30 and  Atlantic sector (defined as: 20-8N, 90° W—40 E).
around 120W where EESC is barely significant, probably = The coefficient estimates for the NAO, in winter and spring
because dynamic variability disturbs the relation between(see Fig8), are found to be significant for much of the north-
column ozone and EESC. In our sensitivity analysis, EESCern mid-latitudes, and this significance varies but persists
remains the strongest covariate under any multiple testingvith any of the multiple testing corrections. Largest positive
corrections. Coefficient estimates in Fitfor both extremes  coefficients are found over Labrador/Greenland, the North
and mean values show a gradient increasing towards higltlantic sector, and over the Norwegian Sea, while largest
latitudes. At southern mid-latitudes, the influence of ODS negative coefficient estimates are found over Europe, Russia,
shows as a “stable staggered” gradient in coefficient estiand the Eastern United States. While regions with positive
mates which may result from the less disturbed atmosphericoefficient estimates will show increased column ozone dur-

flow due to reduced land-mass. ing positive phases of the NAO and decreased column ozone
during its negative phases, the converse is true for regions
4.2.4 North Atlantic Oscillation (NAO) with negative coefficient estimates (see also the contributions

of the NAO to long-term ozone changes at different regions
resented in Part 2). This relation between column ozone and
e mode of the NAO can be explained by pressure gradients,
Svhich are increased during positive phases of the NAO due to
a deeper than usual Icelandic low and a stronger than usual
sub-tropical high pressure system. This increased pressure
gradient results in more and stronger winter storms crossing
the Atlantic and a shift of storm tracks towards the north.
During the negative phase of the NAO the converse occurs,
i.e., aweaker sub-tropical high and Icelandic low lead to a re-
duced pressure gradient, and therefore to fewer and weaker
winter storms on a more west-east pathway. Compared to

Inter-annual and decadal changes in Northern Hemispher
tropospheric meteorology and stratospheric dynamics ar
strongly related to the variability in the North Atlantic (NAO)
and the Arctic Oscillation (AO). Several studies have shown
that the NAO affects changes in the direction and intensity
of the dominant westerly tropospheric jet stream (eg-,
solini and Limpasuvan2001) and thereby influences Euro-
pean winter/spring climate and the strength of the Arctic po-
lar vortex affecting the stratospheric ozone layer (6A@-
penzeller et aJ200Q Thompson and Walla¢c200Q Orsolini
and Limpasuvan2001; Hadjinicolaou et a].2002 Orsolini
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Fig. 7. Pointwise regression coefficient estimates (in DUPptfor ozone depleting substances in terms of equivalent effective stratospheric
chlorine (EESC) on an annual basis {aj EHOs,(b) ELOs, andc) mean values of total ozone at3d to 6C° N; (d)—(f) show thep-values

of pointwise significance tests for the estimategap-(c). (g)+(m) as(a)}{f) but at 30 S to 60 S. An augmented version of this figure
including standard errors for all coefficient estimates is provided in Fig. S4.
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Fig. 8. Pointwise regression coefficient estimates (in @bit NAO)~1) for the North Atlantic Oscillation (NAO) fota) EHOs,(b) ELOs,

and (c) mean values of total ozone during winter (DJF) at BOto 6C° N; (d)—(f) show thep-values of pointwise significance tests for
the estimates ifa)-(c). (g)+(m) as(a)(f) but during spring (MAM). An augmented version of this figure including standard errors for all
coefficient estimates is provided in Fig. S5.
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Fig. 9. Pointwise regression coefficient estimates (in @bit AAO) 1) for the Antarctic Oscillation (AAO) fofa) EHOs, (b) ELOs, and

(c) mean values of total ozone during winter (JJA) af 30to 60 S; (d)f) show thep-values of pointwise significance tests for the
estimates ina)}c). (g{(m) as (a)«(f) but during spring (SON). An augmented version of this figure including standard errors for all
coefficient estimates is provided in Fig. S6.

other covariates discussed, the NAO “fingerprint” is of simi- sis for the AAO are similar to those for the NAO, confirming

lar spatial extent for both extremes and mean values, but théhe presence of the effects with any of the multiple testing
magnitude of influence on total ozone is larger for EHOs andcorrections. Interestingly the central southern mid-latitudes
ELOs than for mean values, confirming the importance of at-show especially highly significant (negative) coefficient esti-
mospheric dynamics for total ozone variability and changesmates for the AAO. This may be related to enhanced wave

(see Part 2 anRieder et al.2010ab, 2011). activity in the tropics (see als®chnadt Poberaj et aR017),
leading to enhanced ozone transport from the tropics to the
4.2.5 Antarctic Oscillation (AAO) extra-tropics (compare also with results for ENSO shown in

Part 2) and a strengthening of the southern ozone “collar”.
The AAO was found to have also significant influence on the
ynamical masking of the Mt. Pinatubo eruption at southern
id-latitudes, which is discussed in detail in Part 2.

The semi-annual oscillation (SAO) at mid and high lati-
tudes in the Southern Hemisphere is related to the depth o
the troposphere and to the weakening and expansion of the
circumpolar vortex of low pressure surrounding Antarctica
from March—June and September—December (eag.l.oon 5 Discussion and conclusions

1967 1972.

During the high phase of the Antarctic Oscillation (AAO), In this study statistical models, including important covari-
the Lagrangian mean circulation, responsible for the transates describing the state of the atmosphere (solar cycle, QBO,
port of ozone from the tropics to the polar region, is strongly ENSO, NAO, AAO, EESC, and volcanic eruptions), have
reduced. Wave refraction triggers this process: during thebeen used to analyze changes in extreme values (EHOs and
high phase, the polar vortex refracts more wave activity inELOs using ther-largest order statistics model) and mean
the tropics and breaking of these waves strengthens the voralues (using an ARMA model) of total ozone at northern
tex due to the inside transport of momentum (elhgompson  and southern mid-latitudes. The results show that “finger-
and Wallace2000. During the low phase of the AAO the op- prints” of dynamical and chemical features are captured in
posite occurs: a weaker vortex decelerates more when wavdsoth the “bulk” and the tails of the distribution of total ozone
are defracting in. time series. However, “fingerprints” of atmospheric dynam-

As for the NAO in the Northern Hemisphere, the con- ics (NAO, AAQ) are better represented in the extremes and
tribution of the AAO to extremes and mean values seemsan be partly overlooked in analysis of the mean values
to be highly significant over large parts of the southernalone. This confirms results from earlier local/regional stud-
mid-latitudes (see Fig9). Results of the sensitivity analy- ies Rieder et al.2010h 2011).
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For the three “standard” covariates — solar cycle, QBO,Appendix A
and EESC - significant influence was found almost through-
out the northern and southern mid-latitudes, in good agreeStatistical terms
ment with previous studies (e.gSteinbrecht et al.2006
WMO, 2003 2007, 2011). However, several important fea- This section provides an overview of statistical topics rele-
tures should be noted: (i) regarding the “fingerprints” of the vant to this paper like maximum likelihood estimation, asso-
solar cycle, the area highly significantly influenced is muchciated hypothesis tests on models and parameters, and the
larger for extremes than for mean values and there is larg@onferroni correction for multiple testing. Being far from
seasonal variability (not shown here); (ii) for the QBO at complete, it merely provides a brief overview. Apart from
both pressure levels analyzed (30 and 50 hPa) large signifthe Bonferroni correction, these topics all appeabDiavi-
icant areas are found at both northern and southern midson (2003, and a more accessible referenc€ales(2001,
latitudes, especially towards equatorial regions. An interest-Ch. 2).Wilks (2011 covers a broad range of statistical top-
ing feature is the band-like structure found for Q@Oan ics in atmospheric sciences, thereunder the Bonferroni cor-
insignificant band at central mid-latitudes splits two highly rection in Sect. 11.5 and multiple testing in Sect. 5.4.
significant areas towards equatorial and polar regions. This
structure might be related to a connection between the QBQy\1 Likelihood estimation
and the Brewer-Dobson circulation at this pressure level,

where zonal winds can alter wave driving (eldaklander | et y pe a random vector whose distribution is supposed
et al, 2000 (iii) there is strong influence of EESC on 0zone i3 pe known up to a parameter vectbibelonging to ap-
throughout mid-latitudes. At northern mid-latitudes a gradi- gimensjonal parameter space wijih> 1. The joint density
ent is found in EESC-coefficients, increasing towards highgy y | denotedfy (y; §), depends on the observatigrand on
latitudes, which can be interpreted as resulting from the interype parameter vectdr, which is unknown. Théikelihoodfor
action between ozone production, ozone transport to mid ang pased on the observatignis defined ad.(8) = f, (y; 6),
high latitudes (due to the Brewer-Dobson circulation), and; e_ the joint density of the observation as a function of the
enhanced ozone depletion in polar regions (especially during,nknown parameter. If the components¥ofire independent
winter and early spring). This pattern is less pronounced (bung identically distributed random variables, the joint density

still preserved) at southern mid-latitudes, probably due gy the Jikelihood simplifies to the product of the individual
the reduced land-mass leading to less disturbed atmospherifansities.

flow. ] o ] The maximum likelihood estimatsf ¢ is the valued that
For the North Atlantic Oscillation, strong influence on col- maximizes the likelihood. (), i.e., the value o under

umn ozone is found over Labrador/Greenland, the Eastergyhich the observed outcome is most probable. Equiva-
Un|te|<qj States, the E;]Jro-AtIantlc sector, r?nd Central Europejgnyy 4 also maximises the logarithm of the likelihood, the
ITor the NAOsl southern C(_)unterpdart, tl e AAO, sr:rong ”'qd_ so-called log-likelihood. Because sums are easier to handle
fluence on column ozone is found at lower southern mid-y,,n nroducts, one generally prefers to work with the log-
latitudes, including the southern parts of South America anqjy alihood. In practice, eithef. or log(L) is maximized nu-

the Antarctic Peninsula, and central southern mid—latitudesmerically

At central southern mid-latitudes highly significant negative To investigate its mathematical properti@s has to be
coefficient estimates found for the AAO can probably be re'regarded as a function of the underlying rané:iom vedtor

lated to enhanced wave activity in thg tropics leading to N ather than of the observed dataln this case, it is itself a
hanced ozone transport from the tropics to the extra-tropics,

Results for both NAO and AAO confirm the importance of at- fandom vector with a probability distribution and therefore

: . - called anestimator while the estimate is an “observation”
mospheric dynamics for ozone variability and changes from . . o

: of the estimator. Under some regularity conditions on the
local/regional to global scale.

We refer to the companion papeRiéder et al, 2013 for likelihood function and the parameter spabayison 2003

. . . . ) . p. 118), the distribution of the maximum likelihood estima-
the spatial analysis of fingerprints of the volcanic eruptions S . . . .
of El Chichbn and Mt. Pinatubo and the El hd/Southern tor (MLE) 6 fgr increasing sample.sme. IS knoyvr_L Using
Oscillation. There we discuss the important role of dynam-thIS asymptotic result a_s an approxmaﬂpn folr f'r?'te _samp!es,
ical covariates (AAO and ENSO) on amplifying/weakening the MLE 6 has approximately a Gaussian dLS'[I‘IbU'[IOﬂ with
the effect of volcanic eruptions at southern mid-latitudes andméan the true value @ and variance matrid(6)—*, where
provide a detailed overview of the contribution of the indi- J(6) is the p x p matrix of the negative second derivatives of
vidual covariates to long-term total ozone changes (1979-0g(L). SinceJ(#) may be computed numerically during the
2007), in the mean and extreme values, for various region®ptimization procedure, standard errors(@Efor the com-
of interest. ponents); of § are easily produced.
In this work, we estimate the parameters of our statistical
models for total ozone by maximum likelihood estimation
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and compute standard errors for these estimates as describdte number of parameters in the model. More precisely,

here. AIC = —2( + 2p, where p is the number of parameters in
the model. The best model is the one for which the AIC is
A2 z-testand p-value minimal, because a good model should have a large likeli-

o . . i hood (i.e., plausible that it generated the observed data) and
The distributional result for the MLE given in the previous , a1l humber of parameters (i.e., as simple as possible)

section implies th"’,‘t the. ex_pre;sian: _(9" —0;)/SE(®) has In this work we select the order of the ARMA model for
a standard Gaussian distribution. This can be used to test trﬁ:‘ean values based on the AIC

null hypothesis that the unknown parameterthei-th com-
ponent ofg, takes a given value?, i.e., Ho: 6; = 0°. Next,
we illustrate the principle of hypothesis testing for this so-

calledz-test - . The levelx of a hypothesis test is the probability of rejecting

If Holis true,zj 0 = (91 —6;)/SE®:) has a standard Gaus-  the nyll hypothesis when it is actually true, or, equivalently,
sian distribution. IfHp is clearly not true, meaning that the ¢ probability of a false rejection. Often one takes 0.05.
unknown true valué; is far fromel.o, the ab§olute valug; o When performingn hypothesis tests each with leve) the
is likely to be large because the estimateds close tof;.  probabilitys of at least one false rejection among theests
The size of|z; o| is thus an indicator for the plausibility of s bounded above by < ma, which can be much larger than
Ho. To test whethe) is true, one computes the probability . The Bonferroni correctionconsists in adjusting the level
of having az; o that is more exceptional undéfp than the  of the individual tests to ensure that the global error proba-
one observed, which is the probability that a standard Gausbility § is bounded by a given probability. If this probability
sian random variable takes a value abovie; o| or below s chosen to be.05, the level of the individual tests must be
—lzi,0l. If this probability, known agp-valueof the test, is ¢ = 0.05m 1. The upper boungk« is fairly general, so there
small (typically belowe = 0.05 ora = 0.01), the observed  may be better adjustments for particular cases. Moreover the
zi,0, and hence als@, are rather unlikely to occur undéfy, ~ Bonferroni correction is also very conservative wheris
so the latter hypothesis is probably false and therefore shoulghrge.
be rejected. If the-value is large, however, the observations  \We use the Bonferroni correction as one method in the as-
do not contradicto, but it is not possible to say more (in  sessment of a possible multiple testing effect on the signifi-
particular, this doesot mean thatf is true!). The rejection  cance tests for the regression coefficients.
limit « is called thdevelof the hypothesis test.

In our work, thez-test is carried out for the maximum like-

lihood estimates of regression coefficients v@?n: O for all Supplementary material related to this article is

i to assess whether the corresponding covariates have an &fyajjaple online at: http://www.atmos-chem-phys.net/13/
fect on total ozone. 147/2013/acp-13-147-2013-supplement.pdf

A3 Likelihood ratio test

A5 Bonferroni correction

Another test related to maximum likelihood theory is the
likelihood ratio testwhich allows a comparison of the fit of Acknowledgements. E. R., L. F,, M. R., J. S., and A. C. D. ac-
two nested parametric modedsand B. Assume that model knowledge funding by the Competence Centre for the Environment
A hasp parameters, that modd is a restriction ofA with and Sustainability (CCES) within the ETH-domain in Switzerland
g < p parameters, and thﬁh and ZB are the maximized within the project EXTREMES: “Spatial extremes and environmen-
log-likelihoods of these models. Provided that models tal sustainability: statistical methods and applications in geophysics
true, which is the null hypothesis in this test, the statistic@"d the environment”. H. E. R. acknowledges also funding of the
Z(EA _EB) has an asymptotigl:f,q-distribution. Using this Swiss National Science Foundation through the Fellowship Grant
result as an approximation for finite samples, one can tesFBEZP2'134426'
whether the additional parameters in modebring an im-  The authors are grateful to the New Zealand National Institute of
provement on modeB. If not, the simpler modeB would Water and Atmospheric Research (NIWA) for providing the data of
be preferred. the NIWA assimilated total ozone data set.

We use the likelihood ratio test to compare the models with

. The authors are thankful to two anonymous referees for their helpful
annual and seasonal covariates.

comments during the discussion phase in ACPD, which have led to

o . o an improved version of this paper.
A4 Akaike information criterion P pap

The Software R (R Development Core Teamhttp:
A common criterion to compare non-nested parametric mod4//www.R-project.or was used for the statistical analysis.
els is the Akaike information criterion (AIC), which involves
the maximized log-likelihood and a penalization term for Edited by: N. Harris
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