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Abstract. We use statistical models for mean and extreme
values of total column ozone to analyze “fingerprints” of
atmospheric dynamics and chemistry on long-term ozone
changes at northern and southern mid-latitudes on grid cell
basis. At each grid cell, ther-largest order statistics method
is used for the analysis of extreme events in low and high
total ozone (termed ELOs and EHOs, respectively), and
an autoregressive moving average (ARMA) model is used
for the corresponding mean value analysis. In order to de-
scribe the dynamical and chemical state of the atmosphere,
the statistical models include important atmospheric covari-
ates: the solar cycle, the Quasi-Biennial Oscillation (QBO),
ozone depleting substances (ODS) in terms of equivalent
effective stratospheric chlorine (EESC), the North Atlantic
Oscillation (NAO), the Antarctic Oscillation (AAO), the
El Niño/Southern Oscillation (ENSO), and aerosol load af-
ter the volcanic eruptions of El Chichón and Mt. Pinatubo.
The influence of the individual covariates on mean and ex-
treme levels in total column ozone is derived on a grid
cell basis. The results show that “fingerprints”, i.e., signifi-
cant influence, of dynamical and chemical features are cap-
tured in both the “bulk” and the tails of the statistical dis-
tribution of ozone, respectively described by mean values
and EHOs/ELOs. While results for the solar cycle, QBO,
and EESC are in good agreement with findings of earlier
studies, unprecedented spatial fingerprints are retrieved for

the dynamical covariates. Column ozone is enhanced over
Labrador/Greenland, the North Atlantic sector and over the
Norwegian Sea, but is reduced over Europe, Russia and the
Eastern United States during the positive NAO phase, and
vice-versa during the negative phase. The NAO’s southern
counterpart, the AAO, strongly influences column ozone at
lower southern mid-latitudes, including the southern parts of
South America and the Antarctic Peninsula, and the central
southern mid-latitudes. Results for both NAO and AAO con-
firm the importance of atmospheric dynamics for ozone vari-
ability and changes from local/regional to global scales.

1 Introduction

Interest in changes in total ozone is linked to its direct influ-
ence on biologically active UV radiation (e.g.,Calb́o et al.,
2005), and since the detection of the Antarctic ozone hole
(Farman et al., 1985) the development of the Earth’s ozone
layer has been a key focus in atmospheric research. The
global decrease in column ozone between the 1980s and the
1990s raised major concerns in the scientific community and
general public. These paved the way for the “Montreal Pro-
tocol for the Protection of the Ozone Layer” (e.g.,WMO,
1995, 2003, 2007, 2011), whose successful implementation
(e.g.,WMO, 2007; Mäder et al., 2010) led to a discussion on
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future ozone recovery and possible super-recovery expected
in about 50 yr (e.g.,WMO, 2007, 2011; Eyring et al., 2007,
2010; SPARC CCMVal, 2010; Hegglin and Shepherd, 2009;
Shepherd, 2008).

In previous studies ozone changes on spatial scales have
been addressed in statistical terms by large-scale averages
over latitude bands (e.g.,WMO, 2003, 2007, 2011; Fioletov
and Shepherd, 2005; Fioletov et al., 2002), or the application
of multiple regression models (e.g.,Steinbrecht et al., 2006).
The former approach has difficulties, because the large-scale
spatial averages usually used for analysis, such as zonal mean
values, do not take spatial variability fully into account, while
ozone changes vary greatly in time and space, and there-
fore cannot be addressed adequately by a large-scale average.
Applications of multiple regression models on large spatial
scales and analyses on a grid cell basis, as for satellite data
sets, are rare for column ozone, and the results mostly de-
scribe the influence of atmospheric dynamics and chemistry
on mean column ozone, leaving the extremes unaccounted-
for. Steinbrecht et al.(2006) compared multiple regression
model output for the winter season on a global scale for ob-
servational data from TOMS and SBUV instruments with
results from Chemistry-Climate Models (CCMs). Further,
ozone changes have been addressed using global CCMs (e.g.,
Eyring et al., 2007, 2010; SPARC CCMVal, 2010; Waugh
et al., 2009; Austin and Wilson, 2006). Such CCM analy-
ses take spatial variability into account, as ozone changes are
computed on a grid cell basis, according to changes in at-
mospheric dynamics and chemistry. Each CCM has its own
parameterizations for specific processes and therefore its
own strengths and deficiencies in its representation of atmo-
spheric dynamics and chemistry. However, a lot of progress
has recently taken place in this field (e.g.,Eyring et al., 2010;
SPARC CCMVal, 2010).

Statistical modeling1 of the spatial and temporal variabil-
ity of column ozone requires one to account for the stochas-
tic nature of physicochemical processes and their spatial and
temporal variability (e.g.,Chilès and Delfiner, 1999; Dig-
gle and Ribeiro, 2007). In particular, a better description of
extreme events and an assessment of whether their distribu-
tion has changed over time are needed to make progress in
answering important questions about ozone-climate interac-
tions. Although geostatistics is well developed for the treat-
ment of average values, despite recent progress (e.g.,Cooley
et al., 2006; Naveau et al., 2009; Padoan et al., 2010; Davison
et al., 2012) a geostatistics of extremes that could be applied
to massive data sets is still lacking. The modeling of extremes
is becoming increasingly standard as extreme value theory
(EVT) develops (e.g.,Coles, 2001; de Haan and Ferreira,
2006), but only a few authors have so far analyzed spatial
extremes (e.g.,Buishand et al., 2008; Padoan et al., 2010)

1In this paper about a statistical analysis of past ozone data, the
only “models” considered are statistical ones, even if this is not al-
ways explicitly stated.

and/or have dealt with huge gridded data sets (e.g.,Cooley
et al., 2007; Schliep et al., 2010). Although several frame-
works exist for dealing with such data sets using Gaussian
processes, such as approximation by Gaussian Markov fields
(e.g.,Rue and Held, 2005) or through composite likelihoods
(e.g.,Varin, 2008), there is much less guidance for extremes.

But why is it important to distinguish between models for
extreme and non-extreme observations (e.g., mean values)?
Since extreme events are situated in the tails of the proba-
bility distribution and the focus of interest in this context is
often an event beyond any observed value, an accurate sta-
tistical description of the tails of the distribution is required.
A set of observations, however, contains only few extreme
observations by nature, so that a model fitted to an entire
data set most likely approximates the bulk of the observations
well, but has little capacity to also precisely describe its tails.
For the latter purpose, EVT provides specific asymptotically-
justified models which in practice are fitted just to extremal
data.

Recently, methods from EVT have been applied in to-
tal ozone research on local/regional scales (Rieder et al.,
2010a,b, 2011). The present study extends these earlier sta-
tistical analyses to large spatial data sets and compares the re-
sults for ozone extremes with those for mean values. The use
of separate, more appropriate, models for these two entities
provides better insight into the behavior of total ozone. Mean
values very often have a Gaussian distribution and hence can
be addressed by standard time series tools like autoregressive
moving average (ARMA) models. In contrast, the asymptotic
theory behind the EVT models establishes that the limiting
distribution of sample maxima is not Gaussian. Since these
EVT-based methods are less widely known, they will be pre-
sented in Sect.3.1of this paper.

Our analysis focuses on the influence of several atmo-
spheric covariates on total ozone across space. Because the
data cover the whole globe, a spatial model for extremes
would be natural. One possibility is max-stable processes
(seeDavison et al., 2012, for an application-oriented review),
but as current fitting methods are computationally infeasible
for massive (gridded) data sets, we fit a model for univari-
ate extremes individually to each grid cell, as if the neigh-
boring cells did not exist. This pointwise approach naturally
accounts for non-stationarity in space and avoids averaging
effects, caused, for example, by averaging over zonal bands.
It also allows us to assess how spatial variation of the model
parameters affects the grid cell extremes (which is of major
interest for the study), but it does not allow us to model the
joint behavior of extremes. This is a topic of continuing re-
search.

In order to ensure that the covariate effects are compara-
ble across the different models and space, the same covariate
information in form of a multiple linear regression term is
used for both means and extremes and for each grid cell. For
each of the three targets of interest (EHOs, ELOs, and mean
values), we then estimate the coefficients of the covariates
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Table 1.Overview of data sets used in this study. Data sets indicated with * are not available for the entire study period.

Data Time range Source
(resolution)

Total Ozone 1979–2007
(daily)

Bodeker Scientific, NIWA 2.7 data set
http://www.bodekerscientific.com/data/total-column-ozone

Solar Cycle 1979–2007
(monthly)

NOAA National Geophysical Data Center
ftp://ftp.ngdc.noaa.gov/STP/SOLARDATA/SOLAR RADIO/FLUX/
PentictonAdjusted/monthly/MONTHPLT.ADJ

QBO at 30 and 50 hPa 1979–2007
(monthly)

NOAA National Weather Service Climate Prediction Center
http://www.cpc.noaa.gov/data/indices/

Nino 3.4 Index 1979–2007
(monthly)

NCAR/UCAR Climate and Global Dynamics
http://www.cgd.ucar.edu/cas/catalog/climind/TNIN34/index.html

NAO Index 1979–2007
(monthly)

NCAR/UCAR Climate and Global Dynamics
http://climatedataguide.ucar.edu/guidance/
hurrell-north-atlantic-oscillation-nao-index-pc-based

AAO Index 1979–2007
(monthly)

NOAA National Weather Service Climate Prediction Center
http://www.cpc.noaa.gov/products/precip/CWlink/dailyao index/aao/
monthly.aao.index.b79.current.ascii

Sato Index 1979–2000
(monthly)*

NASA Goddard Institute for Space Studies
http://data.giss.nasa.gov/modelforce/strataer/

ODS (in terms of EESC) 1979–2007
(monthly)

NASA Goddard Institute for Space Studies
http://acdb-ext.gsfc.nasa.gov/Dataservices/automailer/

for each grid cell and produce maps of these estimates for
interpretation and comparison.

2 Data

2.1 Spatial ozone data

In this study, version 2.7 of the NIWA (National Institute of
Water and Atmospheric Research, New Zealand) total ozone
data set is analyzed for the time period 1979–2007 for the
northern (30–60◦ N) and southern (30–60◦ S) mid-latitudes.
NIWA 2.7 contains daily data at a spatial resolution of 1.25◦

longitude by 1.0◦ latitude, adding up to 8640 grid cells for
the mid-latitudes of each hemisphere. The data set is based
on assimilated and homogenized data from the Total Ozone
Mapping Spectrometer (TOMS), the Global Ozone Moni-
toring Experiment (GOME), Solar Backscatter Ultra-Violet
(SBUV) retrievals and Ozone Monitoring Instrument (OMI)
retrievals. Drifts between measurements of different satellite
instruments have been corrected through inter-satellite in-
strument comparison and comparison with data from Dobson
and Brewer ground-based instruments, which contribute to
the Global Atmosphere Watch Program (GAW) of the World
Meteorological Organization (WMO). For further details on

the NIWA assimilated total ozone data set seeBodeker et al.
(2005), Müller et al.(2008), andStruthers et al.(2009).

2.2 Covariates describing the state of the atmosphere,
atmospheric dynamics and chemistry

Various indices describing the dynamical and chemical state
of the atmosphere are used as covariates in this study, namely
the 11-yr solar cycle, the Quasi-Biennial Oscillation (QBO),
the El Niño/Southern Oscillation (ENSO), the North Atlantic
Oscillation (NAO), the Antarctic Oscillation (AAO), ozone
depleting substances (ODS) in terms of equivalent effective
stratospheric chlorine (EESC) as calculated byNewman et al.
(2007), and finally the stratospheric aerosol load after the ma-
jor volcanic eruptions of El Chich́on and Mt. Pinatubo, as
given bySato et al.(1993). Table1 contains an overview of
the data sets used and Fig.1 shows the temporal evolution of
the indices.

3 Methods

In this section we describe the two different models we are
using: (i) a model based on extreme value theory (EVT) to
analyze extremely high (termed EHOs) and extremely low
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Fig. 1. Temporal evolution of the covariates used in this study:
(a) solar cycle as light flux at 10.7 cm,(b) Quasi-Biennial Oscil-
lation (QBO) Index at 30 hPa,(c) as (b) but at 50 hPa,(d) Nino
3.4 Index describing the state of the El Niño/Southern Oscilla-
tion (ENSO),(e) North Atlantic Oscillation (NAO) Index (princi-
pal components of the leading empirically-determined orthogonal
function of sea level pressure anomalies over the Atlantic sector
(20–80◦ N, 90◦ W–40◦ E), fromHurrell, 2009), (f) Antarctic Oscil-
lation (AAO) Index,(g) volcanic aerosol loading in terms of mean
optical thickness, Sato Index (Sato et al., 1993) for the Northern
Hemisphere (major volcanic eruptions of El Chichón (1982) and
Mt. Pinatubo (1991) are marked),(h) as (g) but for the South-
ern Hemisphere, and(i) atmospheric loading of ODS in terms of
equivalent effective stratospheric chlorine (EESC). All covariates
are given on a monthly basis. For information on the sources of the
data sets for the individual covariates see Table1.

(termed ELOs) events in total ozone (see Sect.3.1); and
(ii) an autoregressive moving average model (ARMA) for
the analysis of mean values (see Sect.3.2). In order to as-
sess the effect of the covariates described in Sect.2.2on the
different regions of the distribution function of total ozone,
the same covariate-dependent expression is used in the mod-

els (i) and (ii), while the remaining structure of each model
accounts for the nature of the underlying data (EHOs/ELOs
or mean values).

3.1 Model for total ozone extremes

We first give a short overview on extreme value theory and
some associated concepts. An accessible reference on this
topic isColes(2001).

3.1.1 Extreme value theory

A fundamental result of extreme value statistics implies that
the behavior of the sample maximum of a large number of
identically distributed random variables should, under mild
conditions, be well-approximated by the Generalized Ex-
treme Value (GEV) distribution. The GEV has three pa-
rameters, the location parameterµ ∈ R, the scale parameter
σ > 0, and the shape parameterξ ∈ R. Using the notation
x+ = max(x,0), its probability distribution function is

F(y) = exp

(
−

(
1+ ξ

y − µ

σ

)−1/ξ

+

)
, (1)

which is defined on the set
{
y ∈ R : 1+ ξ (y − µ)/σ > 0

}
.

The caseξ = 0 is interpreted as the limit whenξ approaches
zero.

Before presenting statistical models involving the GEV
distribution, observe that any model for very high extreme
events (maxima) can also be used for very low events (min-
ima) due to the equality

min
i=1, ...,n

(Yi) = − max
i=1, ...,n

(−Yi).

Therefore it suffices to describe only models for maxima
hereafter.

There are several methods for modeling extremes of uni-
variate stationary time series. In the block maxima model,
the data are grouped into blocks of length a given time period
(e.g., a year or a month) and the sequence of block maxima
is modeled as an independent sample from the GEV distri-
bution. The drawback of this method is that only one obser-
vation per block is retained, so some relevant extreme ob-
servations may be jettisoned. A remedy to this waste of data
is to fit a model to all observations exceeding a high thresh-
old (Davison and Smith, 1990); one possible model being
the Generalized Pareto Distribution, which was fitted to to-
tal ozone data inRieder et al.(2010a, 2011). A major diffi-
culty with these threshold-based approaches is the selection
of the threshold, which amounts to a trade-off between bias
and variance and hence is crucial for the quality of the model.
Unfortunately, there are no reliable automatic selection meth-
ods, so that peaks over threshold models are unsuitable when
numerous thresholds have to be found.

For non-stationary data, threshold selection is even more
exasperating, as there is no theoretical guidance on which
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part(s) of the model for exceedances should incorporate non-
stationarity.Northrop and Jonathan(2011) suggest a rather
complex approach that involves models for non-stationarity
in both extremes and the threshold, whereasEastoe and Tawn
(2009) propose to preprocess the full data before modeling
the extremes.

In light of these difficulties, we use an alternative approach
that sidesteps threshold selection by using a fixed number
r of observations per block. This is known as ther-largest
order statistics model (Coles, 2001, Sect. 3.5) and can be
seen as a compromise between the block maxima and peaks
over threshold methods. The data are split into blocks and
the r ≥ 1 largest observations of each block are used in the
model. This amounts to using the exceedances of a threshold
that varies across blocks, while the blocks are assumed to
be independent. The analogue to threshold selection in this
model is the choice ofr, which therefore also is a trade-
off between bias and variance. But oncer has been fixed,
the threshold values are determined automatically, so the ap-
proach is well-adapted to use with many parallel time series.

We fit the r-largest order statistics model by maximum
likelihood estimation (brief explanations of useful statistical
concepts are given in AppendixA; see Sect.A1 for maxi-
mum likelihood estimation). This can be done more or less
automatically and with acceptable computational effort even
for many grid cells, as there exists a closed-form likelihood.
Let y

(1)
t ≥ ·· · ≥ y

(r)
t be ther largest observations in block,

or equivalently time period,t ∈ {1,2, . . . ,T }, define the pa-
rametersµ, σ , andξ as in the GEV distribution (Eq.1), and
again letx+ = max(x,0). Then the likelihoodLt for block t

based on ther-largest order statistics model is (Coles, 2001,
p. 69)

Lt (µ,σ,ξ) = exp

−

(
1+ ξ

y
(r)
t − µ

σ

)−1/ξ

+

 (2)

×

r∏
j=1

1

σ

(
1+ ξ

y
(j)
t − µ

σ

)−1/ξ−1

+

.

This expression is related to the GEV distribution (Eq.1),
whose probability density function is obtained on setting
r = 1, corresponding to using only the largest observation
y

(1)
t of the t-th block for inference. The parametersµ, σ ,

and ξ have the same interpretation as in Eq. (1). The as-
sumed independence of the blocks in ther-largest order
statistics model implies that the likelihood for the whole data
is the product of the block contributionsLt (µ,σ,ξ) given
in Eq. (2). For a large sample size, i.e., a large number of
blocksT , the asymptotic Gaussian distribution of the maxi-
mum likelihood estimator is a good approximation and hence
the significance of the parameter estimates can be assessed
by z-tests (see Sect.A2).

The models described so far apply for stationary data, but
environmental time series generally show trend and season-
ality. One way to deal with this is to let the parameters of

the GEV distribution vary over time. The time-dependent ex-
pression is usually based on simple mathematical functions
or covariates related to the analyzed phenomenon, and if pos-
sible summarized as the product of a design matrixZ and a
parameter vectorβ.

All the models described above rely on the implicit as-
sumption that the underlying observations are independent,
which considerably simplifies theoretical development and
estimation procedures. For temporally correlated data, how-
ever, extreme events tend to occur in clusters. The observa-
tions retained in the extreme value model are thus dependent
in reality, unlike in the associated likelihood function. This
is a weakness of ther-largest order statistics model, because
the occurrence times of the extremes are not taken into ac-
count, implying that clusters of extremes are unrecognized
either in the middle of a block or at the transition between
two blocks. It can be shown that ignoring these clusters, and
applying standard likelihood theory based on Eq. (2) anyway,
leads to estimators that are unbiased with standard errors that
are somewhat too small. While declustering procedures ex-
ist, estimators based on declustered data tend to be biased
(Fawcett and Walshaw, 2012), so we have preferred to use
the original, non-declustered data, and to bear in mind that
the quoted standard errors are probably 10–20 % too small.
Detailed treatment of clusters would be essential when mod-
elling the dynamic behaviour of ELOs or EHOs.

3.1.2 Implementation for the ozone data

In this section, we give details on how ther-largest order
statistics model is fitted to every grid cell of the NIWA data
set in a region of interest. As mentioned above, we have cho-
sen to use ther-largest order statistics model instead of the
peaks over threshold model mainly because the latter would
have required a huge number of manual threshold selections
due to the number of grid cells and non-stationarity in time.

Our reasoning for the selection ofr, the number of ex-
tremal observations used in each block of ther-largest order
statistics model, is as follows: considering that a month has
about 30 days,r should not exceed 3 for the observations to
be “extreme”, becauser = 3 corresponds roughly to a thresh-
old at the 90th percentile. In view of the general uncertainty
that might govern the estimation due to the high number of
covariates, we choser = 3 to increase the precision of the
estimates. Since usingr too large may increase the bias, we
also fitted the same model withr = 1 andr = 2. The param-
eter estimates in these cases showed the same spatial patterns
as forr = 3, but as anticipated, the standard errors of the esti-
mates were larger than withr = 3, and hence thez-statistics
were less significant.

For each grid cell, non-stationarity in time is handled
in two ways: firstly by including time-dependent covari-
ates in the location parameter (see the next two para-
graphs for details) and secondly by choosing the blocks to
be months, which yields an individual threshold for each
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year-month-combination and also allows for non-stationarity
effects other than seasonality.

The r-largest order statistics model implemented has lo-
cation parameterµ(x, t), scale parameterσ(x), and shape
parameterξ(x). All parameters depend on grid cellx be-
cause an individual model is fitted to every grid cell, and
the additional time-dependence in the location parameter ac-
counts for temporal non-stationarity. As mentioned before,
non-stationarity is expressed by a multiple linear regression
term, i.e.,

µ(x, t) = Z(t)β(x), (3)

whereZ(t) is a design matrix of purely time-dependent co-
variates, the same for every grid cellx, each of which has its
own coefficient vectorβ(x) due to pointwise modeling. The
design matrixZ(t) is composed of seasonality terms and co-
variates describing chemical and dynamical processes in the
atmosphere (see Eq. (4) below and Fig.1). All covariates are
taken at a monthly resolution, so the same covariate value is
used for ther observations of each block, i.e., of each year-
month-combination.

The use of the same design matrix for all grid cells, even
though in principle several covariates vary across space, has
the advantage that maps of the parameter estimates{β̂i(x) :

x ∈ X } for each covariatei are interpretable and comparable.
Consequently, an optimal set of covariates must be selected
for the whole region of interest in each hemisphere. Since
fitting the model to the complete grid requires much com-
putation time, it is infeasible to fit many different models for
each grid cell. Instead we identified the most promising set of
covariates on a subset of 72 grid cells, using standard model
selection techniques. The form of Eq. (3) finally used is

Z(t)β(x) = β0(x) +

3∑
i=1

(
β2i−1(x)cos

(
2πt

ϕi

)
(4)

+ β2i(x)sin

(
2πt

ϕi

))
+ β7(x)EESC(t)

+ β8(x)SOLAR(t) + β9(x)QBO30(t)

+ β10(x)QBO50(t) + β11(x)ENSO(t)

+ β12(x)

{
AAO(t)

NAO(t)

}
+ β13(x)CHICHON(t)

+ β14(x)PINATUBO(t),

where theϕi allow for 1-yr, 6-month, and 4-month season-
alities, i.e., (ϕ1, ϕ2, ϕ3) = (12, 6, 4). The other covariates
in Eq. (4) are listed in Sect.2.2. The AAO and NAO are
only used for the Southern and the Northern Hemisphere, re-
spectively; and the covariates for the volcanic eruptions of
El Chich́on and Mt. Pinatubo are extracted from the Sato-
Index for the corresponding hemisphere (see Fig.1). A de-
tailed description of these covariates and their interaction
with the ozone levels is given in Sect.4.

The model with location parameterµ given in Eq. (4) will
be referred to as theannual modelbecause each of the re-

gression parametersβ0, . . . ,β14 expresses the effect of its
respective covariate over the whole year. Since the influ-
ence of the covariates is likely to vary across the seasons,
we fitted a secondseasonal modelin which some covariates
are split into four pieces, one for each season defined by
December-January-February, March-April-May, June-July-
August, and September-October-November. For instance the
termβ7(x)EESC(t) in Eq. (4) can be replaced by

β7,spring(x)EESCspring(t) + β7,summer(x)EESCsummer(t)

+β7, fall(x)EESCfall(t) + β7,winter(x)EESCwinter(t),

where EESC♦ equals the EESC values for the months of sea-
son ♦ and equals zero for the other months. In this study
EESC, SOLAR, QBO30 and QBO50, ENSO, and AAO/NAO
were split into seasonal components. The annual model
can be nested into the seasonal one by settingβ ·,spring=

β ·,summer= β ·,fall = β ·,winter, so likelihood ratio tests allow
one to assess whether these covariates have varying impacts
over the year (see Sect.4.1).

3.2 ARMA model for total ozone mean values

In analogy to our model for extremes, we fit a univariate
model to the monthly mean values of total ozone at each grid
cell, even though spatial models for large Gaussian sets have
been much more widely investigated than their analogues for
extremes and hence would be more easily available.

The multiple linear regression model, a standard tool
for analyzing the contributions of individual covariates to
changes in a variable of interest (e.g., total ozone), is widely
used in atmospheric science. In a first step we therefore fitted
a multiple linear regression model in its simplest form, i.e.,
with independent errors, to the ozone mean values at both
northern and southern mid-latitudes. However, the residuals
of this model were significantly correlated, showing that the
assumption of independent errors does not hold for our data.
Autocorrelation in model residuals of total ozone has been
reported in previous studies.Vyushin et al.(2007), for ex-
ample, use a model with autocorrelated noise for total ozone,
andvon Clarmann et al.(2010) also suggest accounting for
correlations when analyzing atmospheric data.

In this study, we address temporal correlation using a clas-
sic model for stationary time series, the autoregressive mov-
ing average (ARMA) process (e.g.,Brockwell and Davis,
2002). The strengths of the ARMA model are its flexibil-
ity and parsimony, as a wide range of temporal correlation
patterns can be expressed with only few parameters. A sta-
tionary sequence of random variables{Wt }t∈T is an ARMA
process of order(p,q) if it can be written as

Wt =

p∑
i=1

φiWt−i + εt +

q∑
j=1

θjεt−j ,

where{εt }t∈T is white noise.
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To express non-stationarity and assess the effect of the co-
variates on the mean values of total ozone at grid cellx ∈ X ,
we retain the linear termZ(t)β(x) from Eq. (3). More pre-
cisely, the design matrixZ(t) is identical with Eq. (4), and
the coefficient vectorβ(x) has the same structure as in the
extremes model but takes unrelated values. IfY (x, t) denotes
the mean value at cellx ∈ X for year-month-combinationt ,
the stationarized process

η(x, t) = Y (x, t) − Z(t)β(x), (5)

is an ARMA(p,q) process with ordersp andq to be deter-
mined (see next paragraph).

Since the fitting of an ARMA model is much faster than
for the r-largest order statistics model, we fitted several
ARMA models with different orders(p,q) and compared
their AIC (Akaike Information Criterion, see Sect.A4).
There is no uniformly best model over all grid cells but in all
cases (north, south, annual, seasonal) the ARMA(1,1) model
performs adequately in a majority of grid cells, so thatη in
Eq. (5) becomes

η(x, t) = φ(x) η(x, t − 1) + ε(x, t) + θ(x) ε(x, t − 1),

whereε(x, t) is taken to be Gaussian white noise, which is
more appropriate for mean values than for extremes.

Exactly as in the extremes model (see Sect.3.1) we fit-
ted two ARMA models with different regression terms, an
annual model, where only one coefficient is used for each
covariate, and aseasonalmodel, where some of the covari-
ates are split into four seasons (see the last paragraph of
Sect.3.1.2).

4 Results

Inference about the effect of a single covariate based on
pointwise modeling of the grid cells may be performed by
testing, for each cell, the hypothesis that the covariate has no
effect, but interpreting the results is not straightforward, be-
cause of the large number of tests that must be performed,
based on highly correlated data. If the same false positive
rateα were used for every cell, and if all the null hypotheses
were true, then we would expect a proportionα of them to
be falsely rejected. Thus with 8640 cells and withα = 0.05,
we would expect to incorrectly find a significant effect of the
covariate at 432 cells, and these cells will tend to be grouped
owing to spatial dependence.Ventura et al.(2004) discuss
approaches to multiple testing that control the false discov-
ery rate (FDR), i.e., the expected proportion of falsely re-
jected null hypotheses among the total number of rejected
null hypotheses. Using the FDR is attractive because in prac-
tice the number of rejected null hypotheses is known but
the number of true null hypotheses is not. The basic FDR
approach assumes independence of thep-values, butVen-
tura et al.(2004) suggest that it can also be used for data

with light spatial correlation. Unfortunately, and as would be
anticipated, the NIWA data show very strong correlations,
and this undermines the case for using the basic FDR ap-
proach. Another method often used in climate science, the
field significance method (Livezey and Chen, 1983), seems
inappropriate in the setting of extremes. The topic of multi-
ple testing is undergoing rapid development and a definitive
treatment in the present context cannot yet be provided, so
in order to assess the strength of the conclusions below, we
applied four approaches to thez-statistics for the covariate
effects on extremes: (i) making no correction for multiple
testing; (ii) false discovery rate (FDR); (iii) a conservative
version of FDR that allows for general correlation in thez-
statistics; and (iv) the ultra-conservative Bonferroni correc-
tion (see Sect.A5 for a short explanation). We also used
various scenarios with inflated standard errors to account for
clustering in the extremes. We comment briefly on the re-
sults of this sensitivity analysis when discussing the specific
effects below, and in the companion paper to this article.

4.1 Evaluation of the statistical models

This section briefly discusses two aspects of the evaluation of
the statistical models described in Sect.3, namely the com-
parison between the annual and seasonal models followed by
diagnostics for the models of extremes and mean values.

4.1.1 Comparison between annual and seasonal model

Since the annual model is nested within the seasonal one
(see the end of Sect.3.1.2), these two models can be com-
pared with a likelihood ratio test (see Sect.A3 for an expla-
nation). In the present context, the null hypothesisH0 is that
the simpler annual model fits the data well, i.e., the seasonal
model brings no improvement. Performed for every grid cell
and every model separately, these tests show that the use of
the more complicated seasonal model is justified for both the
EVT and the ARMA model, sinceH0 is rejected for a major-
ity of grid cells (see Table2 for a complete summary). For the
r-largest order statistics model the proportions of grid cells
whereH0 is rejected at the 5 %-level lie far above 80 % for
both hemispheres and types of extremes, whereas they are
lower but still above 50 % for the ARMA model fitted to the
means. This reduction in the proportion of rejections is prob-
ably due to the better incorporation of correlation between
the observations in the ARMA model compared to ther-
largest order statistics model, where the blocks are assumed
to be independent. Hence the proportions obtained for the
EVT models are likely to be too high.

4.1.2 Model validation

Checking the goodness of fit of a statistical model usually in-
volves plots of the residuals or the fitted values. In the present
context, both depend not only on space but also on time,
making model validation on the complete grid intractable.
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Table 2. Summary of the likelihood ratio tests between the an-
nual (null hypothesisH0) and seasonal models for EHOs, ELOs,
and mean values (MV) at northern (NM) and southern (SM) mid-
latitudes. The column CN indicates the number of grid cells out of
8640 for whichH0 is rejected at the 5 %-level and the columnR

gives the proportion of these grid cells (i.e.,R = CN/8640).

Test level
α = 5 % CN R

EHOs NM 8277 95.8 %
ELOs NM 8632 99.9 %
MV NM 5673 65.7 %
EHOs SM 7581 87.7 %
ELOs SM 8345 96.6 %
MV SM 4713 54.5 %

Therefore we provide diagnostic plots for two representative
grid cells (one in each hemisphere), using the seasonal mod-
els for EHOs in Fig.2 and those for mean values in Fig.3.
Overall the fit seems reasonable, despite a small bias in the
residuals for the EVT model (Fig.2c, f); this, however, only
affects the intercept of our model, and not the regression
coefficients of the covariates. A comparison with the same
model forr = 1 showed that estimates of the covariate coef-
ficients from the two models are consistent, and diagnostic
plots of the model withr = 1 show a good fit and no bias, in-
dicating no fundamental trouble with the model whenr > 1.
Simulations suggest that this bias stems from temporal cor-
relation in the underlying time series. In the residuals of both
models, however, autocorrelation has practically gone (pan-
els (b) and (e) in Figs.2 and3), even though the correlations
at some lags are slightly outside the approximate confidence
bounds. For the mean values this is expected, as modeling
temporal correlation is the main purpose of the fitted ARMA
model. The extreme events may arise from more distant ob-
servations and hence tend to be less correlated than the un-
derlying daily values.

4.2 Spatial patterns

Our modeling approach allows separate analyses of the in-
fluence of the individual covariates (see Fig.1 and Sect.2.1)
on EHOs, ELOs, and mean values. For analytical and illus-
trative reasons it is convenient to plot maps of the regression
coefficient estimates for the covariates, their standard errors,
and thep-values of the likelihood-basedz-test for signifi-
cance on a grid cell basis; although our analysis provides ad-
ditional information about the distribution of ozone extremes
at each grid cell, such information is beyond the scope of the
present study. For lack of space, we only show the maps for
estimates andp-values in this paper, but provide augmented
versions of the figures including standard errors in a supple-
ment. Thep-values are useful to assess the significance of a
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Fig. 2. Diagnostic plots of the extremes model with seasonal co-
variates for EHOs at two sample grid cells(a)–(c) 45.5◦ N, 93◦ W
and(d)–(f) 45.5◦ S, 138◦ E. Panels(a) and(d) show “standardized”
residuals

(
y(t)−µ(t)

)
/σ with 95 %-confidence bounds; panels(b)

and (e) their correlograms and panels(c) and (f) the GEV(0,1,ξ )
Q-Q plots with the identity line in red.
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Fig. 3. Diagnostic plots of the ARMA(1,1) model with seasonal
covariates for monthly mean values of column ozone at two sample
grid cells(a)–(c)45.5◦ N, 93◦ W and(d)–(f) 45.5◦ S, 138◦ E. Panels
(a) and (d) show the standardized residuals with 95 %-confidence
bounds; panels(b) and (d) their correlograms and panels(c) and
(f) the normal Q-Q plots with the identity line in red.

covariate at a grid cell. We consider a covariate to be signif-
icant whenever the correspondingp-value is less than 1 %,
bearing in mind that the calculatedp-values are probably too
small, owing to the temporal correlation in the extremes.

Below we focus on spatial patterns in the three “stan-
dard” covariates included in analyses of long-term ozone
changes (e.g., in the WMO/UNEP Ozone Assessment Re-
ports: WMO, 2003, 2007, 2011), i.e., the solar cycle, QBO,
and EESC, and on additional frequently used dynamical co-
variates, namely the NAO and AAO indices. A companion

Atmos. Chem. Phys., 13, 147–164, 2013 www.atmos-chem-phys.net/13/147/2013/



L. Frossard et al.: Total ozone and atmospheric dynamics and chemistry at mid-latitudes – Part 1 155

30

40

50

60
−150 −60 0 60 150(a) −150 −60 0 60 150(b) −150 −60 0 60 150

30

40

50

60
(c)

−0.002
0.000
0.002
0.004
0.006
0.008
0.010

−150 −60 0 60 150
30

40

50

60
−150 −60 0 60 150(d)

−150 −60 0 60 150

−150 −60 0 60 150(e)

−150 −60 0 60 150

−150 −60 0 60 150

30

40

50

60
(f)

0
0.5
1
5
10
20
50
75
100

%

−60

−50

−40

−30
−150 −60 0 60 150(g) −150 −60 0 60 150(h) −150 −60 0 60 150

−60

−50

−40

−30
(i)

0.000

0.005

0.010

−150 −60 0 60 150
−60

−50

−40

−30
−150 −60 0 60 150(k)

−150 −60 0 60 150

−150 −60 0 60 150(l)

−150 −60 0 60 150

−150 −60 0 60 150

−60

−50

−40

−30
(m)

0
0.5
1
5
10
20
50
75
100

%

Fig. 4. Pointwise regression coefficient estimates (in DU 1022W−1m2Hz) for the solar cycle on an annual basis for(a) EHOs,(b) ELOs,
and(c) mean values of total ozone at 30◦ N to 60◦ N; (d)–(f) show thep-values of pointwise significance tests for the estimates in(a)–(c).
(g)–(m) as(a)–(f) but at 30◦ S to 60◦ S. An augmented version of this figure including standard errors for all coefficient estimates is provided
in Fig. S1.

paper (Rieder et al., 2013, from here on referred to as Part 2)
gives a detailed discussion on the spatial fingerprints of the
volcanic eruptions of El Chich́on and Mt. Pinatubo and of the
fingerprints of the El Nĩno/Southern Oscillation, on which
scientific interest has recently focused. Part 2 also reports on
the contribution of the individual covariates to long-term to-
tal ozone changes for selected regions of interest at northern
and southern mid-latitudes.

4.2.1 Solar cycle

Solar variability described by the 11-yr solar cycle, describ-
ing changes in solar irradiance through changes in sunspot
number (see Fig.1a), influences stratospheric ozone, because
UV-radiation varies with an amplitude of 6–8 % between so-
lar maxima and minima (e.g.,Chandra and McPeters, 1994).
Previous studies found that at mid-latitudes about 2 % of to-
tal ozone variability can be explained through changes in the
solar cycle. However, long-term trends in column ozone over
the last decades cannot be explained by solar variability (e.g.,
Harris et al., 2008; Chandra and McPeters, 1994).

Thep-values show that the solar cycle seems to be signifi-
cant on an annual basis for much of the northern and southern
mid-latitudes (see Fig.4), in general agreement with earlier
studies (e.g.,Steinbrecht et al., 2006). However, two things
are important to note: the area showing highly significant in-
fluence of the solar cycle is much larger for extremes than
for mean values; and on a seasonal basis, high variability is
found in the spatial extent of the significance area (not shown

here), as during spring and winter significant influence of the
solar cycle is restricted towards lower latitudes, in agreement
with the strong influence of the solar cycle on ozone produc-
tion in the tropical region. Sensitivity analysis shows that the
effect persists when any of the corrections for multiple test-
ing are applied, though the region of significance becomes
smaller.

4.2.2 Quasi-Biennial Oscillation (QBO)

The QBO dominates the variability of the equatorial strato-
sphere. Seen as a composite of equatorial zonal winds, it
shows faster and more regular downward propagation dur-
ing the westerly phase, and stronger intensity and longer
duration during the easterly phase. The mean period of the
QBO is about 28 months. Maxima in the variability are larger
during the westerly than the easterly phase and are found
close to the descending easterly and westerly shear zones
(e.g.,Baldwin et al., 2001). Although the QBO is a tropi-
cal phenomenon, it affects stratospheric flow from pole to
pole due to modulation of the effects of extra-tropical waves.
Connection between the QBO and the extra-tropical atmo-
sphere (e.g., mid-latitudes) must be seen in the context of
the seasonal cycle and variability of the extra-tropical strato-
sphere. During winter, the high-latitude stratosphere cools
and a deep westerly polar vortex is formed. During spring
and summer, the vortex diminishes and the westerlies are re-
placed by easterlies due to increased solar heating. As the
Northern Hemisphere has much greater land-mass than the
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Fig. 5.Pointwise regression coefficient estimates (in DUm−1s) for the Quasi-Biennial Oscillation at 30 hPa on an annual basis for(a) EHOs,
(b) ELOs, and(c) mean values of total ozone at 30◦ N to 60◦ N; (d)–(f) show thep-values of pointwise significance tests for the estimates in
(a)–(c). (g)–(m) as(a)–(f) but at 30◦ S to 60◦ S. An augmented version of this figure including standard errors for all coefficient estimates is
provided in Fig. S2.

Southern Hemisphere, tropospheric waves have larger am-
plitudes in the Northern Hemisphere. Therefore, the north-
ern hemispheric winter stratosphere is much more disturbed
than its southern counterpart. Consequently the northern po-
lar vortex can already be disrupted by large-scale planetary
waves in mid-winter, when the exchange of westerlies with
easterlies in high latitudes causes strong sudden stratospheric
warming events (e.g.,Waugh and Randel, 1999). Further,
various studies have also described an influence of the QBO
on other constituents of the atmosphere, such as methane and
water vapor (e.g.,Baldwin et al., 2001).

In this study, the QBO at two different pressure levels
(30 and 50 hPa, with no lag) (see Fig.1b, c) was used as
a covariate in the spatial models. Thep-values in Figs.5
and6 show that the QBO at both pressure levels seems to
be significant over large areas of the northern and south-
ern mid-latitudes. Coefficient estimates for both QBO30 and
QBO50 are highly significant towards the equatorial regions
of the northern and southern mid-latitudes. At northern mid-
latitudes the coefficient estimates for QBO30 show a smooth
staggered gradient towards high latitudes, while the coeffi-
cient estimates for QBO50 show a band-like structure where
regions towards low and high latitudes with significant ef-
fects are split by a band with insignificant effects. While
coefficient estimates are positive for lower latitudes, they
turn negative after the transition zone towards polar latitudes.
This structure is possibly related to a connection between the
QBO and the Brewer-Dobson circulation, asHaklander et al.
(2006) showed that the mean zonal wind pattern can alter

the wave driving of the Brewer-Dobson circulation. This sec-
ond significance region towards northern polar regions, iden-
tified in our analysis, is in good agreement with earlier work
discussing the influence of the QBO on column ozone at
high latitudes (e.g.,Oltmans and London, 1982; Garcia and
Solomon, 1987; Lait et al., 1989; Randel and Cobb, 1994;
Baldwin et al., 2001). The effects of QBO30 are more impor-
tant than those of QBO50, with the latter becoming much less
striking under sensitivity analysis.

4.2.3 Ozone depleting substances (ODS)

Anthropogenic emissions of ODS (ozone depleting sub-
stances such as chlorofluorocarbons) increased from the
early 1950s until the late 1980s, when the Montreal Pro-
tocol was signed. The scale of EESC (equivalent effective
stratospheric chlorine) describes the effect of stratospheric
ozone depletion caused by anthropogenic emissions of ODS
in an integral way (note that we use the EESC scale for mid-
latitudes here). EESC peaked in the second half of the 1990s
(see Fig.1i) because the transport of EESC from the re-
lease of ODS near surface into the stratosphere causes a shift
between maximal emissions of ODS and EESC. Chemical
ozone depletion is particularly large during the winter and
spring seasons when ozone destruction occurs inside the po-
lar vortex, caused by heterogeneous chemical reactions tak-
ing place on polar stratospheric clouds (e.g.,Peter, 1997;
Solomon, 1999). Apart from the atmospheric burden in ODS,
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Fig. 6.Pointwise regression coefficient estimates (in DUm−1s) for the Quasi-Biennial Oscillation at 50 hPa on an annual basis for(a) EHOs,
(b) ELOs, and(c) mean values of total ozone at 30◦ N to 60◦ N; (d)–(f) show thep-values of pointwise significance tests for the estimates
in (a)–(c). (g)–(m) as(a)–(f) but at 30◦ S to 60◦ S. An augmented version of this figure including standard errors for all coefficient estimates
is provided in Fig. S3.

stratospheric temperature is the main driver of ozone loss
within the polar vortex (e.g.,Rex et al., 2004).

At northern mid-latitudes the relation between EESC and
column ozone is negative and significant in almost all ar-
eas (see Fig.7), except in a region north to 50◦ N and
around 120◦ W where EESC is barely significant, probably
because dynamic variability disturbs the relation between
column ozone and EESC. In our sensitivity analysis, EESC
remains the strongest covariate under any multiple testing
corrections. Coefficient estimates in Fig.7 for both extremes
and mean values show a gradient increasing towards high
latitudes. At southern mid-latitudes, the influence of ODS
shows as a “stable staggered” gradient in coefficient esti-
mates which may result from the less disturbed atmospheric
flow due to reduced land-mass.

4.2.4 North Atlantic Oscillation (NAO)

Inter-annual and decadal changes in Northern Hemisphere
tropospheric meteorology and stratospheric dynamics are
strongly related to the variability in the North Atlantic (NAO)
and the Arctic Oscillation (AO). Several studies have shown
that the NAO affects changes in the direction and intensity
of the dominant westerly tropospheric jet stream (e.g.,Or-
solini and Limpasuvan, 2001) and thereby influences Euro-
pean winter/spring climate and the strength of the Arctic po-
lar vortex affecting the stratospheric ozone layer (e.g.,Ap-
penzeller et al., 2000; Thompson and Wallace, 2000; Orsolini
and Limpasuvan, 2001; Hadjinicolaou et al., 2002; Orsolini

and Doblas-Reyes, 2003). Here we use a NAO index follow-
ing Hurrell (2009) (see Fig.1e); it is built by the principal
components of the leading empirically-determined orthogo-
nal function of seasonal sea level pressure anomalies over the
Atlantic sector (defined as: 20–80◦ N, 90◦ W–40◦ E).

The coefficient estimates for the NAO, in winter and spring
(see Fig.8), are found to be significant for much of the north-
ern mid-latitudes, and this significance varies but persists
with any of the multiple testing corrections. Largest positive
coefficients are found over Labrador/Greenland, the North
Atlantic sector, and over the Norwegian Sea, while largest
negative coefficient estimates are found over Europe, Russia,
and the Eastern United States. While regions with positive
coefficient estimates will show increased column ozone dur-
ing positive phases of the NAO and decreased column ozone
during its negative phases, the converse is true for regions
with negative coefficient estimates (see also the contributions
of the NAO to long-term ozone changes at different regions
presented in Part 2). This relation between column ozone and
the mode of the NAO can be explained by pressure gradients,
which are increased during positive phases of the NAO due to
a deeper than usual Icelandic low and a stronger than usual
sub-tropical high pressure system. This increased pressure
gradient results in more and stronger winter storms crossing
the Atlantic and a shift of storm tracks towards the north.
During the negative phase of the NAO the converse occurs,
i.e., a weaker sub-tropical high and Icelandic low lead to a re-
duced pressure gradient, and therefore to fewer and weaker
winter storms on a more west-east pathway. Compared to
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Fig. 7.Pointwise regression coefficient estimates (in DUppt−1) for ozone depleting substances in terms of equivalent effective stratospheric
chlorine (EESC) on an annual basis for(a) EHOs,(b) ELOs, and(c) mean values of total ozone at 30◦ N to 60◦ N; (d)–(f) show thep-values
of pointwise significance tests for the estimates in(a)–(c). (g)–(m) as (a)–(f) but at 30◦ S to 60◦ S. An augmented version of this figure
including standard errors for all coefficient estimates is provided in Fig. S4.
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Fig. 8. Pointwise regression coefficient estimates (in DU(unit NAO)−1) for the North Atlantic Oscillation (NAO) for(a) EHOs,(b) ELOs,
and (c) mean values of total ozone during winter (DJF) at 30◦ N to 60◦ N; (d)–(f) show thep-values of pointwise significance tests for
the estimates in(a)–(c). (g)–(m) as(a)–(f) but during spring (MAM). An augmented version of this figure including standard errors for all
coefficient estimates is provided in Fig. S5.
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Fig. 9. Pointwise regression coefficient estimates (in DU(unit AAO)−1) for the Antarctic Oscillation (AAO) for(a) EHOs,(b) ELOs, and
(c) mean values of total ozone during winter (JJA) at 30◦ S to 60◦ S; (d)–(f) show thep-values of pointwise significance tests for the
estimates in(a)–(c). (g)–(m) as (a)–(f) but during spring (SON). An augmented version of this figure including standard errors for all
coefficient estimates is provided in Fig. S6.

other covariates discussed, the NAO “fingerprint” is of simi-
lar spatial extent for both extremes and mean values, but the
magnitude of influence on total ozone is larger for EHOs and
ELOs than for mean values, confirming the importance of at-
mospheric dynamics for total ozone variability and changes
(see Part 2 andRieder et al., 2010a,b, 2011).

4.2.5 Antarctic Oscillation (AAO)

The semi-annual oscillation (SAO) at mid and high lati-
tudes in the Southern Hemisphere is related to the depth of
the troposphere and to the weakening and expansion of the
circumpolar vortex of low pressure surrounding Antarctica
from March–June and September–December (e.g.,van Loon,
1967, 1972).

During the high phase of the Antarctic Oscillation (AAO),
the Lagrangian mean circulation, responsible for the trans-
port of ozone from the tropics to the polar region, is strongly
reduced. Wave refraction triggers this process: during the
high phase, the polar vortex refracts more wave activity in
the tropics and breaking of these waves strengthens the vor-
tex due to the inside transport of momentum (e.g.,Thompson
and Wallace, 2000). During the low phase of the AAO the op-
posite occurs: a weaker vortex decelerates more when waves
are defracting in.

As for the NAO in the Northern Hemisphere, the con-
tribution of the AAO to extremes and mean values seems
to be highly significant over large parts of the southern
mid-latitudes (see Fig.9). Results of the sensitivity analy-

sis for the AAO are similar to those for the NAO, confirming
the presence of the effects with any of the multiple testing
corrections. Interestingly the central southern mid-latitudes
show especially highly significant (negative) coefficient esti-
mates for the AAO. This may be related to enhanced wave
activity in the tropics (see alsoSchnadt Poberaj et al., 2011),
leading to enhanced ozone transport from the tropics to the
extra-tropics (compare also with results for ENSO shown in
Part 2) and a strengthening of the southern ozone “collar”.
The AAO was found to have also significant influence on the
dynamical masking of the Mt. Pinatubo eruption at southern
mid-latitudes, which is discussed in detail in Part 2.

5 Discussion and conclusions

In this study statistical models, including important covari-
ates describing the state of the atmosphere (solar cycle, QBO,
ENSO, NAO, AAO, EESC, and volcanic eruptions), have
been used to analyze changes in extreme values (EHOs and
ELOs using ther-largest order statistics model) and mean
values (using an ARMA model) of total ozone at northern
and southern mid-latitudes. The results show that “finger-
prints” of dynamical and chemical features are captured in
both the “bulk” and the tails of the distribution of total ozone
time series. However, “fingerprints” of atmospheric dynam-
ics (NAO, AAO) are better represented in the extremes and
can be partly overlooked in analysis of the mean values
alone. This confirms results from earlier local/regional stud-
ies (Rieder et al., 2010b, 2011).
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For the three “standard” covariates – solar cycle, QBO,
and EESC – significant influence was found almost through-
out the northern and southern mid-latitudes, in good agree-
ment with previous studies (e.g.,Steinbrecht et al., 2006;
WMO, 2003, 2007, 2011). However, several important fea-
tures should be noted: (i) regarding the “fingerprints” of the
solar cycle, the area highly significantly influenced is much
larger for extremes than for mean values and there is large
seasonal variability (not shown here); (ii) for the QBO at
both pressure levels analyzed (30 and 50 hPa) large signif-
icant areas are found at both northern and southern mid-
latitudes, especially towards equatorial regions. An interest-
ing feature is the band-like structure found for QBO50: an
insignificant band at central mid-latitudes splits two highly
significant areas towards equatorial and polar regions. This
structure might be related to a connection between the QBO
and the Brewer-Dobson circulation at this pressure level,
where zonal winds can alter wave driving (e.g.,Haklander
et al., 2006); (iii) there is strong influence of EESC on ozone
throughout mid-latitudes. At northern mid-latitudes a gradi-
ent is found in EESC-coefficients, increasing towards high
latitudes, which can be interpreted as resulting from the inter-
action between ozone production, ozone transport to mid and
high latitudes (due to the Brewer-Dobson circulation), and
enhanced ozone depletion in polar regions (especially during
winter and early spring). This pattern is less pronounced (but
still preserved) at southern mid-latitudes, probably due to
the reduced land-mass leading to less disturbed atmospheric
flow.

For the North Atlantic Oscillation, strong influence on col-
umn ozone is found over Labrador/Greenland, the Eastern
United States, the Euro-Atlantic sector, and Central Europe.
For the NAO’s southern counterpart, the AAO, strong in-
fluence on column ozone is found at lower southern mid-
latitudes, including the southern parts of South America and
the Antarctic Peninsula, and central southern mid-latitudes.
At central southern mid-latitudes highly significant negative
coefficient estimates found for the AAO can probably be re-
lated to enhanced wave activity in the tropics leading to en-
hanced ozone transport from the tropics to the extra-tropics.
Results for both NAO and AAO confirm the importance of at-
mospheric dynamics for ozone variability and changes from
local/regional to global scale.

We refer to the companion paper (Rieder et al., 2013) for
the spatial analysis of fingerprints of the volcanic eruptions
of El Chich́on and Mt. Pinatubo and the El Niño/Southern
Oscillation. There we discuss the important role of dynam-
ical covariates (AAO and ENSO) on amplifying/weakening
the effect of volcanic eruptions at southern mid-latitudes and
provide a detailed overview of the contribution of the indi-
vidual covariates to long-term total ozone changes (1979–
2007), in the mean and extreme values, for various regions
of interest.

Appendix A

Statistical terms

This section provides an overview of statistical topics rele-
vant to this paper like maximum likelihood estimation, asso-
ciated hypothesis tests on models and parameters, and the
Bonferroni correction for multiple testing. Being far from
complete, it merely provides a brief overview. Apart from
the Bonferroni correction, these topics all appear inDavi-
son(2003), and a more accessible reference isColes(2001,
Ch. 2).Wilks (2011) covers a broad range of statistical top-
ics in atmospheric sciences, thereunder the Bonferroni cor-
rection in Sect. 11.5 and multiple testing in Sect. 5.4.

A1 Likelihood estimation

Let Y be a random vector whose distribution is supposed
to be known up to a parameter vectorθ belonging to ap-
dimensional parameter space withp ≥ 1. The joint density
of Y , denotedfY (y;θ), depends on the observationy and on
the parameter vectorθ , which is unknown. Thelikelihoodfor
θ based on the observationy is defined asL(θ) = fY (y;θ),
i.e., the joint density of the observation as a function of the
unknown parameter. If the components ofY are independent
and identically distributed random variables, the joint density
or the likelihood simplifies to the product of the individual
densities.

Themaximum likelihood estimateof θ is the valueθ̂ that
maximizes the likelihoodL(θ), i.e., the value ofθ under
which the observed outcomey is most probable. Equiva-
lently, θ̂ also maximises the logarithm of the likelihood, the
so-called log-likelihood. Because sums are easier to handle
than products, one generally prefers to work with the log-
likelihood. In practice, eitherL or log(L) is maximized nu-
merically.

To investigate its mathematical properties,θ̂ has to be
regarded as a function of the underlying random vectorY

rather than of the observed datay. In this case, it is itself a
random vector with a probability distribution and therefore
called anestimator, while the estimate is an “observation”
of the estimator. Under some regularity conditions on the
likelihood function and the parameter space (Davison, 2003,
p. 118), the distribution of the maximum likelihood estima-
tor (MLE) θ̂ for increasing sample sizen is known. Using
this asymptotic result as an approximation for finite samples,
the MLE θ̂ has approximately a Gaussian distribution with
mean the true value ofθ and variance matrixJ(θ̂)−1, where
J(θ̂) is thep×p matrix of the negative second derivatives of
log(L). SinceJ(θ̂) may be computed numerically during the
optimization procedure, standard errors SE(θ̂i) for the com-
ponentsθ̂i of θ̂ are easily produced.

In this work, we estimate the parameters of our statistical
models for total ozone by maximum likelihood estimation

Atmos. Chem. Phys., 13, 147–164, 2013 www.atmos-chem-phys.net/13/147/2013/



L. Frossard et al.: Total ozone and atmospheric dynamics and chemistry at mid-latitudes – Part 1 161

and compute standard errors for these estimates as described
here.

A2 z-test andp-value

The distributional result for the MLE given in the previous
section implies that the expressionzi =

(
θ̂i − θi

)
/SE(θ̂i) has

a standard Gaussian distribution. This can be used to test the
null hypothesis that the unknown parameterθi , thei-th com-
ponent ofθ , takes a given valueθ0

i , i.e.,H0 : θi = θ0
i . Next,

we illustrate the principle of hypothesis testing for this so-
calledz-test.

If H0 is true,zi,0 =
(
θ̂i − θ0

i

)
/SE(θ̂i) has a standard Gaus-

sian distribution. IfH0 is clearly not true, meaning that the
unknown true valueθi is far fromθ0

i , the absolute value|zi,0|

is likely to be large because the estimatedθ̂i is close toθi .
The size of|zi,0| is thus an indicator for the plausibility of
H0. To test whetherH0 is true, one computes the probability
of having azi,0 that is more exceptional underH0 than the
one observed, which is the probability that a standard Gaus-
sian random variableZ takes a value above|zi,0| or below
−|zi,0|. If this probability, known asp-valueof the test, is
small (typically belowα = 0.05 or α = 0.01), the observed
zi,0, and hence alsôθi , are rather unlikely to occur underH0,
so the latter hypothesis is probably false and therefore should
be rejected. If thep-value is large, however, the observations
do not contradictH0, but it is not possible to say more (in
particular, this doesnot mean thatH0 is true!). The rejection
limit α is called thelevelof the hypothesis test.

In our work, thez-test is carried out for the maximum like-
lihood estimates of regression coefficients withθ0

i = 0 for all
i to assess whether the corresponding covariates have an ef-
fect on total ozone.

A3 Likelihood ratio test

Another test related to maximum likelihood theory is the
likelihood ratio test, which allows a comparison of the fit of
two nested parametric modelsA andB. Assume that model
A hasp parameters, that modelB is a restriction ofA with
q < p parameters, and that̀̂A and ˆ̀

B are the maximized
log-likelihoods of these models. Provided that modelB is
true, which is the null hypothesis in this test, the statistic
2( ˆ̀

A − ˆ̀
B) has an asymptoticχ2

p−q -distribution. Using this
result as an approximation for finite samples, one can test
whether the additional parameters in modelA bring an im-
provement on modelB. If not, the simpler modelB would
be preferred.

We use the likelihood ratio test to compare the models with
annual and seasonal covariates.

A4 Akaike information criterion

A common criterion to compare non-nested parametric mod-
els is the Akaike information criterion (AIC), which involves
the maximized log-likelihood̂̀ and a penalization term for

the number of parameters in the model. More precisely,
AIC = −2 ˆ̀+ 2p, wherep is the number of parameters in
the model. The best model is the one for which the AIC is
minimal, because a good model should have a large likeli-
hood (i.e., plausible that it generated the observed data) and
a small number of parameters (i.e., as simple as possible).

In this work we select the order of the ARMA model for
mean values based on the AIC.

A5 Bonferroni correction

The levelα of a hypothesis test is the probability of rejecting
the null hypothesis when it is actually true, or, equivalently,
the probability of a false rejection. Often one takesα = 0.05.
When performingm hypothesis tests each with levelα, the
probabilityδ of at least one false rejection among them tests
is bounded above byδ ≤ mα, which can be much larger than
α. TheBonferroni correctionconsists in adjusting the level
of the individual tests to ensure that the global error proba-
bility δ is bounded by a given probability. If this probability
is chosen to be 0.05, the level of the individual tests must be
α = 0.05m−1. The upper boundmα is fairly general, so there
may be better adjustments for particular cases. Moreover the
Bonferroni correction is also very conservative whenm is
large.

We use the Bonferroni correction as one method in the as-
sessment of a possible multiple testing effect on the signifi-
cance tests for the regression coefficients.

Supplementary material related to this article is
available online at:http://www.atmos-chem-phys.net/13/
147/2013/acp-13-147-2013-supplement.pdf.
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Davison, A. C., Sẗubi, R., Weihs, P., and Holawe, F.: Extreme
events in total ozone over Arosa – Part 1: Application of ex-
treme value theory, Atmos. Chem. Phys., 10, 10021–10031,
doi:10.5194/acp-10-10021-2010, 2010a.

Rieder, H. E., Staehelin, J., Maeder, J. A., Peter, T., Ribatet, M.,
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