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The paper discusses incomplete sensitivity evaluations for shape optimization problems. It also shows how reduced order models can be introduced to extend the validity domain of the approach.

Introduction

For gradient-based shape optimization methods, it is necessary to have an estimation of the derivatives of the discrete cost function with respect to control parameters. When the number of control parameters is large, an adjoint equation is necessary [START_REF] Pironneau | Optimal Shape Design for Elliptic Systems[END_REF][START_REF] Jameson | Optimum aerodynamic design via boundary control[END_REF][START_REF] Giles | Adjoint equations in CFD: duality, boundary conditions and solution behaviour[END_REF]. It is tempting to use a discretization of the adjoint equation of the continuous problem; this however would not account for the discretization errors of the numerical schemes (like numerical dissipation for instance). Automatic differentiation produces the exact derivatives of the discrete cost function. Moreover, in reverse mode, the cost of this evaluation is independent of the number of control parameters as for a standard adjoint method. But, practical issues remain for large codes.

In multi-criteria optimization sensitivity analysis is important to discriminate between Pareto points and this even if a gradient free approach is used. Indeed, the knowledge of sensitivity permits to qualify various points of a Pareto front from the point of view of robustness: two points on a Pareto front can be compared if one considers the sensitivity of the functional with respect to the independent variables which are not control parameter. The robust optimum is the one with lowest sensitivity.

Also, sensitivity evaluation is important because often in simulations information on the uncertainties on the results is more important than the results themselves. For instance, it is essential to be able to identify dominant independent variables in a system. As these will need more accurate monitoring and for which precise measurements should be provided.

This paper is devoted to the concept of incomplete sensitivity in shape optimization. The aim is to avoid the linearization of the state equation. We will see that sometimes this needs a reformulation of the initial problem.

Shape optimization

For the design of a shape S, consider a general situation with a geometrical design or control variable x fixing S(x), auxiliary geometrical parameters q(x) (mesh related informations), a state variable u(q(x)) solution of some state equation F (u(q(x))) = 0 and finally a cost function for optimization J(x, q(x), u(q(x))):

J : x → q(x) → u(q(x)) → J(x, q(x), u(q(x))) (1) 
The derivative of J with respect to x is:

∇ x J = J x + J q q x + J u u q q x (2)
The major part of the computing time of this evaluation is due to u q q x in the last term. The classical approach is by adjoint variable where the last term becomes:

J u u q q x = J u (F u ) -1 F q q x = vF q q x
where v si solution of vF u = J u . But, F q q x = F x worths zero except along the shape where it describes the dependency of the boundary conditions on the shape with respect to shape variations. This remark is central for the development of low complexity computational strategies for the gradient. In particular, it means that if the parameterization is chosen such that F x ∼ 0 computing the adjoint variable v is useless. For instance, a typical situation with fluid flows is with zero normal pressure gradient along the shape and admissible shape variation normal to the shape.

A model problem

Let us start with a simple model problem. Consider as cost function J = ǫ n u y (ǫ) and as state equation the following Poisson equation (taking |ǫ| << 1)

-u yy = 1, on ]ǫ, 1[ u(ǫ) = 0, u(1) = 0
which has as solution u(y) = -y 2 /2 + (ǫ + 1)y/2 -ǫ/2. This is a case of a function which has a strong geometrical element and a weak dependance on the geometry via the state u. The gradient of J with respect to ǫ is given by

J ǫ (ǫ) = ǫ n-1 (nu y (ǫ) + ǫu yǫ (ǫ)) = ǫ n-1 2 (-n(ǫ -1) -ǫ)
The second term between parenthesis, -ǫ, is the state linearization contribution which is neglected in incomplete sensitivities. We can see that the sign of the gradient is always correct and the approximation is better for large n.

Hadamard equivalent boundary condition

Above, we mentioned the normal pressure boundary condition. Another important condition is slip or non penetration condition. The Hadamard slip boundary condition accounts for the effects of small shape deformations on the state and is prescribed on the undeformed shape x 1 instead of the slip condition on the deformed shape x 2 .

Denote by n 1 and n 2 the unit normal on the undeformed and deformed shapes. On the later the slipping boundary condition reads: u 2 .n 2 = 0 and on the former If we suppose that the variations of the geometrical quantities dominate the physical ones:

u 2 .n 2 ∼ u 1 .n 1 + u 1 .(n 2 -n 1 ) = 0
This defines an implicit relation for u 1 .n 1 which can be implemented in a iterative resolution procedure:

u p+1 1 .n 1 = -u p 1 .(n 2 -n 1 )
In the same way, an equivalent boundary condition can be derived for the tangential component. These relations give satisfactory results when the shape curvature and the amount of the deformation are not high [START_REF] Mohammadi | Applied Shape Optimization for Fluids[END_REF][START_REF] Bardos | Petites perturbations et équations d'Euler pour l'aéroélasticité[END_REF] and indicate how incomplete sensitivities can be defined neglecting state variations in shape deformation.

Another interesting situation is when one can express the state in the domain as (denote the shape by y s ):

u = w(y -y s )v(w(y -y s )) (3) 
Suppose u must satisfy a homogeneous Dirichlet boundary condition on the shape, then w tends to zero with the distance to the shape y -y s and v is selected to satisfy the state equations. Now, sensitivity analysis for a functional such as J = J(y s , u) gives:

∇ ys J = J ys + J u (wv ys + vw ys )
But, w(0) = 0 and one knows the dependency between w and y w . Therefore, in cases where the near-wall dependency of the solution with respect to the distance to the shape is known the sensitivity with respect to shape variations normal to the wall can be obtained without linearizing the state equation. Wall functions for fluids give typical such dependencies.

Incomplete sensitivities

Continuing the analysis above, we have observed that when the shape is regular the last term in ( 2) is small if J is of the form J(x) = shape f (x, q(x))g(u). In other words, it should involve a product of state by geometry quantities. In the analysis for the injection condition we have f = n and g = u.

A middle path between full linearization of the state equation and incomplete sensitivity is to use a reduced complexity or reduced order model ũ(x, u) ∼ u(x) to provide an inexpensive approximation of the missing term in (2):

∇ x J = J x + J q q x + J u ũx u ũ (4) 
Reduced order models can come, for instance, from a reduction in dimension of the state equations as in wall functions [START_REF] Mohammadi | Analysis of the k-epsilon turbulence model[END_REF]. They can also be built through learning, assimilation and identification in parametric or non parametric models [START_REF] Krige | A statistical approach to some mine valuations and allied problems at the Witwatersrand[END_REF][START_REF] Chiles | Geostatistics, Modeling Spatial uncertainty[END_REF][START_REF] Hoel | Introduction to Mathematical Statistics[END_REF][START_REF] Jeong | Data Mining for Aerodynamic Design Space[END_REF][START_REF] Kohonen | Self-Organizing Maps[END_REF][START_REF] Kumano | Multidisciplinary design optimization of wing shape with nacelle and pylon[END_REF][START_REF] Lindman | Analysis of Variance in Complex Experimental Designs[END_REF][START_REF] Mandic | Recurrent Neural Networks for Prediction: Architectures, Learning algorithms and Stability[END_REF][START_REF] Spooner | Stable Adaptive Control and Estimation for Nonlinear Systems: Neural and Fuzzy Approximator Techniques[END_REF][START_REF] Veroy | Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations: Rigorous reduced-basis a posteriori error bounds[END_REF] using up-to-date techniques to minimize the curse of dimensionality in the sampling needed in building these models [START_REF] Smolyak | Quadrature and interpolation formulas for Tensor Products of Certain Classes of Functions[END_REF][START_REF] Bungartz | Sparse Grids[END_REF][START_REF] Finkel | Quad Trees: A Data Structure for Retrieval on Composite Keys[END_REF][START_REF] Gorban | Principal Manifolds for Data Visualisation and Dimension Reduction[END_REF][START_REF] Jolliffe | Principal Component Analysis[END_REF][START_REF] Kumano | Multidisciplinary Design Optimization of Wing Shape for a Small Jet Aircraft Using Kriging Model[END_REF].

Level set method

Let us make a link between the two previous points and the level set method which is an established technique to represent moving interfaces with a tremendous dedicated literature [START_REF] Osher | Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations[END_REF][START_REF] Peskin | The fluid dynamics of heart valves: experimental, theoretical and computational methods[END_REF][START_REF] Allaire | A level-set method for shape optimization[END_REF]. A parametrization of a boundary Γ by the level set method is based on the zero-level curve of a function ψ (say the signed Euclidean distance to Γ):

Γ = {x ∈ Ω : ψ(x) = 0}, ψ(x) = ± inf y∈Γ |x -y|
with the convention of a plus sign if x ∈ Ω and minus sign otherwise. Hence When the boundary moves with velocity V by a pseudo time step δζ, the shape becomes:

ψ| Γ = 0, ψ| IR d \Ω < 0, ψ Ω > 0 (5)
Γ = {x : ψ(ζ + δζ, x + V δζ) = 0}
This motion can be described by:

∂ψ ∂ζ + V ∇ψ = 0
In the context of optimization we consider V = ∇ ψ J . n where the local normal to the isocontours of ψ is defined by n = ∇ψ/|∇ψ| (where ∇ is with respect to space coordinate). The variation of ψ are then given by

ψ ζ = -∇ ψ J|∇ψ| (6) 
Decomposition ( 3) is particularly interesting with a level set parameterization:

u = w(ψ)v
Consider a functional of the form:

J = J(ψ, u(ψ))
with a gradient with respect to ψ given by:

∇ ψ J = J ψ + J u u ψ with u ψ = w ′ v + w(ψ)v ψ
as w(ψ = 0) = 0. Incomplete sensitivity u ψ = w ′ v is exact in this case and can be extended inside the domain if a low order model is known for v. This gradient is used in (6) but it needs regularity control [START_REF] Mohammadi | Global optimization, level set dynamics, incomplete sensitivity and regularity control[END_REF] as shown in figure 1 for a constrained shape optimization problem with level set parameterization. On the other hand, the loss of regularity can be useful in topology optimization [START_REF] Garreau | The Topological Asymptotic for PDE Systems: The Elasticity[END_REF] as it permits for holes to appear.

Multi-criteria problems

This is a situation where incomplete sensitivity has an edge over full gradient calculation. Suppose p functionals j i , i = 1, .., p are involved in a design problem (as the one presented below): min

x j 1 (u(x)), such that j j (u(x)) = 0, j = 2, .., p

The low-complexity of incomplete sensitivity permits to avoid use of penalty in J = i α i j i . Indeed, to get J ′ we evaluate individual incomplete sensitivities j ′ i and use a projection over the subspace orthogonal to constraints: {(.., j ′⊥ j , ..), j = i}. For instance, one can use:

j′ i = j ′ i - j =i (j ′ i , j ′ j )j ′ j then J ′ = j′ imax where i max = Argmin i j′ i .
With a full gradient this would have implied calculating an adjoint variable for each of the constraint v i F u = (j i ) u .

Application

An important class of functionals concerns the aerodynamic force on the shape along an arbitrary direction s:

J = shape [T • n] • s dσ (7) 
with T = p I -ν(∇u + ∇u T ) the Newtonian stress tensor. This enters the validity domain of incomplete sensitivities. We present the application of incomplete sensitivity concept to the design of axial blades under geometric and state constraints. Two quantities define the blade functioning: the flow rate Q and the pressure rise △p between in and outlet boundaries (see figure 3-left). The optimization is necessary to improve the fan performances while maintaining strong constraints such as low axial packaging and low sound level emitted. The fan efficiency is defined as:

η = Q△p ΩT r (8) 
where T r = shape r [T • n] • e θ dσ is the torque and Ω the rotation rate. The problem of interest is therefore to minimize the torque T r at given Q, Ω and volume. We would like also to increase ∆p. Ω is an independent variable and is given. The volume constraint can be transformed into a boundary integral by denoting X = (x, y, z) t :

V = Ω 1dv = Ω 1 3 ∇.( X)dv = ∂Ω X. ndσ
But, Q and ∆p are not defined on the shape and are therefore outside the application domain of incomplete sensitivity. Q is easy to enforce through the inlet velocity conditions which can be frozen during the design. ∆p on the other hand needs more workout to maintain. This is a typical situation where the original problem is not in the application domain of incomplete sensitivity but can be brought in using the state equations, here the Navier-Stokes system for incompressible flows. Consider the domain in figure 2, using Stokes formula for the steady momentum equation we have:

Γ (u(u.n) + T.n)dσ = 0
A first classical approximation is to neglect viscous effects at inlet and outlet boundaries. Then, using periodicity conditions for lateral boundaries we have:

Γ i u(u.n)dσ + Γo u(u.n)dσ + Γ i pndσ + Γo pndσ + Γw T n w dσ = 0 (9)
Let us denote mean value quantities at inlet and outlet boundaries by u i , u o , p i , p o . The inlet and outlet boundaries have the same length L. From the continuity equation (∇.u = 0) and due to periodicity on lateral boundaries and slip condition on the shape, we have

u i .n i = -u o .n i .
The first component (along x axis) of ( 9) is therefore reduced to:

△p = p o -p i = -C x 1 2 ρ ∞ |u ∞ | 2 c L ( 10 
)
where C x = C d cos(β) -C l sin(β) is the horizontal aerodynamic force. Hence, the pressure difference between inlet and outlet boundaries can be expressed through the horizontal aerodynamic force on the blade which is a boundary integral making possible the application of incomplete sensitivities. Let us consider the application of this approximation for the design of a blade for a geometry provided by Valeo Motors and Actuators. It represents a fan with 11 blades at the operating point Q = 1800 m 3 /h and Ω = 1700 rpm. Because this is a real configuration of already optimized blade we do not expect huge improvement. Still it would be interesting see if the design brings some extra performances and also this will be an a posteriori validation of the configuration. The flow solver used is TASCflow with a structured multi-block O-type elliptic mesh having about 140000 nodes and 4000 CAD-Free control points on the blade.

Figure (3-right) shows the history of normalized η, Q and ∆p during the design. One can see that the efficiency increases with a decreasing torque and increasing pressure rise. This proves that the analysis above linking pressure rise to aerodynamic coefficients is valid making possible the use of incomplete sensitivity in this design. This design has also been experimentally validated [START_REF] Stanciu | Low Complexity Models to Improve Incomplete Sensitivities for Shape Optimization[END_REF].

Time dependent problems

Another situation where incomplete sensitivities bring a real relief is for time-dependent applications. In these situations, incomplete sensitivities enable for real time sensitivity definition in the sense that the state and the sensitivities are available simultaneously without the need for solving a backward in time adjoint problem. This avoids the difficulty of intermediate states storage. Indeed, unlike in steady applications where intermediate states can be replaced by the converged state, reducing the storage to one state, in time dependent problems one cannot make this simplification.

We distinguish two situations: when the control is stationary and when the control is time-dependent. A shape optimization problem for unsteady flows is in the first class, while an active flow control problem belongs to the second domain (Below we give an example of buffeting control using Hadamard equivalent boundary conditions and incomplete sensitivities).

The problem of shape optimization for unsteady flows can be formulated as: min S∈O ad J(S, {u(t, q(S)), t ∈ [0, T ]}) [START_REF] Jolliffe | Principal Component Analysis[END_REF] where the state u(t, q(S)) varies in time but not S. The cost function involves the state over a given time interval [0, T ] through for instance:

J(S) = 1 T T 0 j(S, q(S), u(t, q(S)))dt (12) 
where j involves instantaneous pressure based lift or drag coefficients:

C d (t) = 1 ρ ∞ | u ∞ | 2 S ( u ∞ . n)p(t, q(S))ds, C l (t) = 1 ρ ∞ | u ∞ | 2 S ( u ⊥ ∞ . n)p(t, q(S))ds
where ρ ∞ and u ∞ denote reference density and velocity vector taken for external flows as far field quantities. The gradient of J is the averaged instantaneous gradients:

J ′ (S) = 1 T T 0 j ′ (S, q(S), u(t, q(S)))dt = 1 T T 0 (j S + j q q S ) + 1 T T 0 j u u S
We need to accumulate the gradient over period [0, T ]. The first term is the incomplete sensitivity. In case the full gradient is required then an adjoint problem is required to compute the remaining terms. Shape optimization for unsteady flows has numerous applications. For instance, noise reduction as the radiated noise is linked to lift and drag time fluctuations [START_REF] Marsden | Optimal aeroacoustic shape design using approximation modelling[END_REF].

Model problem

Let us present the incomplete sensitivity analysis on another model problem for unsteady situations. Consider the following time dependent state equation for u(y, t), -S ≤ y ≤ S, t ≥ 0 in a infinite channel of width 2S.

u t -u yy = F (S, y, t), u(S, t) = u(-S, t) = 0, (13) 
with F (S, y, t) = -εω sin(ωt)(S 2 -y 2 ) + 2(1 + ε cos(ωt))

inducing small perturbation in time around a parabolic solution if ε << 1. Indeed, the exact solution for this equation is: 

u(y, t) = (S 2 -y 2 )f (t), f (t) = (1 + ε cos(ωt))

Buffeting control with incomplete sensitivities

We consider the flow at transonic regime over an airfoil. At this regime, the wake unsteadinesses forces the shock to move up and down on the upper surface of the airfoil. This is called buffeting. We would like to provide active control by an injection/suction devices placed at mid-chord on the upper and lower surfaces. The amount of injection/suction is defined using instantaneous incomplete sensitivity for J = (C l ) t which aims at removing lift fluctuations. These are set to zero outside the support of the control as shown in figure 4: δS(t) = -ρ∇J(t) χ C

where shape variations are linked to injection/suction by the Hadamard approximation:

u.n(t + δt) = -u.δn(t) + δS(t) δt .n(t)

where n(t) is the normal to the shape at time t and δn(t) is the variation of the normal.

Figure 5 shows the pressure coefficient distributions with and without the control turned on. One can see the control is effective and buffeting has been removed.

Concluding remarks

Hadamard incomplete sensitivity concept has been described. As this is reduced order modelling it has limitations and only applies to special functionals. These must involve product of state by geometry quantities and should be defined over the support of the control parameters (i.e. shape for a shape optimization problem). Aerodynamic coefficients are in this class. It has been shown how to reformulate the initial problem when not entering this validity domain. Again, this is not always possible, but when it is so, it permits to access sensitivity at zero cost. Beyond this, incomplete sensitivities are really helpful for time dependent problems (not reported here) and for multi-criteria situations avoiding the calculation of one adjoint by functional.

Figure 1 :

 1 Figure 1: Effect of regularity control on the level set function during optimization.
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 2 Figure 2: Sketch of a blade geometry.
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 3 Figure 3: Axial blade optimization: computational domain (left) and evolution of blade performances during optimization (η/η 0 , △p/△p 0 , T r /T r0 ).
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 4 Figure 4: Shape variations in time.
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 5 Figure 5: Instantaneous pressure coefficient over the airfoil. Control off (left) and on (right).
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And consider a functional of the form: j(S, t) = S m u y (y = S, t), m ∈ IN * [START_REF] Kumano | Multidisciplinary Design Optimization of Wing Shape for a Small Jet Aircraft Using Kriging Model[END_REF] involving instantaneous state quantities. The sensitivity with respect to S is:

The first term is the 'instantaneous incomplete sensitivity'.

As we have: u y (S, t) = -2Sf (t), and u y S (S, t) = -2f (t)

One can express the different contribution in [START_REF] Kumano | Multidisciplinary design optimization of wing shape with nacelle and pylon[END_REF]:

Comparing with -2(m + 1)S m f (t), one sees that the approximation of the gradient based on this incomplete sensitivity is accurate and its precision increases with m. Most important, the incomplete sensitivity has always the right sign. It is obvious that the analysis still holds if the functional involves a time integral:

Now, if the functional involves an integral over the domain:

J(S, T ) =

(0,T )×(-S,S)

j(y, t) dt dy

One can still make the analysis above and see the importance of different contributions:

(mS m-1 u y (S, t) + S m u y S (y, t)) dt dy

Again, an incomplete evaluation of the sensitivity is accurate because u y S = 0. One also notices that if m is odd the last integral vanishes, even though this integral is cheap to get as it does not involve any state sensitivity with respect to S. Anyway, incomplete sensitivity is efficient but, as we said, it only holds for special functionals.