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BLIND SIGNAL SEPARATION FOR DIGITAL
COMMUNICATION DATA

A. CHEVREUIL AND P. LOUBATON

Abstract. Blind source separation, often called independent component ana-
lysis, is a main field of research in signal processing since the eightees. It con-
sists in retrieving the components, up to certain indeterminacies, of a mixture
involving statistically independent signals. Solid theoretical results are known;
besides, they have given rise to performent algorithms. There are numerous
applications of blind source separation. In this contribution, we particularize
the separation of telecommunication sources. In this context, the sources stem
from telecommunication devices transmitting at the same time in a given band
of frequencies. The received data is a mixed version of all these sources. The
aim of the receiver is to isolate (separate) the different contributions prior to
estimating the unknown parameters associated with a transmitter. The con-
text of telecommunication signals has the particularity that the sources are
not stationary but cyclo-stationary. Now, in general, the standard methods of
blind source separation assume the stationarity of the sources. In this contri-
bution, we hence make a survey of the well-known methods and show how the
results extend to cyclo-stationary sources.

1. Introduction

1.1. Generalities on Blind Source Separation. The goal of blind source sep-
aration is to retrieve the components of a mixture of independent signals when no a
priori information is available on the mixing matrix. This question was introduced
in the eighties in the pionneering works of C. Jutten and J. Herault [32]. Since then,
Blind Source Separation (BSS), also called independent component analysis, was
developed by many research teams in the context of various applicative contexts.
The purpose of this chapter is to present BSS methods that have been developed in
the past in the context of digital communications. In this case, K digital commu-
nication devices sharing the same band of frequencies transmit simultaneously K
signals. The receiver is equipped with M ≥ K antennas, and has to retrieve a part
of (or even all) the transmitted signals. The use of BSS techniques appears to be
relevant when the receiver has no a priori knowledge on the channels between the
transmitters and the receiver. As many digital communication systems use train-
ing sequences which allow one to estimate the channels at the receiver side, blind
source separation is in general not a very useful tool. However, it appears to be of
particular interest in contexts such as spectrum monitoring or passive listening in
which it is necessary to characterize unknown transmitters (estimation of technical
parameters such as the carrier frequency, symbol rate, symbol constellation,...) in-
terfering in a certain bandwidth. For this, it is reasonable to try to firstly retrieve
the transmitted signals, and then to analyse each of them in order to characterize
the system it has been generated by. In this chapter, we provide a comprehensive
introduction to the blind separation techniques that can be used to achieve the first
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step.

In order to explain the specificity of the problems we address in the following,
we first recall what are the most classical BSS methodologies. The observation is a
discrete-timeM -variate signal y(n) defined as y(n) = Hs(n) where the components
of the K-dimensional (K ≤M) time series s(n) = (s1(n), . . . , sK(n))T represent K
signals which are statistically independent. The signal y is thus an instantaneous
mixture of the K independent source signals (sk)k=1,...,K in the sense that y(n)
only depends on the value of s at time n. The signal y is said to be a convolutive
mixture of the K independent source signals (sk)k=1,...,K if y(n) =

∑
` H`s(n−`) =

[H(z)]s(n) where H(z) represents the transfer function H(z) =
∑
` H`z

−`. For the
sake of simplicity, we just consider the context of instanteneous mixtures in this
introductory section. The goal of blind source separation is to retrieve the signals
(sk)k=1,...,K from the sole knowledge of the observations. Fundamental results of
Darmois (see e.g. [12]) show that if the source signals are non Gaussian, then it is
possible to achieve the separation of the sources by adapting a matrix G in such
a way that the components of r(n) = Gy(n) are statistically independent. For
this, it has been shown that it is sufficient to optimize over G a function, usually
called a contrast function, that can be expressed in terms of certain moments of the
joint probability distribution of r(n). A number of successfull contrast functions
have been derived in the case where the signal (sk)k=1,...,K are stationary sequences
[11, 12, 17, 7]. However, it will be explained below that in the context of digital
communications, the signals (sk)k=1,...,K are not stationary, but cyclostationary, in
the sense that their statistical properties are almost periodic function of the time
index. For example, for each k, the sequence n 7→ E

[
|sk(n)|2

]
appears to be a

superposition of sinusoids whose frequencies, called cyclic frequencies, depend on
the symbol rate of transmitter k, and are therefore unknown at the receiver side.
The cyclostationarity of the (sk)k=1,...,K induces specific methodological difficulties
that are not relevant in other applications of blind source separation.

1.2. Illustration of the potential of BSS techniques for communication
signals. The example we provide is purely academical. We consider the trans-
mission of two BSPK sequences modulated with a Nyquist raised-cosine filter (see
section 2.1) whose symbol period is T = 1 and roll-off factor is fixed to 50%. The
energy per symbol equals E1 for the first source and E2 for the second source. The
receiver has M = 2 antennas and the channel between the source no i and the an-
tenna no j is a delay times a real constant hi,j . After sampling at T/3, the noiseless
model of the received data is Y(n) = Hs(n) as specified in the introduction, where
the component (i, j) of H is hi,j(more details are provided in section 2.3). An
additive white noise Gaussian corrupts the model whose variance is N0

Te
where E1

N0
is fixed to 100dB (we purposedly fixed the noise level to a low value in order to
show results that can be graphically interpreted). Moreover, E1

E2
= 3dB.

Suppose in a first step that the channel is ideal such that the mixing matrix
H is the identity matrix. We may have a look at the eye diagramms of the two
components of the received data. We obtain the figure 1.1. This is almost a
perfectly opened eye since the noise is negligible. We may also have a look at a 2D-
histogramm of the data. Notice that the components of X(n) are not stationary.
We hence down-sample these data by a factor 3 in order to have stationary data.
We plot the 2D-histogram: see Figure 1.2. As the two components are independent,



BLIND SIGNAL SEPARATION FOR DIGITAL COMMUNICATION DATA 3

0 5 10 15 20 25 30
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
x 105

0 5 10 15 20 25 30
−1.5

−1

−0.5

0

0.5

1

1.5
x 105

Figure 1.1. eye diagrams. E1
N0

= 100dB. Ideal channels. Left:
first component. Right: second component.

their joint probability density function (pdf) is separable which seems to be the case
in view of the figure.

Let us now consider the case of the channel matrix:

H =
(

1 0.7
0.5 1

)
.

We obtain the figures 1.3 and 1.4 respectively for the eye diagrams and the 2D-
histograms. Clearly the channels are severe and close the eyes. Moreover, the
pdf is obviously not separable, which attests to the non independency of the two
components of X(n).

We run the JADE algorithm (see sections 3.5 and 3.8) on the data (the obser-
vation duration is fixed to 1000 symbols): we obtain a 2 × 2 matrix G such that,
theoretically at least, GH should be diagonal. We form the data Y(n) = GX(n)
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Figure 1.2. 2D-histogram. E1
N0

= 100dB. Ideal channels.

and plot the figures 1.5 and 1.6. The eyes have been opened and the joint pdf is
hence separable. This is not a surpise since we have computed the resulting matrix
GH :

GH ≈
(

0.8439 −0.0129
−0.0039 1.1829

)
which is close to a diagonal matrix. We need to explain why BSS has been suc-
cessfully achieved in this simple example and why it can also be achieved in much
more diffficult contexts.

1.3. Organisation of the paper. This chapter is organized as follows. In Section
2, we provide the model of the signals which are supposed to be linear modulations
of symbols (Section 2.1). We discuss the statistics of the sampled versions of the
transmitted sources in Section 2.2: in general, a sampled version is cyclo-stationary
and we provide the basic tools and notation used along the paper. The model of
the received data is specified in Section 2.3: 1) If the propagation channel between
each transmitter and the receiver is a single path channel, the received signal is an
instantaneous mixture of the transmitted signals 2) if at least one of the propagation
channel is a multipath channel, the mixture appears to be convolutive. Besides, we
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Figure 1.3. eye diagrams. E1
N0

= 100dB. Channel H . Left: first
component. Right: second component.

discuss the assumptions under which the received data are stationary . In general,
however, the data are cyclo-stationary with unknown cyclic frequencies.

The case of instantaneous mixtures is addressed in Section 3. When the sources
are independent and identically distributed (i.i.d.) (this case is discussed in sec-
tion 2.3), and that strong a priori information on the constellations are known, it
is possible to provide algebraic solutions to the BSS problem, e.g. the Iterative
Least Squares Projections (ILSP) algorithm or the Algebraic Constant Modulus
Algorithms (ACMA): these methods are explained in section 3.2. In Section 3.3,
we consider the case of second-order methods (one of the advantages of these latter
is that they are robust to the cyclo-stationarities, hence can be applied to general
scenarios): the outlines of one of the most popular approach, the Second-Order
Blind Identification (SOBI) algorithm, which consists in estimating the mixing
matrix from the autocorrelation function of the received signal. This approach is
conceptually simple, and the corresponding scheme allows one to identify the mix-
ture and hence, to separate the source signals. That SOBI is rarely considered
for BSS of digital communication signals is explained. The subsections that follow
cope with BSS methods based on fourth-order cumulants. They are called «direct»
BSS methods since thay provide estimates of the sources with no prior estimation
of the unknown channel matrix. For pedagogical and historical reasons, we firstly
cope with the very particular case of stationary signals. One-by-one methods based
are explained (section 3.4) and are shown to be convergent; the associated defla-
tion procedure is introduced and an improvement is presented. Global methods
(also called joint separating methods) aim at separating jointly the K sources: they
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Figure 1.4. 2D-histogram. E1
N0

= 100dB. Channel H.

are depicted in Section 3.5; these approaches are based on the minimization of
well chosen contrast functions over the set of K ×K unitary matrices: the famous
Joint Approximate Diagonalization of Eigenmatrices (JADE) algorithm is presen-
ted, since it represents a touchstone in the domain of BSS. When the sources are
cyclo-stationary, which is really the interesting point for the context of this paper,
the preceding «stationary» methods (one-by-one and global) are again considered.
The following problem is addressed: do the convergence result still hold when the
algorithms are fed by cyclo-stationary data inbstead of stationary ones? Sufficient
conditions are shown to assure the convergence: semi-analytical computations (Sec-
tion 3.9) prove that the conditions in question hold true.

In Sections 4 and 5, the case of convolutive mixtures is addressed. In certain
particular scenarios, e.g. sparse channels, the gap between the instantaneous case
and the convolutive one can be bridged quite directly (section 4). More precisely,
if the delays of the various multipaths are sufficiently spread out on the one hand
and if, on the other hand, the number of antennas of the receiver is large enough,
it is still possible to formulate the source separation problem as the separation of
a certain instantaneous mixture. If these conditions do not hold, we fac a real



BLIND SIGNAL SEPARATION FOR DIGITAL COMMUNICATION DATA 7

0 10 20 30
−5000

−4000

−3000

−2000

−1000

0

1000

2000

3000

4000

5000

0 10 20 30
−5000

−4000

−3000

−2000

−1000

0

1000

2000

3000

4000

5000

Figure 1.5. eye diagramm. E1
N0

= 100dB. Channel H . Left: first
component. Right: second component.

convolutive mixture, i.e. the received data are the output of a Multi-Input/Multi-
Output (MIMO) unknown filter driven by jointly independent (cyclo-)stationary
sources. Due to there historical and theoretical importance, we present algebraic
methods ( section 5.1) when the data are stationary. Under this latter assumption,
the identification of the unknown transfer function can be achieved using standard
methods using the Moving Average (MA) or Auto-Regressive (AR) properties: see
section 5.2. The famous subspace method, introduced in section 5.3, is based
on second-order moments and can be used for general cyclo-stationary data; its
inherent numerical problems are discussed. In section 5.4, global direct methods
are evoked (temporal domain and frequency domain) for stationary data. In section
5.5, the case of one-to-one methods previously introduced in section 3.4 is extended
to the convolutive case and positive results for BSS are provided. The results
are further extended for the cyclo-stationary case in section 5.6 where convergence
results are shown.

In section 7, we discuss several points that have not been developed in the core
of the paper. Further bibliographic entries are provided.

2. Signals

We have specified in the Introduction that the domain of source separation is not
restricted to the context of telecommunication signals. In the following, however,
most of the results apply specifically to digital telecommunication signals.
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Figure 1.6. 2D-histogram. E1
N0

= 100dB. After the JADE algo-
rithm.

2.1. Source signals. Basic assumptions . We assume that K digital telecom-
munication devices simultaneously transmit information in the same band of fre-
quencies. For t ∈ R, we denote by sa,k(t) the complex envelope of the k-th trans-
mitted signal («the k-th source»). The subscript «a» in sa,k(t) underlines that the
signal is «analog». Thoughout this contribution, sa,k(t) is supposed to stem from
a linear modulation of a sequence of symbols. The model is hence:

(2.1) ∀t ∈ R sa,k(t) =
∑
n

dk(n) ca,k(t− nTk).

In this latter equation, dk(n) is a sequence of symbols belonging to a certain constel-
lation. The function ca,k is a shaping function and Tk is the duration of a symbol
dk(n). We denote by fk the carrier frequency associated with the k-th source.
Along this contribution, the following assumptions and notation are adopted.

Assumptions on the source signals.
For a given index k, the sequence dk(n) is assumed to be independent and identic-

ally distributed (i.i.d.). We assume that it has zero mean E [dk(n)] = 0. With no
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restriction at all, the normalization E
[
|dk(n)|2

]
= 1 holds. We also suppose that

it is second-order complex-circular in the sense that

(2.2) E
[
dk(n)2] = 0.

It is undoubtedly a restriction to impose the condition (2.2) especially in the tele-
communication context of this paper; indeed, the BPSK modulation for instance
does not verify (2.2). Some points on the extensions to general non circular mixtures
are provided in Section 7.1.

The Kurtosis of the symbol dk(n), is defined as

κ(dk) = cum( dk(n) , dk(n)∗ , dk(n) , dk(n)∗ )
where the fourth-order cumulant of a complex-valued random variable X is defined
when it makes sense, as cum (X , X∗, X , X∗) = E

[
|X|4

]
− 2

(
E
[
|X|2

])2
−∣∣E [X2]∣∣2: see for instance [44]. Here, by the circularity assumption 2.2, we have

κ(sk) = E
[
|dk(n)|4

]
− 2

(
E
[
|dk(n)|2

])2
.

We assume that we have, for any index k:

(2.3) κ(dk) < 0.

This inequality is given as an assumption; is has more the flavour of a result, since
we do not know complex-circular constellations such that (2.3) is not satisfied.

We may now come to the key assumption: the sources d1, d2, ..., dK are mutually
independent.

Concerning the shaping filter, ca,k we suppose that ca,k is a square-root raised
cosine with excess bandwidth (also called roll-off factor) 0 ≤ γk ≤ 1.

2.2. Cyclo-stationarity of a source. In this short paragraph, we drop the index
of the source and sa, T, ca, d(n) refer to respectively sa,k, Tk, ca,k, dk(n). Thanks to
Equation (2.1), it is quite obvious that sa(t) and sa(t+T ) are similarly distributed
since dk(n) is i.i.d. This simple reasoning applies to any vector (sa(t1), ..., sa(tm))
whose distribution equals this of (sa(t1 + T ), ..., sa(tm + T )). This shows that the
process sa is cyclo-stationary in the strict sense with period T . In particular, its
second and fourth-order moments evolve as T -periodic functions of the time. Let
us focus on the second-order moments: t 7→ E [sa(t+ τ)sa(t)∗] is hence a periodic
function with period T . We let its Fourier expansion be

(2.4) E [sa(t+ τ)sa(t)∗] =
∑
m∈Z

R(m/T )
sa (τ)eı2πmt/T

where R(m/T )
sa (τ) is called «cyclo-correlation» of sa at cyclic frequency m/T and

time lag τ. We have the reverse formula:

R(m/T )
sa (τ) = 1

T

ˆ T

0
E [sa(t+ τ)sa(t)∗] e−ı2πmt/T dt

or

R(m/T )
sa (τ) = lim

∆→∞

1
∆

ˆ ∆/2

−∆/2
E [sa(t+ τ)sa(t)∗] e−ı2πmt/T dt.
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Generally, we may introduce the cyclo-correlation at any cyclic frequency α:

R(α)
sa (τ) = lim

∆→∞

1
∆

ˆ ∆/2

−∆/2
E [sa(t+ τ)sa(t)∗] e−ı2παtdt.

In the case of sa given by Equation (2.1), R(α)
sa (τ) is identically zero for cyclic

frequencies α that are not multiples of 1/T . In passing, we have the following
symmetry:

(2.5) R(α)
sa (τ) = R(−α)

sa (−τ)∗.

Let us inspect a bit further a main specificity of linear modulations on the Fourier
expansion of Equation (2.4). In this respect, denote by f 7→ S

(α)
sa (f) the Fourier

transform of the cyclo-correlation function τ 7→ R
(α)
sa (τ). We have, after elementary

calculus (see [21, 41]):

S(m/T )
sa (f) = 1

T
ĉa(f)ĉa(f −m/T )∗,

where ĉa(f) =
´

R ca(t)e−ı2πftdt is the Fourier transform of ca. This formula is visibly
a generalization of the so-called Benett Equality (see [45] Section 4.4.1) that gives
the power spectral density of sa : indeed, in the above equation, if one takes m = 0,
we obtain S(0)

sa (f) = 1
T |ĉa(f)|2 which is the power spectral density. An important

consequence was underlined in [41]:

Lemma 1. For any excess bandwidth factor γ such that γ ≤ 1, we have:

∀|m| > 1 R(m/T )
sa (τ) is uniformly zero.

In other words, the cyclic frequencies of sa(t) given by Equation (2.1) belong to the
set
{

0,± 1
T

}
.

The proof is obvious since the support of ĉa(f) is
[
− 1+γ

2T , 1+γ
2T
]
with γ < 1 hence

the supports of ĉa(f) and ĉa(f −m/T )∗ do not overlap except if m = 0,±1. �
We deduce from what precedes some consequences on the second-order statistics

of a sampled version of a source. In this respect, we denote by Te any sampling
period; the discrete-time signal associated with sa(t) is hence s(n) = sa(nTe) for
n ∈ Z. Thanks to Lemma 1, the expansion (2.4) may be re-written as:

(2.6) ∀` ∈ Z E [s(n+ `)s(n)∗] =
∑

m∈{−1,0,1}

R(m/T )
sa (`Te)eı2πnmα

where we let α be α = Te/T. We distinguish between three cases:
(1) If α = Te/T is a integer, the three terms of the r.h.s. of (2.6) all aggregate

in a single term, making the function E [s(n+ `)s(n)∗] not depend on the
time index n. This is not surprising since the condition Te = pT where p
is a non-null integer corresponds to a strict-sense stationary signal (see the
polyphase decomposition in [60]). In particular, if Te = T , we have:

(2.7) s(n) = [c0(z)] d(n)

where c0(z) =
∑
n ca (nT ) z−n. In the following, we will not study the case

Te = pT with p ≥ 2.
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(2) If α 6= 0 modulo 1/2: unless α is rational, it cannot be said that, as a
function of n, E [s(n+ `)s(n)∗] is periodic: it is called an almost periodic
function [16] and s(n) is hence called almost periodically correlated, having
0,±α as cyclic-frequencies. We introduce

(2.8) R(α)
s (`) =

〈
E [s(n+ `)s(n)∗] e−ı2παn

〉
n

where the operator 〈.〉 is the time-averaging one, i.e. for a complex-valued
(deterministic) series u(n)

〈u(n)〉n = lim
N→∞

1
N

N−1∑
n=0

u(n)

when the limit makes sense. As the three cyclic-frequencies in the expansion
(2.6) are distinct modulo 1 then we obtain

∀m ∈ {0,±1} R(mTe/T )
s (`) = R(m/T )

sa (`Te).

which reminds us of the Shannon sampling theorem.
(3) If α = 1

2 it turns out that, simimarly to the previous case, the discrete-time
source is cyclo-stationary, having 0,± 1

2 as cyclic- frequencies. Moreover
R

(0)
s (`) = R

(0)
sa (`Te) andR(1/2)

s (`) = R
(−1/2)
s (`) = R

(1/T )
sa (`Te)+R(−1/T )

sa (`Te).

2.3. Received signals. The receiver is equipped with M antennas, the number of
antennas being as big as the number of sources, i.e. M ≥ K (see section 2.3.2). We
denote by

ya(t) =


y

(1)
a (t)
...

y
(m)
a (t)


the complex envelope of the received M × 1 vector computed at a frequency of
demodulation denoted by f0. We consider that ya(t) obeys the linear model

ya(t) =
K∑
k=1

ya,k(t)

where ya,k(t) is the contribution of the k-th source to the observation. We further
assume that ya,k(t) stems from delayed/attenuated versions of sa,k(t). In this
respect, we may write y(m)

a,k (t), the component of ya,k(t) asociated with the m-th
sensor, as:

(2.9) y
(m)
a,k (t) =

Lk∑
`=1

λk,m,` e
−ı2πf0τk,m,` s̃a,k(t− τk,m,`)

where the index ` represents the path index, Lk the number of paths associated with
the source no k, λk,m,` an attenuation factor and τk,m,l the delay of the propagation
along the path no ` between the source no k and the sensor no m. In this latter
equation, s̃a,k(t) is the complex envelope of the modulated signal sa,k(t)eı2πfkt at
the demodulation frquency , i.e. s̃a,k(t) = sa,k(t)eı2π(fk−f0)t.
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2.3.1. Models of the sampled data. We distinguish between two cases.
(1) Instantaneous mixture. This scenario holds when the signal ya,k(t)

evolves in a linear space of dimension 1, that is when the components
s̃a,k(t − τk,m,`) in (2.9) do not depend neither on ` nor on m. This holds
when there exists τk such that |τk,m,` − τk| � Tk for all indices m, `. This
happens, for instance, when there is a single path (Lk = 1) and the trans-
mitted signal is narrow-band (fk � 1/Tk). In this case we have

ya(t) =
K∑
k=1

h1,ksa,k(t− τk)eı2π(fk−f0)t.

More compactly, this gives

∀t ∈ R ya(t) = H sa(t)

where H = (h1,1 , ... , h1,K) is a M ×K mixing matrix, and

sa(t) =
(
sa,1(t− τ1)eı2π(f1−f0)t , ... , sa,K(t− τK)eı2π(fK−f0)t

)T
.(2.10)

If Te is the sampling period of the receiver, it is supposed that all the
components of the data are low-pass filtered in the sampling band (the
matched-filter cannot be considered since the shaping filters are not sup-
posed to be known to the receiver). Finally, the (noiseless model) of the
data is

(2.11) General instantaneous model: ∀n ∈ Z y(n) = H s(n)

where
(2.12)

s(n) =
(
sa,1(nTe − τ1)eı2π(f1−f0)nTe , ... , sa,K(nTe − τK)eı2π(fK−f0)nTe

)T
.

Generally speaking, any of the components of the source vector s(n) is
cyclo-stationary (see Section 2.2) hence the model given by (2.11) is a cyclo-
stationary one. For simplification, let us suppose in the following that that
fk = f0 for all the indices k (this point is discussed in section 7). As the
original theory of BSS assumed stationary data, we inspect under which
conditions the above model can be stationary. the methods A necessary
and sufficient condition is that all the components of s(n) be stationary.
As discussed previously, this can happen when all the symbol periods are
equal to, say, T and if the sampling period Te = T . Under these conditions,
we even have:

sa,k(t− τk) = [cτk,k(z)] dk(n)

where we have set for any delay τ

cτ,k(z) =
∑
`

ca,k(`Tk − τ)z−`.(2.13)

The stationary model can be written as:

(2.14) Stationary instantaneous model: ∀n ∈ Z y(n) = H s(n)
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where we have set

(2.15) s(n) =

 [cτ1,1(z)] d1(n)
...

[cτK ,K(z)] dK(n)

 .

(note: the notation might be confusing since s(n) was already defined in
(2.12): in the following sections, the context is always specified which pre-
vents the confusion) In the literature, it is sometimes required that the
sources be i.i.d. In the context of this paper, this i.i.d. condition is fulfilled
when the filters cτk,k(z) all have the form of a constant times a delay: in
short, this happens when 1) all the transmitted symbols are synchronized 2)
the receiver runs a matched filter (square-root Nyquist) and 3) the symbol
synchronization is performed at the receiver. In this case we have:

(2.16) i.i.d. instantaneous model: ∀n ∈ Z y(n) = H

 d1(n)
...

dK(n)

 .

The reader may find this set of condition very restrictive in real scenarios.
It is indeed; however, the developements of BSS are based on the stationary
assumption. Moreover, many interesting methods exploit the i.i.d. condi-
tion.

(2) Convolutive mixture. This is the general case when multi-paths affect
the propagation. We provide the discrete-time version of Equation (2.9).
Let us begin by the general case. In this respect, we assume that the
sampling period Te verifies the Shannon sampling condition, i.e.

1
Te

> max
k

(
1 + γk
Tk

+ |fk − f0|
)
.

This is a non-restrictive condition whatever the scenario: a crude prior
spectral analysis of the data is simply needed. Provided this condition, the
discrete-time signal sa,k(nTe − τk,m,`), for any indices k,m, `, is a filtered
version of (sa,k(nTe))n∈Z . It is hence easy to deduce that the sampled data
y(n) follows the equation:

(2.17) General convolutive model: ∀n ∈ Z y(n) = [H(z)] s(n)

where s(n) =
(
sa,1(nTe)eı2π(f1−f0)nTe , ..., sa,K(nTe)eı2π(fK−f0)nTe

)
is a vec-

tor of mutually independent sources and H(z) is certain theM×K transfer
function whose k-th column is the digital channel between the k-th source
and the receiver: it depends on the parameters (λk,m,`, τk,m,`)`=1,...,Lk, m=1,...,M .
The above general model is, in general, cyclo-stationary. For simplification,
we assume ion the following that fk = f0 for all indices k. Similarly to the
case of instantaneous mixtures, it is instructive to find conditions under
which the data are stationary. This occurs when the symbol periods Tk
all coincide with a certain T , and when the sampling period Te equals T .
Under all these conditions, yk(n), the contribution of the k-th source to
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the mixture, can be written as

yk(n) =


∑
` λk,1,`

[
cτk,1,` , k(z)

]
dk(n)

...∑
` λk,M,`

[
cτk,M,` , k(z)

]
dk(n)

 = [Ek(z)] dk(n),

hence, setting E(z) =
(

E1(z) , ..., EK(z)
)
, it yields

(2.18) Stationary convolutive model: ∀n ∈ Z y(n) = [E(z)] d(n)
where d(n) = (d1(n), . . . , dK(n))T and E(z) is a certain M ×K unknown
filter matrix. This shows that E(z) depends on the shaping filters, the
steering vectors associated with the paths and their corresponding delays.

2.3.2. Assumptions on the channels . In this paper, we consider over-determined
mixtures, that is: mixtures such that the number of sensors exceeds the number of
sources (M ≥ K). This condition is necessary in order to retrieve the vector s(n) -
see model (2.11) (respectively (2.17) ) - from the data y(n) by means of a K ×M
constant matrix (respectively a K ×M filter). This has to be specified.

For instantaneous mixtures, the following condition holds:
(2.19) Assumption (instantaneous mixtures): rank(H) = K.

Under this assumption, there exist K ×M matrices G such that Gy(n) = s(n).
For convolutive mixtures, it is conventional to assume that the components of

H(z) are polynomials in z−1 (this is an approximation that is justified since the
shaping filters ca,k(t) are rapidly vanishing when |t| → ∞). We further assume that
(2.20)
Assumption (convolutive cyclostationary mixtures): ∀z 6= 0 rank(H(z))=K.
Under this condition, there exist polynomial matrices G(z) such that [G(z)] y(n) =
s(n): see for instance [24, 29]. The same kind of assumption holds in the stationary
case - see the model (2.18): namely,

(2.21)
Assumption (convolutive stationary mixtures): ∀z 6= 0 rank(E(z))=K.
At this level, we would like to point out a curiosity. In this respect, we assume

further that the excess bandwidth factors of one source - say the first one - equals
zero. As the choice Te = T1 satisfies the Shannon sampling condition, we may write
sa,1(nT1 − τ) = [φτ (z)] sa,1(nT1) where

φτ (z) =
∑
k

T1

π(kT1 − τ) sin
(
π(kT − τ)

T1

)
z−k.

As sa,1(nT1) = [c0,1(z)] d1(n), the first column E1(z) of E(z) can be factored as
c0,1(z) Ẽ1(z). In particular, after the standard FIR approximations, it yields that
the condition given in (2.21) is not fulfilled.

3. Instantaneous mixtures

The model of the data y(n) is given by (2.11). The mixing matrix H is unknown.
BSS can be achieved either by estimating H - this is the point of Section 3.3 - or
by computing directly estimates of the sources (up to indeterminacies).
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3.1. Indeterminacies. It is always possible to consider that the sources have equal

and normalized power. Indeed, as s1(n) = ρ1
s1(n)
ρ1

where ρ1 =
√〈

E
[
|s1(n)|2

]〉
is the the square-root of the power of the first source, we suggest to scale the first
column of H by ρ1. Repeating this process for all the sources, we have constructed
a new matrix H̃. Eventually denoting s̃(n) =

(
s1(n)
ρ1

, s2(n)
ρ2

, ... , sK(n)
ρK

)T
, we

obviously show that the data alternatively writes

∀n ∈ Z y(n) = H̃ s̃(n).
Though apparently innocent, this remark gives precious a priori indications. First
of all, it says that the model (3.1) is not uniquely defined. As a consequence, it is
always possible to consider, without restricting the model, that the sources have
equal power equal to one - this precisely corresponds to the above defined s̃(n);
specifically, we will assume in the following that

(3.1)
〈
E
[
s(n)s(n)H

]〉
= IK

This shows it is beyond a reasonnable expectation to retrieve the sources with no
scaling ambiguities. Similarly, if P is a permutation matrix, y(n) =

(
HP−1) (Ps(n)),

underlining the non-unicity of the model.
With no further assumptions on the sources, the ultimate result that can be

achieved is : retrieve the sources up to unknown complex scaling factors (scaling
and phase ambiguities) and a permutation.

3.2. Algebraic methods (i.i.d. scenario). The model of the data is given by
(2.16). We may collect theN available data in aM×N matrix Y, we have: Y = HD
where D = (d(0) , ... , d(N − 1)). As any entry of D corresponds to a symbol,
associated specificities (e.g. finite alphabet constellations or modulus one symbols)
are a priori relations the receiver can make use of. As far as the identifiability is
concerned, it is proven in [61] (Lemma 1) that the above factorization is essentially
unique for modulus one symbols, at least if the number of snapshots N verifies
N ≥ 2K (which is the case in practical contexts). By essentially unique, we mean
that the rows of D may be permuted and/or multiplied by modulus one constants.

Talwar et al. [53, 54] propose iterative algorithms that assume known the alpha-
bets of the symbols. Call Ĥ(`) an estimate of H at the iteration no `. The Iterative
Least Square with Projection (ILSP) is:

(1) Take any full rank Ĥ(0) for iteration ` = 0
(2) `← `+ 1

• D̂(`) =
(

Ĥ(`−1)
)]
Y where (.)] denotes the pseudo-inverse

• D̂(`) ← projection of each component of D̂(`) on the corresponding alphabet
• Ĥ(`) = Y

(
D̂(`)

)]
.

Similar projection-based algorithms that rather take into account the constant mod-
ulus property of the entries of D have been considered [23, 3]: similarly to the IMSP
algorithm, no results on the convergence can be given (how many samples are re-
quired? are there local minima the algorithm could be trapped in?). Van der Veen
et al. [61] proposes a non-iterative algorithm, called the Algebraic CMA (ACMA):
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the ACMA provides exactly «the» solution (up to the above mentioned ambigu-
ities) of the factorization of Y - at least if the number of data N exceeds K2. It is
based on a joint diagonalization of a pencil of K matrices.

Certain BSS methods for convolutive mixtures need, as a final step, to run such
algorithms (see e.g. section 5.1).

3.3. Second-order based identification (general cyclo-stationary case) .
In this section, we address the «indirect» BSS; by this terminolodgy, we mean that
the BSS is achieved in two steps. The first step consists in estimating the unknown
mixing matrix H by, say, Ĥ. In a second step, the proper separation is carried out.
If Ĥ is an accurate estimate, then ŝ(n) = Ĥ]y(n) is the natural estimate of the
source vector. In general, however, noise is present (estimation noise and additive
noise in the oberved signals) and other strategies have to be considered: this aspect
is not addressed in this paper.

The first point to be addressed in this section is the pre-whitening of the data.
We suppose that M = K (notice: in the non-square case, a principal component
analysis is processed). In this respect, we consider the auto-correlation matrix of
the data R(0)

y (0) =
〈
E
[
y(n)y(n)H

]〉
can be written (we recall that the sources are

assumed to have equal normalized powers as discussed previously):

R(0)
y (0) = HHH .

Since H is full rank, the above matrix is positive definite and we form the new data

x(n) =
(

R(0)
y (0)

)−1/2
y(n).

We have:

x(n) = Us(n)

where U =
(
HHH

)−1/2 H is a unitary matrix.
The second point concerns the estimation of the unitary matrix U. The data

x(n) is cyclo-stationary. As the cyclic-frequencies are not always directly accessible,
the identification of the unknown mixing matrix U is done by solely considering
the statistics

R(0)
x (`) =

〈
x(n+ `)x(n)H

〉
which can be expressed as

R(0)
x (`) = UR(0)

s (`)UH .

This says that the normal matrix R(0)
x (`), for any index `, is diagonalized in the

orthonormal basis formed by the columns of U. For ` = 0, this gives R(0)
x (0) =

UUH = I and this is clearly not sufficient to identify U! On the contrary, consider
that the spectra of the sources S(0)

sk (ν) =
∑
`R

(0)
sk (`)e−ı2π`ν are all different at least

for a frequency ν. For any unitary matrix V, the matrix VHR
(0)
x (`)V is diagonal for

every indices ` if and only if the columns of V equal these of U up to a modulus one
factor and a permutation. This remark was done in [4] and an algorithm (SOBI)
was deduced based on a joint diagonalization technique [9].

The reader has noticed the suboptimality of the above method when the mixture
is cyclo-stationary. The exploited statistics are only the R(0)

x (`) for certain indices
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`. In [2], it is suggested to take advantage of the cyclic-statistics of the mixture. In
this respect, notice that for any α cyclic frequency of the mixture, we have

R(α)
x (`) = UR(α)

s (`)UH

hence these «new» statistics could be added in the pencil of matrices to be jointly
diagonalized. This theoretical appeal is attenuated by the fact that the non null-
components of R(α)

s (`) are numerically inconsistent.
At this level, we should emphasize that the statistics R(α)

x (`) for any α (zero
or not) are not accessible to the receiver and should be replaced by the empirical
estimate denoted by R̂(α)

x (`) and defined for ` ≥ 0 as

(3.2) R̂(α)
x (`) = 1

N

N−`−1∑
n=0

x(n+ `)x(n)He−ı2παn

where N is the number of snapshots. This estimate is a consistent estimate of the
matrix R

(α)
x (`). In an ideal scenario where the model x(n) = Us(n) holds true,

it is remarkable that R̂(α)
x (`) = UR̂

(α)
s (`)UH and the joint diagonalization of the

estimated statistics should provide the exact mixing matrix: the algorithm is called
deterministic. In a realistic context, however, the data are perturbed by an additive
noise term: in this case, the above factorization does not hold true anymore and
the joint diagonalization is an approximate joint diagonalization.

In practice, despite its attractivity, SOBI is seldom used to achieve BSS of di-
gital communication data. Indeed, the condition that there are no two sources
whose spectra are identical (up to a multiplicative constant) does not make sense
most of the time. Indeed, the transmitted symbols are generally white sequences
whose shaping functions are close from to one another. As the spectra are numer-
ically similar, the joint diagonalization approach is bound to suffer from numerical
problems.

3.4. Iterative BSS (stationary case). As was specified, the stationary scenario
assumes that for all indices k: Tk = T , i.e. all the baud-rates are equal, and Te = T .
Under these very specific circumstances, the model (2.14) involves a source vector
s(n) whose components are stationary and mutually independent. We insist
on the fact that the components of the source vector are not the i.i.d. symbol
sequences but linear processes generated by these symbol sequences as indicated by
Equation (2.15). BSS aims at estimating the sources, not the symbol sequences.
Hence, BSS may be seen as a preliminary step before the estimation of the symbols.

Contrary to other methods, no pre-processing of the data is necessary (PCA,
pre-whitening).

In this section, we firstly design methods able to recover one of the sources
(or a scaled version). In a second step, we present the so-called deflation that
allows one to run the extraction of another source from a deflated mixture where
the contribution of the first estimated source has been removed. The convergence
is established: after K such steps, the K sources are expected to be estimated.
Convergence properties are discussed.

3.4.1. Estimation of one source: theoretical considerations. Thanks to the mixing
matrix H having full-rank - see condition (2.19) - we know that, for any source
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index k, there exist column vectors gk such that
gTk y(n) = sk(n).

Denoting rk(n) = gTk y(n), we may call this new signal as the reconstructed source
since it involves only one source. This new signal is obtained after a so-called
spatial filtering of the data. Of course, it is not possible to compute gk since H
is not accessible. A possible approach hence consists in adapting a spatial filter g
that makes
(3.3) r(n) = gTy(n)
resemble one of the sources. This will be done by considering particular statistics
of the signal r(n). We may write this signal under this form

(3.4) r(n) =
K∑
k=1

fksk(n)

where the taps fk are the components of the vector
(3.5) f = gTH.

The term fksk(n) in r(n) represents the contribution of the k-th source to the
reconstructed signal r(n). As may be easily understood, we aim at finding a «good»
g, i.e. such that f is a vector having a single non-null component.

Definition 2. A vector f is said to be separating if all its components are null
except one.

Evidently, the signal r(n) involves a single source if and only if the composite
vector f is separating.

We may inspect higher-order statistics and particularly the fourth-order ones.
It has been proposed to consider the fourth-order cumulant (see Section 3.6 for
theoretical justifications):

κ(r) = cum(r(n) , r(n)∗ , r(n) , r(n)∗).
In this respect, we may introduce the following function, called normalized (fourth-
order) cumulant:

(3.6) Υ(r) = κ(r)(
E
[
|r(n)|2

])2 .

Thanks to the definition of the cumulants, we have: κ(r) = E
[
|r(n)|4

]
−2
(
E
[
|r(n)|2

])
−∣∣E [r(n)2]∣∣2 . Now, the circularity assumption of the symbol sequences (2.2) implies

the circularity of the sources, hence
E
[
r(n)2] = 0.

We re-express Υ(r) as a function of the moments of r(n):

(3.7) Υ(r) =
E
[
|r(n)|4

]
(
E
[
|r(n)|2

])2 − 2.

We have the result:
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Proposition 3. As, by assumption, the Kurtosis of the sources, κ(dk), are strictly
negative, the function Υ(r) achieves its minimum at a separating vector. Moreover,
the separating vector in question has its single non-null element located at an index
k0 such that Υ(sk0) = mink=1,...,K Υ(sk).

Proof: on the one hand, the mixture r(n) is a linear mixture of independent
random variables. The multi-linearity of the cumulants [44] gives:

κ(r) =
K∑
k=1
|fk|4 κ(sk).

After noticing that E
[
|r(n)|2

]
=
∑
k |fk|

2 we arrive at the expansion:

(3.8) Υ(r) =
∑K
k=1 κ(sk) |fk|4(∑K
k=1 |fk|

2
)2

On the other hand, sk(n) is a linear process generated by the i.i.d. symbol se-
quence dk(n): see Equation (2.7). As was supposed (or noticed) in the Introduction,
κ(dk) < 0 hence

κ(sk) < 0
for any index k. The sources are sometimes refered to as platykurtic sources. Denote
by κmin = min (κ(s1), ..., κ(sK)). Thanks to the above result, κmin < 0. Hence
κ(r) ≥ − |κmin|

∑
k |fk|

4
. Besides, we recall that

(∑
k |fk|

2
)2
≥
∑
k |fk|

4 with
equality if and only if the coefficients |fk| are all null except one, i.e. if and only if
the vector f is separating.

We insist on the fact that the assumption that one of the κ(sk) is strictly negative
is fundamental. Imagine on the contrary that, for all the indices k, κ(dk) > 0. Then∑K
k=1 κ(sk) |fk|4 ≥ mink κ(sk)

(∑K
k=1 |fk|

4
)
. As(

1
K

K∑
k=1
|fk|4

)
≥

(
1
K

K∑
k=1
|fk|2

)2

with equality iff all the |fk| are equal, this implies that the argument minima of Υ(r)
are not separating (on the contrary, the coefficients fk equally weigh the sources).
�

As a remark, it is instructive, though superfluous in this paper since the digital
communication symbols habe negative Kurtosis, to address the optimization of Υ(r)
for general ditributions of the κ(sk): the reader may find the details in [17].

One may inspect the minimum minimorum of Υ(r) over all the possible con-
stellations. The Jensen inequality (see [6] page 80) gives: E

[(
ϕ |r(n)|2

)]
≥

ϕ
(
E
[
|r(n)|2

])
for a convex mapping ϕ; the equality is achieved when |r(n)| = 1.

Taking ϕ(x) = x2, we obtain

Υ(r) ≥ −1
and the equality is achieved when r(n) has unit modulus. Of course, this can only
happen if one of the sources has a modulus equal to one or, there exists an index
k such that Υ(sk) = −1. This does not happen in general, but this remark shows
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that the minimization of Υ(r) tends to make r(n) resemble as much as possible a
constant modulus sequence. We inspect this point a bit further. A way to measure
the distance of r(n) to the modulus one is simply to consider

(3.9) ΥCM (r) = E

[(
|r(n)|2 − 1

)2
]
.

This function was originally considered for deconvolution problems [48, 22] and
then for source separation problems ([36, 56, 55] for instance).

We may bridge the gap between Υ(r) and ΥCM (r) :

Proposition 4. Define ΥCM,inf = infr ΥCM (r) and Υinf = infr Υ(r). The
minimization of ΥCM (r) is linked to the minimization of Υ(r) in the sense that:

ΥCM,inf = 1− 1
2 + Υinf

if f achieves to minimize Υ then
√

1
2+inf Υ

1
‖f‖ f is a minimizer of ΥCM . Conversely,

if f achieves to minimize ΥCM , then ρf minimizes Υ for any ρ 6= 0.

Proof: for any f , we have: ΥCM (r) = E
[
|r(n)|4

]
−2E

[
|r(n)|2

]
+1. Thanks to the

expression of Υ(r) in (3.7), it is always true that: E
[
|r(n)|4

]
≥ (2 + Υinf)

(
E
[
|r(n)|2

])2
.

We hence have:

ΥCM (r) ≥ (2 + Υinf)
(
E
[
|r(n)|2

])2
− 2E

[
|r(n)|2

]
+ 1.

We set ρ = E
[
|r(n)|2

]
. The second-order polynomial ρ 7→ (2 + Υinf)ρ2 − 2ρ + 1

has minimal value 1− 1
2+Υinf

for ρ = 1
2+Υinf

. We deduce the inequality: ΥCM (r) ≥

1− 1
2+Υinf

. If f reaches the infimum of Υ(r) then, evidently, the choice
√

1
2+Υinf

1
‖f‖ f

makes ΥCM (r) = 1 − 1
2+Υinf

. Hence 1 − 1
2+Υinf

is the minimum of ΥCM (r). Con-
versely, for any r(n), by definition, we have: E

[
|r(n)|4

]
− 2E

[
|r(n)|2

]
+ 1 ≥

ΥCM,inf . In this inequality, substitute √ρr(n) for any positive ρ. We have:

ρ2E
[
|r(n)|4

]
− 2ρE

[
|r(n)|2

]
+ 1 ≥ ΥCM,inf .

This is in particular true for ρ = E[|r(n)|2]
E[|r(n)|4] hence showing that − (E[|r(n)|2])2

E[|r(n)|4] + 1 ≥
ΥCM,inf or

Υ(r) ≥ 2 + 1
1−ΥCM,inf

.

The case of equality in the latter equation occurs when f is any non-null scaled
version of a minimizer of ΥCM �

As is explained in the next section, the search of a global minimum of Υ(r) or
ΥCM (r) is done according to a gradient method. It is well known that such an
algorithm may be stuck in a local minimum of the function to be minimized. We
have the result (see [17], Lemma 2.1) :

Lemma 5. Fix K real constants βk < 0. The local minima of the function f 7→∑K
k=1 βk |fk|

4 over the unit sphere
∑K
k=1 |fk|

2 = 1 are the separating vectors (of
unit norm).
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Thanks to the expansion (3.8), and the fact that for all the sources βk = κ(sk) <
0, the local minima of Υ(r) over the unit sphere are the separating vectors (of unit
norm). After simple topological considerations, it can even be deduced that:

Proposition 6. Any local minimum of Υ is separating.

As far as the function ΥCM is concerned, we have:

Proposition 7. Any local minimum of ΥCM is separating.

Proof: we consider the arguments given in [46]. The idea consists in writing f in
its polar form f = ρf̃ where ρ = ‖f‖ and

∥∥f̃
∥∥ = 1. After setting r̃(n) = 1

‖f‖r(n) the

normalized version of r(n), we have: ΥCM (r) = ρ4E
[
|r̃(n)|4

]
− 2ρ2E

[
|r̃(n)|2

]
+ 1.

Write this function ψ(ρ, f̃). Necessarily, for a stationary point of ΥCM the derivative
of ψ w.r.t. ρ is zero. This gives: ρ = 0 or ρ(f̃) = E[|r̃(n)|2]

E[|r̃(n)|4] . The case ρ = 0 can be
shown to correspond to a local maximum [55]. This says that a local minimum of
ΥCM is a local minimum of ψ(ρ(f̃), f̃). Now, this latter function is:

ψ(ρ(f̃), f̃) = 1− 1
Υ(r̃) .

We deduce that such a local minimum is also a local minimum of Υ(r) on the
unit sphere. Thanks to Lemma 5 we deduce that the local minimum in question is
separating. �

3.4.2. Estimation of one source: practical aspects.
Basic algorithms. Two problems arise when one focuses on the implementation of
the results presented so forth: the first one concerns the estimation of the cost
functions Υ(r) or ΥCM (r), the second one is to choose a method able to find the
argument minima of these estimated functions.

The two functions we have considered involve second and fourth-order moments
of the signal r(n). As the number of available data is finite - say, we observe y(n)
for n = 0, ..., N − 1 - it is not possible to compute any of the moments of r(n).
However, a version of the law of large numbers allows one to consider estimates of
the moments:

Lemma 8. For p = 2, 4, we have, with probability one:

1
N

N−1∑
n=0
|r(n)|p −→ E [|r(n)|p] .

We are in position to estimate both functions Υ(r) and ΥCM (r) respectively by

(3.10) Υ̂(r) =
1
N

∑N−1
n=0 |r(n)|4(

1
N

∑N−1
n=0 |r(n)|2

)2 − 2

(3.11) Υ̂CM (r) = 1
N

N−1∑
n=0

(
|r(n)|2 − 1

)2
.

Indeed, we have the result:
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Proposition 9. Υ̂CM (r) −→ ΥCM (r) and Υ̂(r) −→ Υ(r) with probability one.

The functions Υ̂CM (r) and Υ̂(r) to be minimized are non-convex, and the asso-
ciated machinery cannot be considered. The functions, however, are regular w.r.t.
the parameter g. Hence, we choose to seek the argument minima by means of a
gradient method. For instance, consider the minimization of ΥCM . The notation
for the gradient of Υ̂CM calculated at the point g being ∇Υ̂CM (r), the gradient
algorithm, for a fixed µ > 0, can be written as :

(1) choose an initial vector g(0) and compute r(0)(n) = g(0)T y(n) for all the
available data;

(2) at the m-th step: compute g(m) = g(m−1) + µ∇Υ̂CM (r(m−1)) and the
associated updated signal r(m)(n) = g(m)T y(n) ;

(3) redo the above step until the convergence is reached.
The same algorithm could be be written for the minimization of Υ̂.However, the fact
this latter function is homogeneous may involve numerical problems (the vector g is
not bounded). This is why the projected gradient algorithm is prefered: it consists
in normalizing at each iteration of the algorithm the updated signal r(m)(n), i.e.
projecting the current parameter g(m) on the set{

g | gT
(

1
N

N−1∑
n=0

E
[
y(n)y(n)H

])
g = 1

}
.

Whatever the considered cost function, the parameter µ controls the performance.
The next section faces the problem of choosing µ.
Refinement: choosing a locally optimal µ. For simplicity, the minimization of ΥCM

is addressed. The same idea may be considered for the minimization of Υ by means
of the projected gradient. In order to boost the speed of convergence, it has been
proposed to change µ at each step of the algorithm: the parameter µ is chosen
such that the value of the function evaluated at the point g(m) is minimum. It is
easily seen that the function µ 7→ Υ̂CM (r(m)) is a polynomial of degree four. The
minimum is hence easily (numerically) computed.
Robustness of the algorithms to the presence of local minima. It is well-known that
such a gradient algorithm may be trapped in a local minimum: this, in general, is a
clear limitation to the use of such an algorithm. Of course, it is not possible to say
much on the local minima of the estimated functions Υ̂(r) and Υ̂CM (r). However,
Propositions 6 and 7 indicate that, asymptotically, if the algorithms are trapped in
a local minimum, this does not impact the performance since this local minimum is
precisely separating. This remark certainly explains why the algorithms show very
good performance.

3.4.3. The deflation step. The algorithms depicted above provide a way to retrieve
one of the sources. Of course, we aim at estimating all the sources. An idea hence
consists in running again the previous algorithm. However, it is not possible to
guarantee that the second extracted source is not the first extracted one. In the
litterature, three methods have been presented that overcome this major problem.

In the first one [19] it is proposed to penalize the cost function Υ(r) or ΥCM (r)
by adding to them a positive term that gives a measure of decorrelation between
the current signal r(n) and the previously extracted source. It is simple to show
that, indeed, the global minimum is achieved if and only if the r(n) is an other
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source. However, this approach has been noticed to show poor performance. The
reason is that the extended cost function, contrary to the original, has many local
minima that do not correspond to separating solutions. The algorithms is known
to be trapped in such local minima and, in this case, the provided solution is not
an estimate of one of the remaining sources.

The second one is algebraic: the idea is to estimate the subspace associated with
the first estimated source and to run the minimization of Υ(r) or ΥCM (r) on the
orthogonal complement of the subspace in question: see [17].

The third is the most popular for source separation [58, 50]: it consists in deflat-
ing the mixture by substracting an estimation of the contribution of the extracted
source and then to redo the minimization of Υ(r) or ΥCM (r). Ideally, the «new»
mixture should not involve the source that has been extracted and the minimization
hence allows one to estimate another source. We provide some details.

Thanks to the previous results, we may suppose that we have r(1)(n) ≈ αs1(n)
where α is an unknown scaling. We have arbitrarily considered that the extracted
source was the one numbered «1»: this has of course no impact on the generality.
The contribution of the first source in the mixture y(n) has the form h1s1(n) where
h1 is the first column of the mixing matrix. We adopt a least square approach: the
contribution of the first source is estimated as ĥ(1)where this vector is defined as
the minimizer of

h 7→
N−1∑
n=0

∥∥∥y(n)− hr(1)(n)
∥∥∥2
.

Then the «deflated mixture» to be considered is

y(2)(n) = y(n)− ĥ(1)r(1)(n).

Ideally, the deflated mixture should not involve the first source. Hence running the
Constant Modulus algorithm on this mixture should provide an estimate r(2)(n) of
another source - say s2(n). The deflation is done again: this time ĥ(2)r(2)(n) is an
estimation of the contribution of the second source. The deflated mixture is

y(3)(n) = y(2)(n)− ĥ(2)r(2)(n).
And so forth until all the source are estimated. Notice that, asymptotically (when
N → ∞) the deflation procedure is convergent: in K steps the K sources are
estimated.

3.4.4. Improving the deflation. Though its inherent advantages (simplicity, conver-
gence of the algorithm of extraction), the above approach is supposed to suffer from
the K deflation steps. Indeed, the deflation is expected to increase, step after step,
the noise level, impinging dramatically the extraction of the «last» source. This
aspect has already been addressed and partially got round: we shortly address the
re-initialization procedure introduced in [59].

Consider the extraction of the «second» source and apply the deflation technique.
The source extraction algorithm is run on the deflated mixture and is likely to
provide a spatial filter g(2). We have, up to a scaling factor:

g(2)T

y(n)− ĥ(1)g(1)Ty(n)︸ ︷︷ ︸
deflated mixture

 ≈ s2(n)
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which provides the approximation:
gTy(n) ≈ s2(n)

where gT = g(2)T
(

IM − ĥ(1)g(1)T
)
. We hence have computed a spatial filter g

that is close to a separating filter w.r.t. the initial mixture. The idea is hence the
following: run the algorithm of minimization on the initial mixture, taking g as an
initial point. As g is close to a filter that is a local minimum of the function to
minimize (see Propositions 6,7), the computed spatial filter hence obtained after
convergence is likely to separate s2 from the initial mixture. This procedure can
be iterated: at each step, the separation is processed on the initial y(n) and not
on a deflated mixtures. Though simple, this procedure considerably enhances the
performance.

3.4.5. Extensions. Many contributions in BSS consider such functions as
(3.12) ϕ (κ(r))

over the unit sphere E
[
|r(n)|2

]
= 1 where ϕ : R → R is any continuous function

on R such that ϕ(0) = 0 and ϕ is strictly monotone over R+ and R−. The most
common choices are ϕ1(x) = x2 and ϕ2(x) = |x| and ϕ3(x) = −x. It quite simple
to prove the following result:

Proposition 10. Provided that ϕ(κ(rk)) > 0 for at least one source, then the local
maxima of (3.12) are separating.

3.5. Global BSS (stationary mixture). In this section, we present global meth-
ods, i.e. methods that «invert» the system in one shot. Assuming that K = M , it
is possible to linearly transform the data such as in Section 3.3. The «new» data
can be written as

x(n) = U s(n)
where U is a unitaryK×K matrix. A global BSS method hence aims at determining
a unitary matrix V such that the components of

r(n) = Vx(n)
correspond to the sources up to modulus one scalings and a permutation. In this
respect, we suggest to take profit of certain results of Section 3.4.

3.5.1. First result. Denote by rk(n) the k-th component of r(n). Due to the pre-
whitening, we have: E[|rk|2] = 1, hence Υ(rk)=κ(rk). This later can be seen as a
function of the k-th row of the matrix V. We have shown that Υ(rk) is minimum
if rk corresponds to one of the sources up to a modulus one scaling, i.e. if the k-th
row of F = VU is separating, its non-zero component being located at an index
corresponding to the sources that have the smallest Kurtosis. The idea is hence to
form the function

(3.13) Ψ(r) =
K∑
k=1

κ(rk).

Obviously, we have Ψ(r) ≥ K mink=1,...,K κ(sk). Conversely, this lower bound
cannot be achieved in general: assume for instance that mink=1,...,K κ(sk) is reached
once: say, the first source. The above lower bound is achieved only if F is the matrix
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having non-zero components on the first column only. This of course violates the
constraint that F is unitary. We have the following tight result:

Proposition 11. As κ(sk) < 0 for all the sources, we have, for any unitary F :

(3.14) Ψ(r) ≥ Ψ(s) =
K∑
k=1

κ(sk).

Moreover, the inequality is an equality if and only if F = VU essentially equals the
identity matrix.

Proof: by «essentially equal to», we mean that F is a diagonal matrix with
modulus entries, whose columns are permuted. The proof of this result follows the
proof of Proposition 3 and was suggested by Comon in [12]. We indeed, express
Ψ(r) as

Ψ(r) =
K∑
i=1

K∑
k=1

κ(sk) |fi,k|4 = −
K∑
i=1

K∑
k=1

(
|κ(sk)|1/4 |fi,k|

)4
.

On the other hand, we have the inequality:
K∑
k=1

(
|κ(sk)|1/4 |fi,k|

)4
≤

(
K∑
k=1
|κ(sk)|1/2 |fi,k|2

)2

implying that

(3.15) −Ψ(r) ≤
K∑
i=1

(
K∑
k=1
|κ(sk)|1/2 |fi,k|2

)2

We now denote by F the matrix whose component (i, k) is |fi,k|2 and by b(1/2) =(
|κ(s1)|1/2 , ..., |κ(sK)|1/2

)T
so that the r.h.s. of (3.15) is simply

∥∥F b(1/2)
∥∥2

2 . As
FFH = IK we deduce that the sum of the elements of any row/column of F is equal
to one: F is called doubly stochastic. As a consequence of the Birkhoff theorem
(see [38] chapter 2), F can be seen as the convex sum of permutation matrices, i.e.
F =

∑K
j=1 λjPj where, for any index j, λj ≥ 0 and

∑K
j=1 λj = 1. We deduce that

∥∥∥F b(1/2)
∥∥∥2

2
≤

 K∑
j=1

λj

∥∥∥Pj b(1/2)
∥∥∥

2

2

=

 K∑
j=1

λj

∥∥∥b(1/2)
∥∥∥

2

2

=
K∑
j=1
|κ(sk)| .

This proves Equation (3.14). Let us inspect the case of equality. If equality occurs,
the inequality (3.15) is necessarily an equality. Hence we have, for any indices i
and k1 6= k2

κ4(sk1)κ4(sk2) fi,k1fi,k2 = 0.
If all the numbers κ(sk) are strictly negative, hence non-null, the above conditions
implies that, for any index i, the vector (fi,1, ..., fi,K), i.e. the i-th row of the
matrix F, has at most one non zero component. On the other hand, the matrix F
is unitary. This imposes that F essentially equals the identity matrix �
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In practice, the function Ψ(r) given by Equation (3.13)cannot be computed. As
the data are supposed to be complex-circular at the second-order, we have

κ(rk) = E
[
|rk(n)|4

]
− 2.

A consistent estimate of Ψ(r) is hence

(3.16) Ψ̂(r) =
K∑
k=1

(
1
N

N∑
n=1
|rk(n)|4 − 2

)
.

The minimization of this function is carried out over the space of unitary matrices.
This can be done by using a Jacobi-like algorithm: unitary matrices are paramet-
rized by means of the Givens angles. The reader may find details in [12]. Notice
that no results concerning the convergence of the algorithm can be said, since it
has not been shown that the local minima of the «true» function Ψ(r) are «good
ones», i.e. achieve the BSS.

3.5.2. Generalization: notion of contrast function. We introduce the function

(3.17) Ψϕ(r) =
K∑
k=1

ϕ (κ(rk))

where ϕ : R → R is a function to be specified. Rather than minimizing Ψϕ, we
address its maximization. If the maximum is attained when (and only when) BSS
is achieved, Ψϕ is called a contrast function. As seen previously, the choice ϕ = −Id
makes Ψϕ be a contrast function. We have, more generally:

Proposition 12. If ϕ is a convex function on R such that ϕ(0) = 0 and if, for
any source index k the condition ϕ(κ(sk)) > 0 is fulfilled, then Ψϕ is a contrast
function.

Proof: for any index i, we have:
∑
k |fi,k|

4 ≤
(∑

k |fi,k|
2
)2

. As F is unitary, we
deduce that

∑
k |fi,k|

2 = 1. Hence
∑
k |fi,k|

4 ≤ 1. We set ρ = 1 −
∑
k |fi,k|

4. The
Jensen inequality gives here:

ϕ

(∑
k

κ(sk) |fi,k|4 + 0 (1− ρ)
)
≤
∑
k

ϕ (κ(sk)) |fi,k|4 + ϕ(0) (1− ρ).

As ϕ(0) = 1, we deduce that

Ψϕ(r) ≤
∑
i

∑
k

ϕ (κ(sk)) |fi,k|4 .

By assumption all the ϕ(κ(sk)) > 0 hence the same argument as the one given in
the proof of Proposition 11 shows that the maximum is

∑
k ϕ(κ(sk)) and that this

maximum is reached if and only if the matrix F is essentially the identity. �
The standard choice for ϕ is ϕ(x) = x2. In this case, is is enlightening to notice

that maximizing Ψϕ is equivalent to minimizing:

(3.18)
∑

i,j,k,` non all equal

(
cum

(
ri, r

∗
j , rk, r

∗
`

))2
which is clearly a measure of independence (up to the fourth-order).
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3.5.3. A popular algorithm: JADE. If the indices j, k are fixed, it may be noticed
that the matrix Mj,k whose entry i, ` is given by cum

(
xi,, x

∗
j , xk, x

∗
`

)
admits the

factorization
Mj,k = UDj,kU∗

where Dj,k is diagonal; the entry (`, `) is u∗j,`uk,`κ(s`). Otherwise stated, U diag-
onalizes the normal matrix Mj,k whatever the indices j, k. Introducing the off(.)
operator that sums all the entries of a matrix except the ones located on the main
diagonal, this says that

(3.19)
∑
j,k

off (VMj,kV∗)2

is minimum, equal to zero, when F = VU essentially equals the identity matrix.
Conversely, it can be shown that (3.19) can be written as (3.18). Hence a minimizer
of the function given in (3.19) is a maximizer of Ψφ(r) with φ(x) = x2. Now,
Proposition 12 with the fact that, for any index k, (κ(sk))2

> 0 proves that the
maximizers of Ψφ(r) are such that F is essentially equal to the identity matrix.
This trick of algebra allows one to achieve the maximization of Ψφ thanks to a
joint diagonalization of a set of normal matrices. It has been proposed by Cardoso
[11] The algorithm associated with this approach is called JADE. It is very popular
since efficient algorithms of joint diagonalization are known [9].

Notice that the pencil of matrices is a pencil of normal matrices hence the matrix
U is searched in the set of unitary matrices. Recently, Yeredor et al. [65] suggest to
relax the unitary constraint. These authors even suggest to skip the pre-whitening
of the data: they argue that the pre-whitening may limit the attainable performance
as Cardoso pointed it out in [10]. With no whitening of the data, the matrices of
cumulants are still jointly diagonalized; if the channel matrix H is square, the
columns of this latter form a basis for the diagonalization. The converse is not
clear on the one hand and, on the other hand, the case of tall matrices H remains
to be addressed.

3.6. Generalizations. We have presented ad’hoc BSS methods, whose theoretical
fundations are solid and whose good performance is well-known. In the literature,
however, many other methods can be found. They stem from considerations of
information theory. We provide some key ideas and related bibliographical refer-
ences.

After pre-whitening, we recall that the received data is x = U s (we have dropped
the time index): on the one hand, U is unitary and on the other hand, the compon-
ent of the random variables in s are mutually independent. The idea of independant
Component Analysis (ICA) is hence to exhibit matrices V such that the compon-
ents of r = V x are «as much independent as possible». This independency may
be measured by the Kullback-Leibler divergence between the distribution of r and
this of the product of the marginals: this is the mutual information I(r). It is
well-known that I(r) ≥ 0 with equality iff the components of r are independent.

Besides, it has been underlined by Comon in [12] that the Darmois theorem
states the fact: as the sources are non-Gaussian, the fact that the components
of r are pair-wise independent (which is naturally the case if they are mutually
independent) implies that F = V U is essentialy equal to the identity matrix.
Hence, the minimization of the mutual information of I(r) is legitimate. This
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induces of course no BSS algorithm, since the mutual information cannot be simply
estimated.

Now, Comon underlines in the seminal paper [12] that I(r) = J (r)−
∑K
k=1 J (rk)

where J (r) is the negentropy of the vector r, i.e. J (r) = H(rgaussian)−H(r): here,
H(r) is the differential entropy of r and H(rgaussian) the differential entropy of the
Gaussian vector whose mean and covariance matrix are those of r. The negentropy
shows the nice property of invariance w.r.t. any invertible change of variables: hence
J (r) does not depend on F. The independence is then obtained by maximizing

K∑
k=1
J (rk).(3.20)

Notice that J (rk) ≥ 0 with equality when rk is Gaussian. Hence the maximization
in question tends to maximize the distance of the reconstructed source r to the
Gaussian case.

On the other hand, this shows that, in order to achieve independency, it suffices
to consider the maximization of a sum of functions, each of which simply depends
on a component of the reconstructed source vector. Evidently, the maximization
of the function J (r1) under the constraint that the first row of F has norm one, is
achieved when r1 coincides with one of the sources up to a modulus one factor. In
this respect, this remark provides a justification of the iterative methods proposed
in Section 3.4, even if the function considered are not the negentropy. As far as the
function Ψφ(r) is concerned, notice that it has the form (3.20).

Comon proposes an approximation of the negentropy, based on the Edgeworth
expansion of the probability density functions of the random variables rk. Thanks
to the circularity assumption, this approximation is J (rk) ≈ 1

48κ(rk)2. This calls for
an important remark: the function Ψφ(r) given in Equation (3.17) with φ(x) = x2

is hence closely connected to a measure of independence - this confirms a remark
previously done.

Hyvarinen departs from functions based on the cumulants. In [28], it is suggested
to consider a wider class of functions which are not directly related to cumulants.
In short, the new functions to be maximized are more robust to outliers. The
price to be paid is the weaker results concerning the separation: for instance, the
precious results concerning the separability of the local maxima do not hold. An
efficient algorithm has given rise to the popular method called FastICA. In the
original paper [28], the sources are real valued which is not the case in this paper.
An extension to complex-valued sources can be found in [7].

3.7. Iterative BSS (general cyclo-stationary case). We specified that the as-
sumption of stationarity of the sources, as required in the previous sections, is
somewhat restrictive in a realistic scenario of telecommunication. Indeed, the sta-
tionarity implicitly assumes that all the sources have the same symbol period and
that the data are sampled at a period equal to the symbol period. In general - think
for instance of a passive listening context - the sources have different baud-rates.
We denote the symbol periods of the K sources by T1, ..., TK . If Te is the sampling
period - a priori different of any of the symbol periods - we have deduce from Sec-
tion 2 that, for any index k, the source sk(n) is cyclostationary. In particular, the
second moment E

[
|sk(n)|2

]
varies with the time-index n. More specifically, we

have
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E
[
|sk(n)|2

]
=
∑
α∈Ik

R(α)
sk
eı2παkn

where

Ik =
{

0,±Te
Tk

}
is the set of the second-order cyclic frequencies of sk and the Fourier coefficients
R

(α)
sk are given by Equation (2.8) (we have dropped the time-lag in R(α)

sk (`) since,
in the sequel, no other time delay than ` = 0 is considered). In this section, the
channel is supposed to be memoryless, as in all the Section 3. Hence, the model
given by Equation (2.11) still holds: the components of the source vector s(n)
are effectively mutually independent, but are not individually stationary. As far
as the normalization of the sources is concerned, it may also be assumed: in the
cyclo-stationary context of this section, this means that

(3.21)
〈
E
[
s(n)s(n)H

]〉
n

= IK

In the following, we provide assumptions on the sources that guarantee that the
algorithms of source separation depicted in Section 3.4 still converge to desirable
solutions, i.e. allow one to separate the sources. In other words, the algorithms
previously considered are run as if the data were stationary: this means that nothing
has to be changed in any part of the stationary BSS algorithms. Surprisingly, the
fact that the data are not stationary is shown not to impact the convergence to a
good (separating) solution.

The algorithms encountered for stationary data (see Section 3.4) are designed to
minimize either the function Υ̂(r) given by Equation (3.10) or the Godard function
Υ̂CM (r) given by Equation (3.11). Let us recall that the signal r(n) is the output
of the variable spatial filter g, i.e.

r(n) = gTy(n)
= fT s(n)

where fT = gTH. As in the stationary case, we analyze the argument minima of the
theoretical associated function. The first point to be addressed is hence: to which
functions Υ̂(r) and Υ̂CM (r) converge? Due to the non-stationarity of the model,
the function Υ̂(r) for instance does not converge to Υ(r) as given in Equation (3.9):
this cannot be the case since the latter function depends on the time-lag n.

There is a version of the law of the large numbers for non-stationary data. Lemma
8 can be written in this context under this form:

Lemma 13. For p = 2, 4, we have, with probability one:

1
N

N−1∑
n=0
|r(n)|p −→ 〈E [|r(n)|p]〉 .

We deduce that Υ̂CM (r) −→
〈
E

[(
|r(n)|2 − 1

)2
]〉

.We define this limit as (the

superscript «c» means «cyclo-stationary»):
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(3.22) Υ(c)
CM (r) =

〈
E

[(
|r(n)|2 − 1

)2
]〉

n

.

For the same reason, we have Υ̂(r) −→ Υ(c)(r) where

(3.23) Υ(c)(r) =

〈
E
[
|r(n)|4

]〉
n(〈

E
[
|r(n)|2

]〉
n

)2 − 2

Notice that, in the case of stationary data, Υ(c)(r) (respectively Υ(c)
CM (r) ) equals

Υ(r) (respetively ΥCM (r) ).
We first address the minimization of Υ(c)(r). Once done, we deduce results

concerning the minimization of Υ(c)
CM (r).

We consider a prior expansion of the moments involved in Υ(c)(r). The following
equality always holds true (we recall that the signals are all complex-circular at the
second-order):

(3.24) E
[
|r(n)|4

]
= κ(r(n)) + 2

(
E
[
|r(n)|2

])2
.

The multi-linearity of the cumulant gives:

〈κ(r(n))〉n =
K∑
k=1

η(sk) |fk|4

where we let for any source s = sk the number η(s) be

(3.25) η(s) = 〈 κ(s(n)) 〉n .

The output of the spatial filter , r(n), is obviously a linear combination of the
sources s1, ..., sK : r(n) =

∑K
k=1 fksk(n). As sk admits Ik = {0,±αk} as the set of

its second-order cyclic frequencies, we deduce that r(n) is cyclo-stationary and its
second-order cyclo-frequencies are in the set

I =
K⋃
k=1
Ik.

This means that E
[
|r(n)|2

]
=
∑
α∈I R

(α)
r eı2παn. As a consequence, the term〈(

E
[
|r(n)|2

])2
〉
n

, may be computed thanks to the Parseval equality. We have

indeed

〈∣∣∣E [|r(n)|2
]∣∣∣2〉

n

=
∑
α∈I

∣∣∣R(α)
r

∣∣∣2 .
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On the other hand, the sources are mutually decorrelated hence

R(α)
r =

K∑
k=1

R
(α)
fksk

=
K∑
k=1
|fk|2R(α)

sk
.

By definition, I∗ = I r {0} is the set of all the non-null cyclic frequencies of the
mixture. After isolating the term associated with the cyclic frequency α = 0, we
may hence write that〈(

E
[
|r(n)|2

])2
〉
n

=
(
R(0)
r

)2
+
∑
α∈I∗

∣∣∣∣∣
K∑
k=1
|fk|2R(α)

sk

∣∣∣∣∣
2

=
(
R(0)
r

)2
+

K∑
k=1
|fk|4

∑
α∈I∗

k

∣∣∣R(αk)
sk

∣∣∣2
+ 1

2
∑
k1 6=k2

|fk1 |
2 |fk2 |

2
ε(sk1 , sk2)

=
(
R(0)
r

)2
+ 2

K∑
k=1
|fk|4

∣∣∣R(αk)
sk

∣∣∣2 + 1
2
∑
k1 6=k2

|fk1 |
2 |fk2 |

2
ε(sk1 , sk2)

where

(3.26) ε(sk1 , sk2) = 2
∑
α∈I∗

R(α)
sk1
R(α)∗
sk2

.

We have used the symmetry:

(3.27) R(−αk)
sk

= R(αk)∗
sk

.

The set I∗ is simply {±αk | k = 1, ...,K}. Denoting by I∗+ the set {αk | k =
1, ...K} we have, due to (3.27), the alternative expression of ε that underlines that
ε is real:

(3.28) ε(sk1 , sk2) = 4Re

∑
α∈I∗+

R(α)
sk1
R(α)∗
sk2

 .

We hence have the following expression:

(3.29) Υ(c)(r) =
∑K
k=1 ζ(sk) |fk|4 +

∑
k1 6=k2

|fk1 |
2 |fk2 |

2
ε(sk1 , sk2)(∑K

k=1 |fk|
2
)2 .

where we have let, for any of the sources s = sk whose positive cyclic frequency is
α the number ζ(s) be

(3.30) ζ(s) = η(s) + 4
∣∣∣R(α)

s

∣∣∣2 .
It is to be noticed that ζ(s) can also be expressed as

(3.31) ζ(s) =
〈
E
[
|s(n)|4

]〉
n
− 2.

We are in position to discuss the minimization of this function. Two cases have to
be distinguished.
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3.7.1. Case of different baud-rates. If the cyclic frequencies ± Te
Tk

are all different
modulo 1, the coefficients ε(sk1 , sk2) all verify:

(3.32) ∀k1 6= k2 ε(sk1 , sk2) = 0.

Indeed, it suffices to consider the expression of Equation (3.26): let αk be the
positive cyclo-frequency of the source no k: αk = Te

Tk
. In Equation (3.26), there are

at most two terms: α is either αk1 or −αk1 = 1− αk1 modulo 1. Take for instance
α = αk1 . The associated term is non null if α = αk2 or α = −αk2 = 1 − αk2 : if
±αk1 and ±αk2 are different modulo 1, this cannot occur. The same reasonning
applies for α = −αk1 . In other words, ε(sk1 , sk2) = 0.

Remark. It is desirable to bridge the gap between this condition on the disparity
of the cyclo-frequencies and practical considerations. We insist on the fact that
the above condition is not equivalent to condition that the symbol frequencies are
different. Indeed, consider α1 = 1/8 and α2 = 7/8. Then −α2 = α1 modulo 1 and
the condition is not fulfilled whereas the symbol periods are different. However, if
the sampling frequency is big enough such that for all indices k: αk < 1/2 then the
condition on the disparity of the cyclic frequencies simply means: all the symbol
periods are different. In the following, we systematically assume the condition

(3.33) αk <
1
2 .

Proposition 3 can be written in the non-stationary context:

Proposition 14. If the cyclic frequencies ± Te
Tk

are all different modulo 1, then the
cost funtion Υ(c)(r) achieves its minimum at a separating vector if and only if one
of the ζ(sk) is strictly negative. Moreover, the separating vector in question has its
single non-null element located at an index k0 such that ζ(sk0) = mink=1,...,K ζ(sk).

We hence consider the following assumption

(3.34) A1 for any of source s of the mixture ζ(s) < 0.

that is analyzed in Section 3.9.
Together with Proposition 14, this assumption A1 allows one to claim that the

minimization of the estimated function Υ̂(r) is legitimate as far as the extraction
of a source is concerned. Moreover, the result of Lemma 5 still holds: indeed, the
expression of Υ(c)(r) given by (3.29) simplifies as

Υ(c)(r) =
∑K
k=1 ζ(sk) |fk|4(∑K
k=1 |fk|

2
)2

which is formally the same as the function Υ(r) considered in the stationary case
- see Equation (3.8). The local minima of Υ(c)(r) are separating, which makes the
minimization algorithm based on a gradient method robust to the presence of local
minima.

We now face the minimization of the function Υ(c)
CM (r). The question is whether

the non-stationarity of the data changes such a result as the one given in Proposition
7 or not. The careful reader will be assured that indeed Proposition 7 is true in
the non-stationary case. Moreover, the result of Proposition 4 is unchanged in the
cyclo-stationry case. We can claim:
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Proposition 15. If the cyclic frequencies ± Te
Tk

are all different modulo 1, and if
Assumption A1 in (3.34) holds, then the local minima of the cost funtions Υ(c)(r)
and Υ(c)

CM are separating.

3.7.2. General case. Contrary to the case where the cyclic-frequencies are different,
the Equation (3.32) does not hold in general, and the results given in the stationary
context concerning the minimization of Υ(c)(r) cannot be directly recast. However,
numerical considerations may help to give similar results. In this respect, the reader
should understand that the quantities ε(sk1 , sk2) are either zero or «small» since
they involve cyclo-correlation at non-null frequencies. This is specific of telecom-
munication signals; the reason is due to the fact that the excess bandwidth of a
transmitted signal is small (see [39]). We will discuss this fact further on, but for
the moment, we simply consider the following assumption for any of the sources,
denoted by s:

(3.35) A2 for any source s of the mixture
∣∣∣R(α)

s

∣∣∣ < 1
2
√
|ζ(s)|

We discuss this assumption further in section 3.9. For the moment, we suppose
that Assumptions A1 and A2 both hold.

Consider two distinct indices k1 and k2; for sake of simplicity, let them be k1 = 1
and k2 = 2. Notice that if the sources numbered 1 and 2 are such that their
associated (single) cyclic frequencies are different modulo 1 then ε(s1, s2) = 0.
Suppose on the contrary now that the cyclic frequencies are equal modulo 1 (thanks
to (3.33) this happens if and only if the two baud-rates are the same). In this
case, the sommation (3.28) has only one term and ε(s1, s2) = 4R

(
R

(α)
s1 R

(α)∗
s2

)
.

Assumption A2 given in (3.35) holds, it follows in both cases that |ε(s1, s2)| <√
|ζ(s1)| |ζ(s2)|. Whatever the indices k1 6= k2 may be, Assumption A2 implies

(3.36) ∀k1 6= k2 |ε(sk1 , sk2)| <
√
|ζ(sk1)ζ(sk2)|.

We may consider the expression of Υ(c)(r) given in Equation (3.29). We have,
thanks to (3.36):
(3.37)
K∑
k=1

ζ(sk) |fk|4+
K∑

k1 6=k2

|fk1 |
2 |fk2 |

2
ε(sk1 , sk2) ≥ −

K∑
k=1
|ζ(sk)| |fk|4−

∑
k1 6=k2

|fk1 |
2 |fk2 |

2√|ζ(sk1)ζ(sk2)|.

As the r.h.s of the latter equation is simply −
(∑

k

√
|ζ(sk)| |fk|2

)2
, this shows that

Υ(c)(r) ≥ −
(∑

k

√
|ζ(sk)| |fk|2∑
k |fk|

2

)2

≥ −max
k
|ζ(sk)| .

If Assumption A1 holds, this lower bound is evidently reached. It remains to
inspect the cases of equality for this lower-bound. In this respect, we suppose
that Υ(c)(r) = ζmin where ζmin = mink ζ(sk). For convenience, we assume that∑p
k=1 |fk|

2 = 1. The case of equality implies that (3.37) is an equality. It implies
that ∑

k1 6=k2

|fk1 |
2 |fk2 |

2
(
ε(sk1 , sk2) +

√
|ζ(sk1)ζ(sk2)|

)
= 0.
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Now, the inequality A2 implies that ε(sk1 , sk2) +
√
|ζ(sk1)ζ(sk2)| > 0. Necessar-

ily, we must have that, for every couples (k1, k2) such that k1 6= k2, fk1fk2 = 0.
Otherwise stated: the vector f has a single non-null component, hence is separating.

We have shown the result:

Proposition 16. If the Assumptions A1 and A2 hold, then the cost funtion Υ(c)(r)
and Υ(c)

CM achieve their minimum at a separating vector.

3.8. Global BSS (general cyclo-stationary case) . Again in this section, the
global source separation method depicted in Section 3.5 is considered. Its conver-
gence was specifically shown for stationary sources. We show that the convergence
of the algorithm to a separating matrix is not affected when the data are cyclo-
stationary. This key-result was first provided in [18]; a condition of separability of
JADE was given, which was rather difficult to interpret especially when the number
of sources is greater than 3. We show the result quite differently, following [30].

Notice that the pre-whitening of the observed data is still possible even when
the data are cyclo-stationary: the algorithm is even not changed at all. Hence,
we begin by considering the estimate Ψ̂(r) given by Equation (3.16). Obviously,
this estimate can not converge to the function of th ecumulants given by Equation
(3.13) since the terms in this equation depend on the time lag. Nevertheless, the
limit as the number of snapshots grows can be expressed as

Ψ(c)(r) =
K∑
i=1

(〈
E
[
|ri(n)|4

]〉
n
− 2
)
.

Thanks to the algebra already done along Section 3.7, we may directly write

Ψ(c)(r) =
K∑
i=1

 K∑
k=1

ζ(sk) |fi,k|4 +
∑
k1 6=k2

|fi,k1 |
2 |fi,k2 |

2
ε(sk1 , sk2)

 .

It remains little to do as soon as Assumptions A1 and A2 hold, since the following
inequality holds:

Ψ(c)(r) ≥ −
K∑
i=1

(
K∑
k=1

√
| |ζ(sk)| |fi,k|2

)2

=
∥∥∥Fz(1/2)

∥∥∥2

2

where z(1/2) = (|ζ|(s1), ..., |ζ|(sK))T . The same argument as the one given in Sec-
tion 3.5 (Birkhoff theorem) proves that Ψ(c)(r) ≥ −

∑K
k=1 |ζ(sk)| . As the num-

bers ζ(sk), thanks to Assumption A1, are strictly negative, we directly show that
−
∑K
k=1 |ζ(sk)| is the infimum of Ψ(c)(r) and this infimum is reached for unitary

matrices F that are essentially equal to the identity matrix. This proves the fol-
lowing proposition, that is the sister of Proposition 11:

Proposition 17. If Assumptions A1 and A2 hold, we have, for any unitary F :

Ψ(c)(r) ≥ Ψ(c)(s) =
K∑
k=1

ζ(sk).

Moreover, the inequality is an equality if and only if F essentially equals the identity
matrix.
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3.9. Validity of Assumptions A1 and A2: semi-analytical considerations.
In essence, we have shown that the cyclo-stationarity of the data does not affect
neither the one-by-one methods of Section 3.7, nor the global method depicted in
Section 3.5. This positive answer to our question however requires to inspect the
validity of Assumptions A1 and A2. We first discuss A1. We recall that, in a sta-
tionary environment, ζ(s) is simply the fourth-order cumulant of the (normalized)
source. As this latter is a filtered version of an i.i.d. sequence of symbols having a
strictly negative Kurtosis, it is straight-forward that ζ(s) < 0. In a cyclo-stationary
environment, the mentioned argument does not hold anymore. In this case, indeed,
ζ(s) is given by (3.30) and it is not possible to conclude directly that ζ(s) < 0.
However, these statistics can be shown to express as integrals of the shaping filter
ca(t), at least for a generic sampling frequency (see [31]). More precisely, except
for four sampling frequencies that are irrelevant to consider, it can be shown quite
simply that

R(α)
s = 1

T

ˆ
|ca(t)|2 e−ı2πt/T dt

and

ζ(s) = κ(d) 1
T

ˆ
|ca(t)|4 dt + 4

∣∣∣R(α)
s

∣∣∣2

where ca, as specified in the introduction, is a normalized square-root raised-cosine
filter. In [31], it is shown rigorously that R(α)

s and ζ(s) do not depend on the
symbol period T . It is hence possible to compute numerically ζ(s) as a function
of the excess bandwidth, while considering a few values of κ(d) corresponding to
typical modulations. The reader may find details on the computation of these
numbers in the above reference. The results are reported in Figure 3.1 . In order
to validate that the above formulas are correct, we also have plotted the estimate
of ζ(s) obtained by stochastic simulations with respect to Equation (3.31) (we have
generated sequences of 10000 symbols according to the modulation) . For all the
values of the excess bandwidth, the numerical results let us claim that A1 is true.

At a first sight, Assumption A2 looks quite audacious; indeed it is. As far as
we know, it is not possible, for the same reasons as those mentioned above, to
prove this result analytically. Resorting again to semi-analytical considerations, we
compute the numbers 1

2
√
|ζ(s)| and

∣∣∣R(α)
s

∣∣∣ for different modulations and excess-
bandwidth factors. We have obtained the results that can be seen in Figure 3.2.
These computations indicate that A2 can be claimed to hold.
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4. Convolutive mixtures: case of sparse channels

We now face the problem of blind source separation when the channel is not
memoryless. The contribution of a given source to received data is not simply the
delayed source up to an unknown constant, but a filtered version of the source. In
this section, we specify the model and we explain how it is possible to connect quite
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directly the previous results (on instantaneous mixtures) to this model: this requires
a strong assumption on the delays as will be explained. We refer to [15](chapter
17) for more details.

The convolutive effect stems from the presence of multiple paths as specified
in Section 2.1. Consider a source sa,k(t) ; the contribution of this source on the
received signal (m-th sensor) is given by (2.9). In most of the high-rate digital
communication systems, the narrow-band assumption may be taken for granted.
By narrow-band signal, we mean that the carrier frequency is big enough to consider
the signal as monochromatic. More specifically, this means that the bandwidth of
the signal in baseband is much smaller than the carrier frequency, i.e.

1
Tk
� fk.

On the other hand, for any delay τ such that τ � Tk, we have the approximation:
sa,k(t − τ) ≈ sa,k(t). In order to take the full benefit of the antenna array, the
distance between two consectutive antennas should be of the order of half the wave-
length. This says that the delay of propagation between two consecutive antennas is
of the order of 1

2fk � Tk. As a consequence, the contribution of the k-th source and
`-th path to the mixture is a rank one signal and can be written as hk,`sa(t− τk,`)
where hk,` is called steering vector.

We assume that the associated delays are sorted such that τ1,k < τ2,k < ... We
consider the case when the delays are «sufficiently spread out». In this respect, the
reader should notice that it is possible to use the fact that the shaping function
ca,k numerically vanishes: ca,k(t) can be numerically neglected if |t| > PkTk where
the integer Pk depends on the roll-off. This implies that

sa,k(t) ≈

⌊
t
Tk

⌋
+Pk∑

`=
⌊
t
Tk

⌋
−Pk

dk(`)ca,k(t− `Tk).

Consider that the above approximation is an equality. As a consequence, if τ2,k −
τ1,k > 2PkTk then the random variables sa,k(t − τ1,k) and sa,k(t − τ2,k) do not
involve the same symbols hence they are independent. Two consecutive paths can
hence be treated as independent sources. Suppose that all the successive delays are
separated by more than 2PkTk, this property holding true for all the sources. As
Lk denotes the number of paths associated with the k-th source, we may write the
observed data according to Equation (2.11). This time, the «source vector» sa(t)
is defined assa,1 (t− τ1,1) , ..., sa,1 (t− τ1,L1)︸ ︷︷ ︸

L1 "sources"

, ..., sa,K (t− τ1,K) , ..., sa,K
(
t− τLK,K

)︸ ︷︷ ︸
LK "sources"


T

.

The K̃ = L1 +L2 + ...+LK ≥ K «sources» in the vector sa(t) are (approximatly)
mutually independent. The advantage of this formulation is that all the results
given in Section 3.7 remain true. Nevertheless, we want to stress the drawbacks of
this approach.

(1) A fundamental requirement is that the number of sensors, M , is greater
than the number of sources. We recall that this necessary condition comes
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from the requirement that the mixing matrix H should have full -column
rank. This gives here

M ≥ K̃.

This condition may be limiting as soon as the number of paths per com-
munication source is big.

(2) The source separation methods all require that the components of sa(t)
be mutually independent. Now, the delays are spread out in very specific
conditions; this particular consition occurs in long-range communication
channels (ionospheric transmissions): we refer to the reference [15](chapter
17) for details. On the contrary, this assumption on the distribution of
the delays associated with a given source is scarcely fulfilled in many cases
(urban GSM channels for instance).

(3) The complexity of the instantaneous (one-by-one or global) methods dir-
ectly increases with the number of sources.

(4) The algorithms of source separation, ideally, should provide, up to con-
stants, all the components of sa(t). For instance, L1 of these «sources»
among the K̃ components involve the sequence of symbols d1(n). As the
ultimate goal is to eventually estimate these transmitted symbols, a recom-
bination of the L1 «sources» has to be computed. Notice that the sources
are generally not ordered in any way. The association of th e reconstructed
paths can be processed after lagged correlation between the reconstructed
sources. This is clearly not a child’s play.

For practical considerations, we refer to Chapter 17 of reference [15] where a
comparison between instantaneous (described in this section) and convolutive ap-
proaches described in the next section are done.

5. Convolutive mixtures

We now face the case of the general multi-path channels; no such condition as
the sparsity of the channels is assumed to hold.

5.1. Identifying the symbols: algebraic methods (stationary data). In this
section, the model of the data is stationary and is given by (2.18). We have justified
in the introduction that it is legitimate to approximate the MIMO filter E(z) by a
polynomial. We denote by L its order, i.e.

E(z) =
∑L
`=0 E`z

−1. The approaches that we want to introduce exploit algebraic
properties of the model (convolution) and of the source signal d(n). Van der Veen
et al. [62] suggest the following method.

Consider the vector

(5.1) yP (n) = (y(n)T ,y(n− 1)T , . . . ,y(n− (P − 1))T )T

for P ≥ L. We remark that

yP (n) = TP (E)dP+L−1(n)
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where dP+L−1(n) is defined in the same manner as yP (n) and where matrix TP (E)
is the MP ×K(L+ P ) block-Toeplitz matrix given by

(5.2) TP (E) =


E0 . . . EL 0 . . . 0
0 E0 . . . EL 0 0

0
. . . . . . . . . . . . 0

0 . . . 0 E0 . . . EL

 ,

where we have set E = (E0, . . . ,EL) . Denote by YP the MP × (N −P −L) matrix
(N is the number of snapshots) in which all the data y(n) from n = L + P to
n = N are collected (P ≥ L): the n-th column of YP is yP (n) - see (5.1). It yields
YP = TP (E) DP+L,N where DP+L,N is the block-Toeplitz matrix defined by

DP+L,N =


d(P + L− 1) d(P + L) d(N)

d(P + L− 2) d(P + L− 1)
. . .

...
. . .

d(0) d(1) d(N − P − L+ 1)

 .

It is known (see [29, 1]) that the assumption given in (2.21) involves that TP (E)
is a full column rank matrix. We deduce that the row space of YP equals the
row space of DP+L,N . An idea consists in finding the matrices D̂P+L,N having the
Toeplitz structure of DP+L,N such that their row space is prescribed. Notice that
an ambiguity arises since the estimated d̂(n) of d(n) coincide up to an invertible
matrix. This latter can be removed by considering one of the algebraic methods
(instantaneous mixtures) evoked in Section 3.2 in which a priori information on the
symbols is exploited (finite alphabets or constant modulus modulations).

5.2. Estimation of the channels: MA/AR structures (stationary data).
Again in this section, the data are stationary and follow the model (2.18), so that
y(n) appears to be a moving average model driven by non-Gaussian i.i.d. sequences.
A number of blind identification methods of MA models using higher statistics have
been derived, and could be used in the present context (see e.g. [52]). However,
the corresponding algorithms show poor performance.

If E(z) is irreducible - see (2.21) - there exists a left polynomial inverse of E(z)
[1] - say G(z). This implies that [G(z)] y(n) = d(n) where d(n) is i.i.d., which says
that y(n) is an AR model. This can be used in order to identify the matrix E(z)
thanks to a linear prediction approach, and hence to retrieve the symbol sequences
[25] up to a constant K × K matrix. We note however that the irreducibility of
E(z) does not hold when the excess band-width are all zero due to the factorization
evoked at the end of section 2.3.2. This tends to indicate a certain lack of robustness
of the linear prediction method when the excess bandwidth factors are small.

5.3. Estimation of the channels: subpace methods (cyclo-stationary data).
In the previous sections, the main assumption is that the data are stationary. Here,
we rather consider the general model (2.17). We consider here the general cyclo-
stationary model.

In order to achieve BSS, it is suggested here to identify the transfer function
H(z), and then to evaluate one of its left inverse in order to retrieve the source
signals (this kind of approaches is sometimes called indirect). In this respect, H(z)
is usually modelled as a FIR causal filter, i.e. H(z) =

∑L
`=0 H`z

−`. It has been
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shown in [1] that if M > K and TP (H) is full column rank, then H(z) can be
identified from the column space of TP (H) up to a constant K ×K matrix which
can itself be estimated using any instantaneous mixture blind source separation
method. In practice, the column space of TP (H) is usually estimated by means of
the eigenvalue/ eigenvector decomposition of an estimate of the covariance matrix
of vector yP (n) given in (5.1). We should perhaps specify this point. Indeed, we
have

R̂yP (0) = 1
N

N∑
n=L+P

yP (n)yP (n)H

= TP (H) Γ̂ TP (H)H

where Γ̂ = 1
N

∑N
n=L+P sP+L−1(n)sP+L−1(n). If this latter is full rank, the column

space of R̂yP (0) coincides with the column space of TP (H). However, it should be
emphasized that it is not always legitimate to assume that Γ̂ is full rank except when
all the sources occupy all the band of frequencies

[
− 1

2Te ,
1

2Te

]
. On the contrary,

the rank of Γ̂ is expected to fall. We do not provide the details: the reader should
compute the limit of Γ̂ as N → ∞ and show that the limit Γ is a block Toeplitz
matrix whose block (p, q) has the expression:

Γp,q =
ˆ 1

0
e−ı2π(p−q)νS(0)

s
(
eı2πν

)
dν

where S(0)
s
(
eı2πν

)
is the (diagonal) power spectral density of the vector s(n). As

the sampling period verifies the Shannon sampling condition, some of the entries
of S(0)

s
(
eı2πν

)
are band-limited, which prevents the rank of Γ from being full (see

the works of Slepian and Pollak on the prolate spheroidal wave functions).
Further refinements are proposed in [24]. Notice that this subspace method,

although apparently quite appealing, performs poorly as soon as the matrix TP (H)
is ill-conditioned, which, in practice, is quite often the case.

5.4. Global BSS approaches.

5.4.1. Temporal approaches: extensions of the Comon contrast function (stationary
data). We now focus on the direct and global BSS methods, i.e. methods that
allow one to compute a global separator in one shot (up to indeterminacies that
will be specified). In this respect, we intend to provide extensions of the approaches
given for the instantaneous context - see Section 3.5. For simplification, assume the
(restrictive) stationary case. As specified in the previous paragraph, the model of
the data is not stricto sensu [H(z)] s(n) as in Equation (2.17) since the Shannon
sampling condition does not hold, but rather (2.18).

On the one hand, a direct extension of a contrast as defined by Comon can be
done (see section 8.4.2 of [15]). The first step to be considered is the decorrelation
of the data (the prewhitening), i.e. a filter matrix Q(z) is computed such that
x(n) = [Q(z)] y(n) is decorrelated both spatially and temporally. This is equivalent
to computing Q(z) such that U(z) = Q(z)E(z) is para-unitary, i.e. U(z) verifies
for any frequency ν ∈

[
− 1

2 ,
1
2
]
: U

(
eı2πν

)
U
(
eı2πν

)H = IK . The reader may find
details of this procedure in [8, 5]. The reconstructed vector of the sources may
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hence be searched as r(n) = [V(z)] x(n) where V(z) is a para-unitary matrix. It is
possible to consider, as in the instantaneous case, the function

Ψ(r) =
N∑
k=1

ϕ (κ(rk))

where ϕ shows the same properties as in Proposition 12. It can be simply shown
that Ψ, as a function of the para-unitary matrix V(z), is a contrast, i.e. achieves its
maximum for separating matrices U(z): see [13]. Theoretically appealing (at least
in a stationary environment), this solution calls for implicit prerequisites, namely
the pre-whitening and the optimization over the set of para-unitary matrices. Con-
cerning this latter point, solutions have been given (see [60][40]); Comon et al.
also suggested to consider a subset of the set of the para-unitary matrices [14]. The
solutions are not simple. Besides, the algorithms might be trapped in local maxima.

5.4.2. Frequency-domain approaches. In the case of stationary data (same restrict-
ive context as in the above subsection), it is possible to recast the results of the
instantaneous case after processing the discrete Fourier transform of the data: the
separation in processed at each frequency. The difficulty is that the indeterminacies
change from a frequency to the other which makes the approach quite difficult. The
reader may find references in [64].

Assuming now the general cyclo-stationary model given by (2.17), one may fo-
cus on second-order methods. The power spectrum of the data, defined as the
discrete Fourier transform of the correlation function at the null cyclic frequency(
R

(0)
y (`)

)
`∈Z

can be written as

(5.3) S(0)
y
(
eı2πν

)
= H

(
eı2πν

)
S(0)

s
(
eı2πν

)
H
(
eı2πν

)H
where S(0)

s
(
eı2πν

)
is the K × K power spectrum of the source vector given by

(2.10). The components of s being jointly independent, hence decorrelated, the
matrices S(0)

s
(
eı2πν

)
are diagonal. As far as the identifiability of the unknown

H(z) based on the relation (5.3) is addressed, it is shown in [27] that the condi-
tions required are that (2.20) holds on the one hand and, on the other hand, that
spectral diversity occurs namely that the entries of S(0)

s
(
eı2πν

)
are all distinct for

every frequency. In [33, 34] its is shown that the matrices G
(
eı2πν

)
such that

G
(
eı2πν

)H
S

(0)
y
(
eı2πν

)
G
(
eı2πν

)
is diagonal for all the frequencies ν are separating

matrices. Criteria measuring the closeness to diagonal matrices have been pro-
posed. See also [47] and the references therein. Again, the diversity of the spectra
is not always pertinent for digital communication contexts.

5.5. Iterative BSS (stationary case). Instead of considering a simple spatial
filtering of the data as indicated in Equation (3.3) we rather process a spatio-
temporal filtering as depicted below:

(5.4) r(n) = [g(z)T ]y(n).

The «reconstructed source» r(n) can be expanded as

(5.5) r(n) =
K∑
k=1

[fk(z)]dk(n)︸ ︷︷ ︸
rk(n)
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where the fk(z) are components of the gobal filter

(5.6) f(z) = g(z)TE(z).

A key trick for the following results is the normalisation step: we might write
rk(n) = ‖fk‖ r̃k where E

[
|r̃k|2

]
= 1 and

(5.7) ‖fk‖2 =
ˆ 1

0

∣∣fk(eı2πν)
∣∣2 dν.

Notice that the separation is achieved if and only if the real-valued vector
(‖f1‖ , ..., ‖fK‖)T is separating in the sense given in Section 3.4. As a consequence,
when the separation is achieved, the «reconstructed source» is one of the sources
up to a filter with unit norm.

With no modification as compared to the method given for the instantaneous
case in 3.4, we consider the optimization of the function Υ(r) as given in Equation
(3.6) - or equivalently (3.7). For sake of simplicity, we keep the notation Υ(c)

CM (r)
and Υ(c)(r) even if it should be understood that the functions in question depend
on the filters f1(z), ..., fK(z). No extra computation is needed as compared to
the instantaneous case: indeed, it suffices to substitute the «new source» r̃k(n) to
the actual source sk(n): one arrives at the expression:

Υ(r) =
∑K
k=1 κ (r̃k) ‖fk‖4(∑K

k=1 ‖fk‖
2
)2 .

This time, the cumulants κ (r̃k) are not constant but depend on the norm-one filter
f̃k(z). Anyway, r̃k(n) is a linear process generated by the symbol sequence dk(n):
indeed, r̃k(n) =

[
f̃k(z)

]
sk(n) and sk(n) has the form given by Equation (2.7). As

such, κ (r̃k) < 0 since by assumption κ(dk) < 0. We let κmin,k be:

κmin,k = inf
‖f̃k‖=1

κ
([
f̃k(z)

]
sk(n)

)
and κmin = mink κmin,k. We obviously have: κmin,k < 0 and κmin < 0. As a
consequence, the following inequality holds:

Υ(r) ≥ κmin

∑K
k=1 ‖fk‖

4(∑K
k=1 ‖fk‖

2
)2 ≥ κmin.

Moreover, the equality holds if and only if
(1) ‖fk‖ = ‖fk0‖ δ(k − k0)
(2) f̃k0(z) is such that κmin = κmin,k0 = κ (r̃k0(n)) where r̃k0(n) =

[
f̃k0(z)

]
sk0(n).

We suggest an qualitative interesting remark as far as the reconstructed signal
r(n) = ‖fk0‖ r̃k0(n). Indeed, this filter minimizes the Kurtosis of r̃k0(n). As r̃k0(n)
is a filtered version of the non-Gaussian i.i.d. sequence (dk0(n)),∈Z, it is shown
in [49] that its minimum is reached when r̃k0(n) is eıθdk0(n − n0) where θ is an
unknown phase and n0 an uncontroled delay. The reader might show that such a

result also holds for the function ΥCM (r) = E

[(
|r(n)|2 − 1

)2
]
.

Ultimately, any local minimum of Υ(r) or ΥCM (r) can be shown to be separating
[37, 58].
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5.6. Iterative BSS (general cyclo-stationary). Similary to the instantaneous
case (Section 3.7), we recast the approach of the previous section for cyclo-stationary
data. The received data is y(n) = [H(z)] s(n), the reconstructed source r(n) is still
given by (5.4). We may expand this signal as

(5.8) r(n) =
K∑
k=1

[fk(z)]sk(n)︸ ︷︷ ︸
rk(n)

.

This time the global filter f(z) is

f(z) = gT (z)H(z).
As far as the normalization of r(n) is concerned, we still have r(n) =

∑
k ‖fk‖r̃k(n)

but ‖fk‖ does not have the expression (5.7) since sk(n) is not i.i.d. with unit power
but has a non-constant power spectral density S(0)

k

(
eı2πν

)
:

(5.9) ‖fk‖2 =
ˆ 1

0

∣∣fk(eı2πν)
∣∣2 S(0)

k

(
eı2πν

)
dν.

As a consequence, we consider the minimization of the functions Υ(c)
CM (r) and

Υ(c)(r) whose definition is given by Equations (3.22) and 3.23. Similarly to the
instantaneous case, the minimization of Υ(c)

CM (r) and Υ(c)(r) are equivalent prob-
lems in the sense of Proposition 4. Here, the functions in question depend not
only on the positive coefficients ‖f1‖ , ..., ‖fK‖ but also on the norm-one filters
f̃1(z), ..., f̃K(z). We recall that r̃k(n) =

[
f̃k(z)

]
sk(n) where

∥∥f̃k∥∥ = 1; then, with
practically no effort, we deduce from Section 3.7 that

(5.10) Υ(c)(r) =
∑K
k=1 ζ(r̃k) ‖fk‖4 +

∑
k1 6=k2

‖fk1‖
2 ‖fk2‖

2
ε(r̃k1 , r̃k2)(∑K

k=1 ‖fk‖
2
)2 .

where

(5.11) ε(r̃k1 , r̃k2) = 4Re

∑
α∈I∗+

R
(α)
r̃k1
R

(α)∗
r̃k2

 ,

(5.12) ζ(r̃k) = η(r̃k) + 4
∣∣∣R(α)

r̃k

∣∣∣2 .
η(r̃k) = 〈κ (r̃k(n))〉

It is to be noticed that ζ(r̃k) can also be expressed as

(5.13) ζ(r̃k) =
〈
E
[
|r̃k(n)|4

]〉
n
− 2.

Similarly to the instantaneous case, where the filters f̃k(z) are reduced to being 1,
the minimization of Υ(c)(r) is considerably easier when the cross-terms in (5.10)
vanish, i.e. when for all the couples (k1, k2) with k1 6= k2 we have ε(r̃k1 , r̃k2) = 0.
Indded, in this case,

Υ(c)(r) =
∑K
k=1 ζ(r̃k) ‖fk‖4(∑K
k=1 ‖fk‖

2
)2
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which ressembles the expression (3.8) except that here, the numbers ζ(r̃k) depend
on the parameters the minimization is run over. In the following we hence restrict
the further analysis to this case. We recall that ε(r̃k1 , r̃k2) = 0 as soon as the
cyclic frequencies αk = ± Te

Tk
are all different modulo one. This condition is fulfilled

when all the baudrates are different and the sampling frequency is high enough, i.e.
1
Te
> maxk 2

Tk
.

We define ζmin,k = inf‖f̃k‖=1 ζ
([
f̃k(z)

]
sk(n)

)
.

Proposition 18. If the cyclic frequencies ± Te
Tk

are all different modulo 1 then
the cost funtion Υ(c)(r) achieves its minimum at a separating vector f∗(z) if and
only if at least one of the ζmin,k is strictly negative. Moreover, the f∗ in ques-
tion has its single non-null element located at an index k0 such that ζmin,k0 =
mink=1,...,K ζmin,k.

Proof: if ζmin,k < 0 for a certain index k, then ζmin < 0 where we have
defined ζmin = min` ζmin,`. Evidently,

∑K
`=1 ζ(r̃`) ‖f`‖4 ≥

∑K
`=1 ζmin,` ‖f`‖4 ≥

ζmin
∑K
`=1 ‖f`‖

4
. This shows that Υ(c)(r) ≥ ζmin and this lower bound is attained

for any vector f∗(z) whose components are all zero except at an index k0 such that
ζmin,k0 = ζmin and ζ

([
f̃k0(z)

]
sk0(n)

)
= ζmin,k0 . Conversely, if ζmin,k ≥ 0 whatever

k, the lower bound is attained for non separating filters (see the proof of Proposition
3). �

Contrary to the stationary case, it is not possible to say much about the min-
imizing filter f̃k0(z) and hence about the reconstructed signal r(n). However, the
residual filter f̃k0(z) minimizes the ζ(r̃k0) hence tends to make the modulus of r̃k(n)
the most constant as possible.

At this point, we have to analyse the condition: ζmin,k < 0. Recall that this
condition is the adaptation to the convolutive case of the assumptionA1. This latter
was proven to hold true by means of semi-analytical considerations. Curiously, it
is possible to prove that the condition ζmin,k < 0 holds; no numerical computation
is needed. We have:

Proposition 19. As the Kurtosis of the symbols κ(dk) are all strictly negative, we
have

ζmin,k = inf
‖f̃k‖=1

ζ
([
f̃k(z)

]
sk(n)

)
< 0.

Proof: more solid arguments than the ones we give here are provided in [31].
The band of frequencies of the sampled version sk(n) of the source number k is
the interval [− 1+γk

2 αk ,
1+γk

2 αk] ⊂ [− 1
2 ,

1
2 ]. The infimum to be computed is hence

over the set of unit-norm filters f̃k(z) belonging to F(γk) where F(γk) is the set of
digital filters whose transfer function is limited to the band [− 1+γk

2 αk ,
1+γk

2 αk].
Naturally, γ′k < γk implies that F(γ′k) ⊂ F(γk). Taking γ′k = 0, we deduce the
following inequality:

ζmin,k = inf
‖f̃k‖=1,f̃k(z)∈F(γk)

ζ
([
f̃k(z)

]
sk(n)

)
≤ inf
‖f̃k‖=1,f̃k(z)∈F(0)

ζ
([
f̃k(z)

]
sk(n)

)
.

On the other hand, we recall that ζ
([
f̃k(z)

]
sk(n)

)
= ζ(r̃k) = 〈κ (r̃k(n))〉+4

∣∣∣R(αk)
r̃k

∣∣∣2
. Thanks to Section 2.2, we know that R(αk)

r̃k
= 0 when the excess bandwidth factor
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is zero. Hence, for any unit norm filter f̃k(z) ∈ F(0), ζ(r̃k) = 〈κ (r̃k(n))〉. We
deduce that, for such a filter, ζ(r̃k) < 0. �

When all the baud-rates are equal, the minimization of Υ(c)
CM (r) is much more

difficult and sufficient conditions on the sources have been set forth that assure that
the minimizers of Υ(c)

CM (r) are separating. We refer to [31].
However, the general case remains to be addressed (i.e. for any distribution of

the baud-rates): we conjecture that the global minimum is separating and even
that any local minimum is also separating. These conjectures come from intensive
simulation experiments.

6. Simulation

This section does not aim at making a benchmark of all the previous methods.
It rather intends to show the pertinence of BSS in digital communication contexts.

We first present the environment. We have considered a mixture of K = 3
sources; the modulations are QPSK (two sources) and 16-QAM (one source). The
symbol periods are all equal to T and 1/T = 277kHz (which is the rate of GSM);
the carrier frequency is 1GHz. This later is assumed known to the receiver so that
there are no frequency offset in the source vectors. The excess bandwidth factors
all equal γ = 0.5. As far as the antenna array is concerned, we have simulated a
circular array ofM = 5 sensorsdistanced from one another by half a wavelength, i.e.
30cm. The sampling period period Te is fixed to Te = T/1.6 so that the Shannon
sampling condition is fulfilled.

The propagation channels are multi path and affected by a Rayleigh fading. An
arbitrary path - say number ` is characterized by its delay (propagation between
the source and a sensor of reference), its elevation, azimuth and attenuation. We
consider the ETSI channels BUx, TUx, HTx, RAx. For each experiment, the arrival
angles of a path are randomly chosen in [−π/2 , π/2] for the elevation and [−π , π]
for the azimuth. The different complex amplitudes on each path are also randomly
chosen for each experiment.

The received signal is corrupted by a white, additive complex gaussian noise with
power spectral density N0. The received signals are low-pass filtered in the band[
− 1

2Te ,
1

2Te

]
. The three sources have the same energy per symbol Es. This latter

is chosen so that the Es/N0 of the 16-QAM source would be associated with a bit
error rate of 10−3 if the channel were a single-path channel and if there were only
one antenna.

We have considered three algorithms for the separation. In order to have a
reference, we have computed the Wiener solution (the MMSE separator): this is
naturally a non-blind algorithm. In this respect, we have supposed that the receiver
has access to the transmitted symbols. The two BSS algorithms we have considered
are the iterative CMA (see section 5.6) and the global method JADE. Once the
separation is (supposedly) achieved, we need to equalize each source in order to
compute the bit error rate. This extra-step is done after re-sampling the three
«source estimates» at the true sampling rate (supposed at this level to be known).
The re-sampled signals are expected to be filtered versions of the symbols. A blind
equalization algorithm is run (the CMA) in order to compute estimates of the
transmitted symbols. The scaling ambiguity is removed non-blindly.

The performance index for the tested algorithms and for a given source is the
following: for each experiment, we inspect if the bit error rate (for the transmitted
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Table 1. Some simulation results

2000 1000 500
channel BUx QAM-4 QAM-16 QAM-4 QAM-4 QAM-16 QAM-4 QAM-4 QAM-16 QAM-4

MMSE 100% 68,8% 100% 100% 55,9% 100% 100% 23% 100%
CMA 100% 70,5% 100% 100% 20,6% 99,8% 95,9% 0,1 % 97,6%
JADE 58,4 1,3% 60,7% 55,5% 0,7% 57,7% 48,8% 0,1% 51,7%
channel TUx QAM-4 QAM-16 QAM-4 QAM-4 QAM-16 QAM-4 QAM-4 QAM-16 QAM-4

MMSE 100% 80,2% 100 % 100% 69,8% 100% 100% 35,3% 100%
CMA 99,7% 84,3% 99,3% 99,3% 47,5% 99,2% 98,5% 0,7% 98,9%
JADE 94,9% 29,9% 95,1% 93,9% 18,1% 94,4% 93,1% 3% 92,9%
channel RAx QAM-4 QAM-16 QAM-4 QAM-4 QAM-16 QAM-4 QAM-4 QAM-16 QAM-4

MMSE 99,8% 91,9% 99,6% 99,8% 88,8% 99,6% 99,7% 70,4% 99,6%
CMA 99,1% 84,7% 99,2% 99% 50,2% 99,3% 98,1% 0,6% 98,6%
JADE 99,7% 89,2% 99,6% 99,6% 79,7% 99,6% 99,6% 24,5% 99,5%
channel HTx QAM-4 QAM-16 QAM-4 QAM-4 QAM-16 QAM-4 QAM-4 QAM-16 QAM-4

MMSE 99,4% 36,2% 99,6% 99,4% 26,8% 99,7% 99,4% 9% 99,5%
CMA 92% 13% 93,2% 90,8% 1,8% 91,6% 83,5% 0% 82,1%
JADE 86,7% 13,1% 87,4% 85,7% 6,3% 86,3% 83,6% 1,1% 84,1%

symbols) is less than 10−2. Averaging the process on 1000 independent trials allows
us to provide a percentage of success.

Three observation durations were considered: 500T , 1000T and 2000T .
The performance of the algorithms can be seen in Table 1. The performance of

the MMSE (non-blind) provides, in some sense, an ultimate bound. In this respect,
one may notice that the channels BUx and HTx are by far the “most difficult”
channels since they are associated with the weakest performance of the MMSE.
For these two channels, the multipath effects are severe and this explains why the
JADE algorithm, designed for instantaneous mixtures, performs poorly. On the
contrary, the CMA shows good performance as far as the extraction of the two
modulus-one sources is concerned, even if the observation duration is small (500
symbols): the performance index is above 80%. However, the 16-QAM source is
associated with a miserable performance: the CMA as a BSS algorithm is not to be
incriminated, since the two other sources are correctly equalized, hence the 16-QAM
is itself corretly separated. Hence the bad performance is due to the equalization
algorithm (again the CMA run this time on the re-sampled extracted signal): this
is a well-known fact that the CMA equalizes the non-modulus one modulation with
difficulties.

As far as the TUx and RAx channels are concerned, they are associated with
less severe multi-path effects: this explains why the JADE algorithm performs well
- even better than the CMA for the RAx channel.

7. Extensions and further readings

7.1. Case of non-circular sources . Along this paper, the data we considered
as circular. This assumption is not crucial for second-order or algebraic methods.
However, the presence of a non-circular source in the mixture considerably affects
the higher-than-second-order methods. For instance, the fourth-order cumulant
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κ(r(n)) if r(n) is the output of a separator, does not have the same expression as
when all the sources are circular. It can be even been shown that the separation is
not always achieved when two sources are non-circular.

The interested reader might find results and references in the following works:
[18, 20, 42][66].

7.2. Exploiting the non-stationarity. Cyclo-stationarity is a main statistical
feature of the mixture that has long been thought of as a benefit for source separ-
ation. For instantaneous BSS using second-order moments, see [57, 51]: the idea is
that the mixing matrix is constant during the observation, while the second-order
statistics of the sources vary. An idea is hence to cut the observation interval in
subintervals. Recalling the SOBI approach (see section 3.3), the receiver may com-
pute the correlation matrices for the u-th interval: R(u)

y (`) = HR
(u)
s (`)HH . As

the sources are non-stationary, the diagonal matrices R(u)
s (`) vary with u hence the

pencil of matrices to be jointly diagonalized has more elements and the conditions
of identifiability are weaker, hence the algorithm is more robust. We refer to the
work of Pham [43] for the Maximum Likelihood approach. The reader might be
interested by a work of Wang et al. [63].

In the case of digital communication signals, the cyclo-stationarity is not strong
enough in order to consider such approaches: we have pointed out that the power of
a source E [sa(t+ τ)sa(t)∗] has very small variations since the cyclo-spectra at the
cyclic-frequencies ± 1

T are numerically small due to the spectral limitation of the
shaping functions. On the one hand, the strength of cyclo-stationarity is too weak
to be exploited. On the other hand, it cannot be neglected in the computations
(for instance in the expression of the fourth-order cumulants).

7.3. Presence of additive noise. In this paper, we have considered a noise-free
model. Many references may be found where the impact of the noise on the BSS
methods is analyzed. Among others, we would like to cite the work of Cardoso
concerning the performance analysis a class of BSS algorithms who have a teh so-
called «invariance» feature [10]. Concerning the CMA when noise is present: the
reader may have a look at the work of Fijalkow et al. [19] for the use of the CMA
as an equalizer algorithm and the proximity of a solution in the presence of noise to
a Minimum Mean Square Error (MMSE) equalizer ; the case of BSS is analyzed in
[36][26] where it is shown that thee local minima of the CM cost function are «not
far» from MMSE separator. A systematic analysis is provided in Leshem et al. [35]
where both the presnece of noise and the effect of a finite number of samples are
considered.

8. conclusion

In this paper, we have given some methods for achieving the BSS in the context
of telecommunication. We have focused our attention on contrast functions (joint or
deflation-based approaches), and particularly the contrast functions depending on
fourth-order statistics of the data. These approaches fit the blind problems evoked
in the introduction (spectrum monitoring) since they are associated with convergent
and performent algorithms. When the channels involve multi-path effects and no a
priori information on the distribution of the delays is available, the deflation-based
algorithms such as the CMA or the minimisation of the normalized Kurtosis are
good candidates for the BSS.
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