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AN OVERDETERMINED PROBLEM WITH NON CONSTANT

BOUNDARY CONDITION

CHIARA BIANCHINI, ANTOINE HENROT, AND PAOLO SALANI

Abstract. We investigate an overdetermined Torsion problem, with a non-constant
positively homogeneous boundary constraint on the gradient. We interpret this prob-
lem as the Euler equation of a shape optimization problem, we prove existence and
regularity of a solution. Moreover several geometric properties of the solution are
shown.

1. Introduction

An important class of shape optimization problems occurs when a free boundary
problem is considered. Of particular interest is the case of overdetermined boundary
value problems, which in general corresponds to a classical partial differential equation
where both Dirichlet and Neumann boundary conditions are imposed on the boundary
of the domain. Obviously this over-determination makes the domain itself unknown.
Interesting questions are then the proof of the existence of a solution, possibly uniqueness
and the study of qualitative properties of a solution. A very large amount of literature
exists for such problems, depending on the governing operator and on the overdetermined
conditions which in many cases writes as u = 0 and |∇u| =constant on ∂Ω, although
several other kinds of overdetermined conditions and operators have been considered
in the literature (see for instance [4], [15], [16], [20], [21], [30], [32], [33] and references
therein).

In particular here we will deal with a governing operator of the torsion type, that is
with the most classical equation:

(1) −∆u = 1 in Ω

and of course everybody knows the famous result by Serrin [31] who proved that if a
solution to (1) exists with u = 0 and |∇u| = constant on the boundary of Ω, then the set
Ω must be a ball and the function u is radial. After Serrin, many authors investigated
such a problem and stability results hold. More precisely it has been proved in [3] and
in [7] that if |∇u| is almost constant on the bounday of Ω, then Ω is not far from being a
ball. A natural question is then to investigate what happens in the case of a “genuine”
non-constant boundary condition for the gradient. In particular here we are interested
in an overdetermined condition of the type

|∇u(x)| = g(x) on ∂Ω .
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Let us quote that the same conditions have been already considered for differential
problems of the torsion and of the Bernoulli types in [1, 2, 5, 18, 23]. On the other hand
in [6] the Bernoulli interior problem equipped with overdetermined condition written as
|∇u(x)| = g(ν(x)) is considered, where ν is the outer unit normal of the free boundary.
At our knowledge an analogous overdetermined condition (which would be very natural)
for the torsion problem has not been considered yet.

Let us now describe in detail the problem we are interested in; we will relate it below
to the existing literature.

For any bounded open set Ω (or set of finite measure) we denote by uΩ the stress
function of Ω; that is the solution of the torsion problem:

(2)

{

−∆uΩ = 1 in Ω

uΩ = 0 on ∂Ω,

or of its weak form

(3) uΩ ∈ H1
0 (Ω), ∀ v ∈ H1

0 (Ω) :

∫

Ω
∇uΩ∇v =

∫

Ω
uΩ v,

where H1(Ω) is the Sobolev space of functions in L2(Ω) whose first derivatives are in
L2(Ω) and H1

0 (Ω) is the closure in H1(Ω) of smooth functions compactly supported in
Ω. Notice that the stress function uΩ can be characterized as

GΩ(uΩ) = min{GΩ(v), v ∈ H1
0 (Ω)} where(4)

GΩ(v) =
1

2

∫

Ω
|∇v|2 dx−

∫

Ω
v dx .

Let g be a function defined on RN and satisfying

(5)











g : RN → R positively homogeneous of degree α

(i.e. g(tx) = tαg(x) ∀t > 0,∀x ∈ RN ),

g Hölder continuous, g > 0 outside 0.

We are interested in solving the following overdetermined free boundary problem of the
torsional type with a non constant boundary condition:

(6)











−∆uΩ = 1 in Ω

uΩ = 0 on ∂Ω

|∇uΩ| = g(x) on ∂Ω.

In this context, this problem is close to the one considered by B. Gustafsson and H.
Shahgholian in [18]. In fact they study the partial differential equation −∆u = f where
f is a function (or a measure) whose positive part (f)+ has compact support (here and
later we will denote by (f)+ the positive part of the function f , that is max{0, f}).
This makes a real difference with (6) as will be clear in a while. Indeed they use the
Alt-Caffarelli approach, consisting in minimizing

(7) GΩ(uΩ) +
1

2
φ(Ω),



AN OVERDETERMINED PROBLEM 3

where

(8) φ(Ω) :=

∫

Ω
g2(x) dx

(they write it as a problem in the calculus of variations replacing Ω by {u > 0} but
it does not change anything). Unfortunately, in our case, the fact that the support of
(f)+ ≡ 1 is the whole RN makes the minimization problem (7) in general ill-posed, since
the infimum can be −∞ as it is easily seen by explicit computations in the radial case.
This is the reason for we have chosen a different method.

We use a variational approach which consists in looking at (6) as the optimality
conditions of some shape optimization problem. More precisely, let J be the functional
defined as the opposite of the torsional rigidity:

(9) J(Ω) =
1

2

∫

Ω
|∇uΩ|2 dx−

∫

Ω
uΩ dx = −1

2

∫

Ω
uΩ dx = −1

2

∫

Ω
|∇uΩ|2 dx.

and consider φ as defined in (8). The shape optimization problem we are interested in,
consists in minimizing J with the constraint

(10) φ(Ω) :=

∫

Ω
g2(x) dx ≤ 1.

Let us point out that this introduces a further difficulty since we have to deal with a
Lagrange multiplier. The choice of a homogeneous function g, allows us to encounter
this difficulty (see the proof of Corollary 2.2) since it permits to estimate the value of
the Lagrange multiplier. However we point out that the existence of a solution to the
shape optimization problem is guaranteed under the simple assumption g(x) > 0 outside
the origin and lim g(x) = +∞ for |x| → +∞.

We remark that this shape optimization problem is a variant of the famous Saint-
Venant problem, and hence it has its own practical interest. In the classical Saint-Venant
problem one looks for the shape of the set with given area which has maximal torsional
rigidity; in [28] G. Polyà proved that the answer is the ball. Here we solve the same
problem in the class of non-uniformly dense sets, whose density depends on the function
g.

The paper is organized as follows. In Section 2 we prove the main results of the paper:
existence and regularity of a minimizer for our shape optimization problem and, as a
consequence, the existence of a solution to the free boundary problem. In Section 3 we
prove some basic properties: the origin is in general inside the solution, monotonicity
with respect to g and uniqueness of the solution when α > 1. In Section 4 we investigate
starshape and we prove the starshapedness of solutions for α 6= 1. Section 5 is devoted to
prove the convexity of the solution, under suitable assumptions. In Section 6 we prove
some symmetry results and we study the stability of the radiality when g is close to
be radially symmetric. Finally in Section 7 we investigate the relationship between the
sahpe of the solution and the shape of the level sets of g, giving some a priori bounds
for the solution Ω in terms on G1 = {x ∈ Rn : g(x) ≤ 1}.
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2. The shape optimization problem

We consider the energy functional J(·) defined in (9). We recall that, by the maximum
principle, J is decreasing with respect to set inclusion that is: Ω1 ⊂ Ω2 implies J(Ω1) ≥
J(Ω2).

In this section, we want to minimize the functional J(Ω) among open sets satisfying
(10). Let us remark that the measure of sets Ω satisfying (10) is bounded since g(x)
diverges at infinity for homogeneity.

As already emphasized, the homogeneity of g plays a crucial role. In particular it
makes the problem having a nice behaviour with respect to homotheties. More precisely,
for every t > 0, Ω ⊂ RN , it holds

J(tΩ) = −1

2

∫

tΩ
t2uΩ(x/t) dx = t2+NJ(Ω),

φ(tΩ) =

∫

tΩ
g2(x) dx = t2α+Nφ(Ω),

where the first equality follows from the fact that the stress function of tΩ is

utΩ(x) = t2uΩ(
x

t
).

Therefore the two following problems are equivalent from a qualitative point of view:

min
Ω⊂RN

{J(Ω) : φ(Ω) ≤ 1},(11)

min
Ω⊂RN

φ(Ω)−
2+N

2α+N J(Ω).(12)

Let us state our main result on existence and regularity of a solution to Problem (11)
or (12), whose proof is given in Section 2.1. In particular we stress that the existence
part in Theorem 2.1 does not need the homogeneity property of g but it holds under the
weaker assumption g > 0 outside the origin and g tends to infinity for |x| → ∞.

Theorem 2.1. Problem (11) admits a solution Ω. This one is C1,β in dimension N = 2.
In dimension N ≥ 3, the reduced boundary ∂redΩ is C1,β and ∂Ω\∂redΩ has zero (N−1)-
Hausdorff measure.

The existence of a solution to the overdetermined Free Boundary Problem (6) follows:

Corollary 2.2. Let g satisfy (5) for some α > 0, α 6= 1. Then there exists a solution
to the overdetermined Free Boundary Problem (6).

Remark 2.3. The overdetermined boundary condition |∇uΩ(x)| = g(x) holds on the
regular part of the boundary of Ω.

Proof of Corollary 2.2. Let Ω be a solution of the shape optimization problem (11) given
by Theorem 2.1. Since the reduced boundary of Ω is C1,β, by classical regularity results,
the gradient of uΩ is defined almost everywhere on the boundary. We can then write the
optimality conditions. For that purpose, we use the classical shape derivative as defined,
for example in [22, chapter 5]. The derivative of the functional J at Ω in the direction
of some deformation field V is given by

(13) dJ(Ω;V ) = −
∫

Ω
∇uΩ.∇u′ − 1

2

∫

∂Ω
|∇uΩ|2〈V, n〉,
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where u′ is the derivative with respect to the domain of uΩ, solution of

(14)

{

−∆u′ = 0 in Ω

u′ = −∂uΩ
∂n 〈V, n〉 on ∂Ω.

By Green formula and (14),
∫

Ω∇uΩ.∇u′ = 0. On the other hand, the derivative of the
constraint φ is

(15) dφ(Ω;V ) =

∫

∂Ω
g2〈V, n〉.

By the optimality condition there exists a Lagrange multiplier µ such that, for any
deformation field V , we have

dJ(Ω;V ) = µ dφ(Ω;V ),

and, according to (13), (15) this writes as

(16) − 1

2

∫

∂Ω
|∇uΩ|2〈V, n〉 = µ

∫

∂Ω
g2〈V, n〉.

Since equality (16) must hold for any V , we get

|∇uΩ|2 = −2µg2 on ∂Ω.

Let us remark that µ cannot be zero by unique continuation property (or Hopf’s lemma).
Now, replacing Ω by tΩ where

t = (−2µ)
1

2(α−1) ,

and taking into account that

|∇utΩ(x)| = t|∇uΩ(x/t)| = t(−2µ)1/2g(x/t) = t1−α(−2µ)1/2g(x) = g(x),

we get the desired result. �

Remark 2.4. The case α = 1 is a special one. As we can see explicitly in the radially
symmetric situation, it is possible to have no solution or an infinite number of solutions.
Indeed, let g(x) = a|x|, as it is easily proved by Schwarz symmetrization (see section
6), the solution has to be a ball. Now, looking for a ball BR of radius R solving (6) is
equivalent to solve g(R) = R/N (because uBR

= (R2 − |x|2)/2N) and the result follows
according to the value of a.

2.1. Proof of Theorem 2.1. The proof splits into two parts which are separated in
four paragraphs. In the first part we prove the existence (and boundedness) of a solution,
while in the latter the proof of regularity is presented.

More precisely in Paragraph 2.1.1 we follow the lines of [17], cf also [22] and we use
a concentration-compactness argument as in [10] to prove the existence of a minimizer
which is a quasi-open set and which may be unbounded. We refer to [22] for a precise
definition and discussion of the concept of quasi-open set; let us only remind that if
u ∈ H1(RN ), then its super level sets {u > t} are quasi-open, for each t ∈ R.

In Paragraph 2.1.2, using the notion of local shape subsolution introduced in [11], we
prove that the minimizer is in fact bounded. In Paragraphs 2.1.4, 2.1.3 we prove the
regularity of the minimizer as in [8] (see also [9]). The main difficulty is to prove that it
is actually an open set, then we can conclude to higher regularity by classical techniques
from free boundary problems like in [5] and [18].



6 C. BIANCHINI, A. HENROT, AND P. SALANI

2.1.1. Proof of existence. Let us introduce the following auxiliary problem

min{G(v); v ∈ H1(RN ), φ(Ωv) ≤ 1},(17)

where Ωv denotes the quasi-open set Ωv := {x ∈ RN ; v(x) > 0}, φ is defined in (8) and
G is the functional defined by

(18) G(v) =
1

2

∫

RN

|∇v|2 dx−
∫

RN

v dx .

Let us prove the existence of a minimizer u for problem (17).
We use the classical Poincaré inequality, valid for any set of bounded measure (see

Lemma 4.5.3 in [22]). As already noticed, the constraint φ(Ωv) ≤ 1 implies that the
measure of Ωv is uniformly bounded, that is ∃m > 0, |Ωv | ≤ m. The Poincaré inequality
writes as follows: there exists C = C(N) > 0 such that for every v ∈ H1(RN ) satisfying
|Ωv| ≤ m it holds

(19)

∫

RN

v2 ≤ C m
2
N

∫

RN

|∇v|2.

Therefore, since
∫

Ωv
v ≤ m1/2

(∫

RN v2
)1/2

, we have

2G(v) ≥
∫

RN

|∇v|2 − C ′‖v‖H1(RN ),

and G(v) is estimated from below and a minimizing sequence un is necessarily bounded
in H1(RN ).

Now we use a concentration compactness argument for the quasi-open sets An =
{un > 0}. Following [10, Theorem 2.2] two situations may occur:

Dichotomy: The sequence {An} splits into two parts: An = A1
n∪A2

n with d(A1
n, A

2
n) →

+∞ and lim inf |Ai
n| > 0. The resolvent operators satisfy ‖RAn

−RA1
n∪A

2
n
‖ → 0

in the operator norm (see [10] for details on the resolvent operator).
Compactness: There exists a sequence of vectors yn ∈ RN and a positive Borel

measure µ (vanishing on sets of zero capacity) such that yn +An γ-converges to
the measure µ (and the resolvent operators satisfy ‖Ryn+An

− Rµ‖ → 0 in the
operator norm).

Notice that in the situation of Problem (17), dichotomy cannot occur because since
g2 → +∞ at infinity, the constraint

∫

An
g2 ≤ 1 prevents a subpart of An of measure

bounded from below to move to infinity. Thus, we are in the compactness situation and
we denote by Aµ the regular set of the limit measure µ, defined as

Aµ := {
⋃

A : A is finely open, µ(A) < ∞}.

Then the sequence vn(x) = un(x − yn) = Ryn+An
(1) converges to v = Rµ(1) ∈ H1

0 (Aµ)
weakly in H1 and almost everywhere (and Aµ = {v > 0} = Ωv). Notice that at this
point we can not say that Ωv provides a solution to minimization problem (17), since the
constraint is not translation invariant. We can avoid this problem arguing for istance as
in [12], proving that the sequence {yn} is bounded, thanks again to the behaviour of g
at infinity. Indeed first choose R > 0 such that

∫

B(O,R) v
2 dx = α > 0 (here and in the
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sequel we denote by B(x,R) the ball centered at x with radius R); by the convergence
of vn to v, we have

(20)

∫

B(0,R)
v2ndx =

∫

B(−yn,R)
u2ndx =

∫

B(−yn,R)∩An

u2ndx ≥ α

2

for n large enough. Since |An| is bounded, ‖un‖∞ is bounded, say ‖un‖ ≤ M ; then (20)
implies

|An ∩B(−yn, R)| ≥ α

2M2
,

whence

1 ≥
∫

An

g2dx ≥
∫

An∩B(−yn,R)
g2dx ≥ α

2M2
inf

B(−yn,R)
g2 .

The latter leads to a contradiction if we assume that ‖yn‖ is unbounded, since we would
have infB(−yn,R) g

2 → ∞. So far, we have proved yn is bounded. Then it converges to
some y0 (up to a subsequence) and the sequence un converges to u(x) = v(x+y0) weakly
in H1 and almost everywhere. We set Ω∗ = {u > 0} = Aµ − y0 and by Fatou Lemma,
we infer that

∫

χΩ∗g2dx ≤ lim inf

∫

χΩun
g2dx ≤ 1

and so the constraint is satisfied. We deduce that Ω∗ provides a solution of the shape
optimization problem (9), (10), as it is classical in situations where the objective function
J is monotone decreasing with respect to set inclusion.

2.1.2. Proof of boundedness. We recall the definition of local shape subsolution intro-
duced by D. Bucur in [11]: a set A is a local shape subsolution for the energy problem if

there exist δ > 0 and Λ > 0 such that for any quasi-open set Ã ⊂ A with ‖uÃ−uA‖L2 < δ
we have

(21) J(A) + Λ|A| ≤ J(Ã) + Λ|Ã|.
In [11, Theorem 2.2], it is proved that any local shape subsolution is bounded (and has
finite perimeter). Thus our aim is to prove that Ω∗ is a local shape subsolution. We
argue by contradiction: let us assume that there exists a sequence λn going to 0 and a
sequence Ωn ⊂ Ω∗ such that

(22) J(Ωn) + λn|Ωn| < J(Ω∗) + λn|Ω∗|.
We can assume that Ωn is an increasing sequence converging to Ω∗ in the L2(RN )-norm
of uΩn

, that is ‖un − u‖L2(RN ) tends to zero, where u = uΩ∗ . Indeed, if Ωn converges to

a strictly smaller set, then equation (22) cannot hold by monotonicity of the energy J
and this would give a contradiction. Fix tn > 1 such that

φ(tnΩn) = t2α+N
n

∫

Ωn

g2 = 1.

Then necessarily tn → 1. By minimality of Ω∗, J(tnΩn) = tN+2
n J(Ωn) ≥ J(Ω∗).

Plugging into (22) yields

(23) J(Ω∗)

[

1− tN+2
n

tN+2
n

]

≤ λn(|Ω∗| − |Ωn|).
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We divide both sides of (23) by tN+2α
n − 1 =

∫

Ω∗ g
2
(

∫

Ωn
g2
)−1

− 1 and we get

(24)
tN+2
n − 1

tN+2α
n − 1

(

−J(Ω∗)

tN+2
n

)

≤
λn|Ω∗ \ Ωn|

∫

Ωn
g2

∫

Ω∗\Ωn
g2

.

Now obviously, we just need to prove boundedness far from 0, thus we can assume
that we are outside a fixed ball B(0, R) (this notion of local shape subsolution can be
localized). Therefore,

∫

Ω∗\Ωn
g2

|Ω∗ \ Ωn|
≥ min

RN\B(0,R)
g2 > 0.

We pass to the limit λn → 0 and tn → 1; since the left-hand side of (24) converges to
N+2
N+2α (−J(Ω∗) > 0 and the right-hand side tends to 0, we reach the desired contradiction.

2.1.3. Proof of regularity. The proof of regularity of the optimal shape is very similar to
the proof given in [8] (see also [9]) where the constraint is |Ωu| ≤ 1 instead of

∫

Ωu
g2 ≤ 1.

These papers are themselves inspired by [5] and [18]. Thus, in the sequel, we will mainly
emphasize the particularities of our situation.

Before giving the details, we need to show some preliminary results.
Let us denote by u the minimizer of problem (17). Since we know that the minimizer

is bounded, let us denote by D a fixed ball containing Ωu. The first step is to prove that
u is continuous in D (and therefore the set Ωu = {x : u(x) > 0} is open). To get rid of
the constraint (in order to be able to test with a wider class of functions), we first prove
that the minimization problem (17) is equivalent to a penalized problem.

Lemma 2.5. There exists λ > 0 such that for any v ∈ H1
0 (D)

(25) G(u) ≤ G(v) + λ

(
∫

Ωv

g2(x) dx − 1

)+

.

It is remarkable that the two problems are equivalent, not only when λ goes to infinity
as usual, but for a finite value of λ.

Proof of Lemma 2.5. For a fixed λ > 0, let us denote by Gλ the functional

Gλ(v) := G(v) + λ (φ(Ωv)− 1)+ .

The existence of a minimizer uλ for the problem

inf
v∈H1

0 (D)
Gλ(v),

is obtained in an analogous way as the existence of a minimizer for problem (17) above.
If φ(Ωuλ

) ≤ 1, we get Gλ(uλ) = G(uλ) and since uλ and u are both minimizers of Gλ

and G, the result follows. It remains to prove that we cannot have

(26) φ(Ωuλ
) > 1,
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for λ large enough. Assume, by contradiction, that it is the case and let us introduce
ut = (uλ − t)+. Differentiating with respect to t and using the co-area formula, we get

d

dt

∣

∣

∣

t=0

∫

{uλ>t}
|∇uλ|2 dx = −

∫

{uλ=t}
|∇uλ| dHN−1,

d

dt

∣

∣

∣

t=0

∫

{uλ>t}
g2 dx = −

∫

{uλ=t}

g2

|∇uλ|
dHN−1,

while
d

dt

∣

∣

∣

t=0

∫

{uλ>t}
(uλ − t) dx = −

∫

{uλ>t}
dx .

Thus d
dt

∣

∣

∣

t=0
Gλ(u

t) ≥ 0 yields

∫

{uλ=t}

1

2
|∇uλ|+ λ

g2

|∇uλ|
dHN−1 ≤

∫

{uλ>t}
dx ≤ |D|.

Now

(27)

∫

{uλ=t}

1

2
|∇uλ|+ λ

g2

|∇uλ|
dHN−1 ≥

√
2λ

∫

{uλ=t}
g dHN−1,

therefore, if we can prove that
∫

uλ=t g dHN−1 is estimated from below by a positive

constant, (27) would lead to the desired contradiction for λ large enough. This is the
content of the following lemma. �

Lemma 2.6. There exists a positive constant C such that for any measurable set ω ⊂ D
with

∫

ω g
2 dx ≥ 1, it holds

(28)

∫

∂ω
g dHN−1 ≥ C.

Proof. Let us assume, by contradiction, that there exists a sequence ωn such that
∫

ωn

g2 dx ≥ 1 and

∫

∂ωn

g dHN−1 ≤ 1

n
.

For any R, let BR be the ball centered at O with radius R and

gR = min{g(x) : x ∈ RN , |x| = R}.
We fix R > 0 such that

∫

BR
g2 dx < 1/2. We have

|∂ωn \BR| gR ≤
∫

∂ωn\BR

g dHN−1 ≤ 1

n
.

Thus |∂ωn \ BR| ≤ 1
ngR

. By the Relative Isoperimetric Inequality on RN \ BR, see for

instance [14], there exists a positive constant c0 such that

|ωn \BR| ≤ c0|∂ωn \BR|
N

N−1 .

This implies that |ωn \BR| can be chosen smaller than 1/2M where M = maxD g2, since
|∂ωn \BR| tends to zero. Hence

1 ≤
∫

ωn

g2 dx =

∫

ωn\BR

g2 dx+

∫

ωn∩BR

g2 dx <
1

2
+

1

2
,
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which is a contradiction. �

Remark 2.7. By homogeneity, statement (28) of Lemma 2.6 can also be written as:

(29) ∃C > 0, such that ∀ω ⊂ D,

∫

∂ω
g dHN−1 ≥ C

(
∫

ω
g2 dx

)
α+N−1
2α+N

.

Notice that (29) is a kind of weighted isoperimetric inequality and has its own im-
portance: an interesting question would be to determine its optimal domains. Using the
theory of quasi-minimizers, one should be able to prove that such an optimal domain ω∗

is regular. Now, the differentiation with respect to the domain would give as first order
optimality condition:

Hg +
∂g

∂n
= γg2 on ∂ω∗,

where H is the mean curvature of the boundary of ω∗ and γ a Lagrange multiplier.

2.1.4. Details of the proof of regularity. Let us fix a ball B(x0, r) and, as a test function

in Lemma 2.5, let us choose v defined as v = u in RN \B(x0, r) and v solution of
{

−∆v = 1 in B(x0, r)

v = u on ∂B(x0, r),

inside the ball. By the maximum principle v > 0 in B(x0, r) and, therefore,

Ωv = Ωu ∪B(x0, r),

where we recall that Ωv = {x : v(x) > 0}. Thus, since
∫

Ωu
g2(x) dx = 1, we have

0 ≤
∫

Ωv

g2(x) dx − 1 ≤
∫

B(x0,r)
g2 ≤ CrN .

It follows, from Lemma 2.5, that u satisfies
∫

B(x0,r)
|∇(u− v)|2 ≤ λCrN

and, by classical regularity results (see e.g. Theorem 3.5.2 in [27]), u is Hölder continuous
on D. Consequently the set Ωu is open as claimed at the beginning of the proof. In
particular, following [9], we can prove that u is Lipschitz on D.

Let us now study ∆u + χΩu
. The fact that ∆u + 1 = 0 on Ωu (in the sense of

distributions) is easily obtained using perturbations of the kind v = u + tϕ with ϕ ∈
C∞
0 (Ωu). Then, following step by step [8, Theorem 2.2,Proposition 2.3], one can prove

that ∆u + χΩu
= µ, where µ is a (positive) Radon measure, supported by ∂Ωu and

absolutely continuous with respect to the Hausdorff measure HN−1 in D. Then, using a
blow-up technique near the boundary points of ∂Ωu, we prove more precisely like in [8,
Theorem 5.1] that

∆u+ χΩu
= gHN−1⌊∂Ωu.

We need for that purpose that g is estimated from below: g(x) ≥ c > 0 which is true as
soon as we are far from the origin. We can conclude using [18, Theorem 2.13, Theorem
2.17], at least outside the origin where g = 0. Notice that in Proposition 3.1 below it is
proved that it is certainly the case when α > 1.
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3. Basic Properties

In this section, we prove some basic properties of the solution to Problem (6) or (11).
The first one is a somewhat technical property which will be necessary in many cases

in the sequel. It states that the origin O is inside the domain (at least when α > 1) and
it is not surprising of course. Indeed, since g is increasing with respect to |x|, one can
easily imagine that translating a domain Ω toward the origin should make φ(Ω) smaller
while the torsion remains unchanged. Unfortunately we can prove such a property only
for α > 1, as most of our next results.

Proposition 3.1. Let Ω be a solution of the minimization problem (11) and assume
that the homogeneity degree of g satisfies α > 1. Then the origin O belongs to Ω.

Proof. Let us begin by proving that O cannot be in RN \ Ω. Indeed in this case, there
would exist a ball Bε = B(O, ε) of small radius ε and center at the origin, such that
B(O, ε) ⊂ RN . Let Ωε = Ω ∪Bε. We have immediately

φ(Ωε) = φ(Ω) + ε2α+Nφ(B1),

where B1 is the unit ball centered at O. In the same way,

J(Ωε) = J(Ω) + εN+2J(B1).

Therefore, since α > 1 we get the following expansion

φ(Ω)−
2+N

2α+N J(Ωε) = φ(Ω)−
2+N

2α+N J(Ω)

[

1 + εN+2J(B1)

J(Ω)
+ o(εN+2)

]

,

which contradicts the optimality of Ω since, as J(B1) < 0, it implies J(Ωε) < J(Ω).
Continuing to argue by contradiction, let us now assume that O ∈ Ω. If ∂Ω satisfies an
exterior cone condition at O, that is if there exists a cone Cε = εC1 of vertex O and size
ε such that Cε ∩ Ω = ∅, we can do exactly the same construction as before considering
Ωε = Ω ∪ Cε and we conclude in the same way.

So far we are reduced to consider O ∈ ∂Ω with no exterior cone condition at O. In
this case we use an Harnack inequality as in [18, Corollary 2.6]. Let us denote by δ(x)
the distance from x to Ωc. For x ∈ Ω close to O we have

(30) |∇uΩ(x)| ≤ N2N

(

sup
B(x,2δ(x))

g + δ(x)

)

.

The latter shows that |∇uΩ(x)| has to go to zero when x approaches O. This leads to a
contradiction (if O ∈ ∂Ω with no exterior cone condition at O), since by a simple barrier
argument (comparison between uΩ and the stress function of a cone of size greater than
π) we would have lim supx→0 |∇uΩ(x)| = +∞. �

Next we prove the monotonicity of the solutions of (6) with respect to g.

Theorem 3.2. Let g1, g2 satisfy (5) with α > 1 and let Ω1,Ω2 be solutions to Problem
(6) related to g1 and g2, respectively. Assume g1(x) ≥ g2(x) for every x ∈ R, then
Ω1 ⊆ Ω2.
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Proof. Assume by contradiction Ω1 6⊂ Ω2 and consider tΩ1 with

t = sup{s > 0 : sΩ1 ⊆ Ω2}.
Then 0 < t < 1 (notice that t > 0 comes from Proposition 3.1) and there exists x̄ ∈
∂tΩ1 ∪ ∂Ω2, with νtΩ1(x̄)||νΩ2(x̄)||ν, where νΩ(x) denotes the outer unit normal to ∂Ω
at x and ν ∈ SN−1.

Ω2

tΩ1

O

ν
x̄

Ω1

Figure 1. tΩ1 ⊆ Ω2 with x̄ ∈ ∂(tΩ1) ∩ ∂Ω2

We want to compare utΩ1 and uΩ2 , the stress functions of tΩ1 and Ω2, respectively.
Notice that utΩ1(x) = t2uΩ1(

x
t ). Define w = uΩ2 − utΩ1 ; it satisfies










∆w = 0 in tΩ1,

w ≥ 0 on ∂tΩ1,

w(x̄) = 0.

Hence by Hopf Lemma, it holds ∂w
∂ν (x̄) > 0. Notice that

∂w

∂ν
(x̄) = |∇uΩ2(x̄)| − |∇utΩ1(x̄)| = g2(x̄)− tg1(

x̄

t
),

since ν is parallel to ∇uΩ2(x̄),∇utΩ1(x̄) and |∇utΩ1(x̄)| = t|∇uΩ1(
x̄
t )|, with x̄

t ∈ ∂Ω1.
Hence, by the homogeneity of g1, and the fact that t < 1, α > 1, we get

g2(x̄) > tg1(
x̄

t
) = t1−αg1(x̄) > g1(x̄),

which contradicts the assumption g1 ≥ g2. �

Remark 3.3. We can prove the above theorem under some weaker assumptions, pre-
cisely it is sufficient that at least one between g1 and g2 satisfies (5), with α > 1. In
such a case we have however to assume O belongs to the interior of both Ω1 and Ω2 and
that they are bounded. In case g1 is the function satisfying assumption (5), the proof
is precisely the same as above. Notice that in this case O ∈ Ω1 and Ω1 bounded are
pleonastic assumptions since they implied by Proposition 3.1 and he result os Section 2,
respectively. If g2 satisfies (5) with α > 1 instead of g1, then we argue again by contra-
diction, very similarly as before (in this case O ∈ Ω2 and Ω2 bounded are pleonastic).
Indeed if Ω1 6⊂ Ω2, consider tΩ2 with

t = inf{s > 0 : Ω1 ⊆ sΩ2}.
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Then t > 1 and there exists x̄ ∈ ∂Ω1 ∪ ∂(tΩ2), with νΩ1(x̄)||νtΩ2(x̄)||ν, where νΩ(x)
denotes the outer unit normal to ∂Ω at x and ν ∈ SN−1. Then we can proceed in the
same way as before.

As a natural straightforward corollary of the previous theorem, the uniqueness of the
solution follows.

Theorem 3.4. If g satisfies assumptions (5) for α > 1, then the solution is unique.

4. Starshape and Connectedness

We recall that a set Ω is said starshaped with respect to a point x0 ∈ Ω if

t(x− x0) + x0 ∈ Ω for every x ∈ Ω and every t ∈ [0, 1].

When x0 = O we simply say that Ω is starshaped.

Theorem 4.1. If g satisfies ssumptions (5) for α > 1, then Ω is starshaped (with respect
to O).

Proof. The proof is similar to that one of Theorem 3.2.
By contradiction, assume Ω is not starshaped and let

t = inf{s ∈ [0, 1] : sΩ 6⊂ Ω}.
There exists x̄ ∈ ∂(tΩ) ∩ ∂Ω. Notice that 0 < t < 1 since the origin belongs to Ω, and
Ω is bounded and not starshaped. In a similar way as before, consider the function

ut(x) = t2uΩ

(x

t

)

.

Then ut is the stress function of tΩ and whence










−∆w = 0 in tΩ

w ≥ 0 on ∂(tΩ)

w(x̄) = 0,

where w = uΩ − ut.

Ω

tΩ

x̄

ν

O

Figure 2. t = inf{s ∈ [0, 1] : sΩ * Ω}.
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Then

(31)
∂w

∂ν
(x̄) ≤ 0 ,

where ν is the outer unit normal at x̄ of Ω and tΩ. On the other hand

∂w

∂ν
(x̄) = |∇ut(x̄)| − |∇uΩ(x̄)| ,

then (31) reads as

(32) |∇ut(x̄)| ≤ |∇u(x̄)| = g(x̄) .

Moreover a straightforward calculation gives

∇ut(x) = t∇uΩ(
x

t
) for x ∈ tΩ ,

which entails

|∇ut(x̄)| = t|∇uΩ(x̄/t)| = tg(x̄/t) = t1−αg(x̄) > g(x̄),

for 1− α < 0, t < 1 and x̄ 6= 0 (then g(x̄) > 0).
The latter contradicts (32) and the proof of starshapedness is concluded. �

Starshape obviously implies connectedness. Then when α > 1 the solution is con-
nected. We are able to prove this property also when α < 1.

Proposition 4.2. Let α 6= 1and Ω be a solution of the minimization problem (11) or
(12). Then Ω is connected.

Proof. For α > 1 the thesis follows from Theorem 4.1 as already pointed out. It is then
sufficient to consider the case α < 1. Let us assume, by contradiction, that the solution
Ω is not connected and let us write it as

Ω = Ω1 ∪ Ω2, with Ω1 ∩ Ω2 = ∅, |Ω1| > 0, |Ω2| > 0.

Since g is positive outside 0, we have φ(Ωi) > 0 for i = 1, 2. Let us denote by M the
value of the minimum

(33) M = φ(Ω)−
2+N

2α+N J(Ω) < 0.

For each component, we have φ(Ωi)
− 2+N

2α+N J(Ωi) ≥ M , i = 1, 2. Now, J(Ω) = J(Ω1) +
J(Ω2) and φ(Ω) = φ(Ω1) + φ(Ω2). Therefore

J(Ω) ≥ M
(

φ(Ω1)
2+N

2α+N + φ(Ω2)
2+N

2α+N

)

> M (φ(Ω1) + φ(Ω2))
N+2
2α+N = Mφ(Ω)

N+2
2α+N ,

the strict inequality coming from the fact that α < 1 (whence N+2
2α+N > 1), φ(Ωi) > 0 for

i = 1, 2 and M < 0. This clearly leads to a contradiction with (33). �
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5. convexity

Let us recall some definitions which will be usefull later on. A lower semicontinuous
function u : RN → R ∪ {±∞} is said quasi-convex if it has convex sublevel sets, or,
equivalently, if

u ((1− λ)x0 + λx1) ≤ max{u(x0), u(x1)},
for every λ ∈ [0, 1], and every x0, x1 ∈ RN . If u is defined only in a proper subset Ω
of Rn, we extend u as +∞ in Rn \ Ω and we say that u is quasi-convex in Ω if such
an extension is quasi-convex in RN . In an analogous way, u is quasi-concave if −u is
quasi-convex, i.e. if it has convex superlevel sets. Obviously, if u (or any one of its
powers) is convex (concave) then it is quasi-convex (quasi-concave) but the reverse is
not necessarily true.

Remark 5.1. Notice that, due to the α-homogeneity, the quasi-convexity of g is equiv-
alent (for α > 0) to the following apparently stronger property:

g1/α is convex.

Indeed, notice that h(x) = g
1
α (x) is homogeneous of degree one and it is quasi-convex.

Fix x0, x1 ∈ RN and consider λ ∈ [0, 1]. We want to prove that

h((1 − λ)x0 + λx1)

(1− λ)h(x0) + λh(x1)
≤ 1.

Denote by

ξ =
λh(x1)

(1− λ)h(x0) + λh(x1)
;

using the quasi-convexity and the homogeneity of h, we get

h((1 − λ)x0 + λx1)

(1− λ)h(x0) + λh(x1)
= h

(

(1− ξ)
x0

h(x0)
+ ξ

x1
h(x1)

)

≤ max
{

h(
x0

h(x0)
), h(

x1
h(x1)

)
}

= 1.

Theorem 5.2. Let g be a quasi-convex and homogeneous function of degree α ≥ 2, with
g(x) > 0 for x 6= 0. Then Ω is convex.

Proof. The proof follows the same lines of that of starshape. By contradiction, assume
Ω is not convex and let Ω∗ be its convex hull. Denote by uΩ the solution of (2), by u∗

its concave envelope, defined in Ω∗, and by uΩ∗ the stress function of Ω∗. Let

t = sup{s ∈ [0, 1] : sΩ∗ ⊂ Ω}
and let

x̄ ∈ ∂(tΩ∗) ∩ ∂Ω .

Notice that t > 0 since 0 ∈ Ω and Ω∗ is bounded (for Ω is bounded) while t < 1 for Ω is
not convex. It is easily seen that

ut(x) = t2uΩ∗

(x

t

)

,

solves (2) with tΩ∗ in place of Ω, (that is ut is the stress function of tΩ∗) whence










−∆w = 0 in tΩ∗

w ≥ 0 on ∂(tΩ∗)

w(x̄) = 0,
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where w = uΩ − ut.

Ω

tΩ∗

x̄
ν

x0

ν

x1

ν

Figure 3. t = sup{s ∈ [0, 1] : sΩ∗ ⊆ Ω}.

Then

(34)
∂w

∂ν
(x̄) ≤ 0 ,

where ν is the common outer unit normal at x̄ of Ω and tΩ∗. On the other hand

∂w

∂ν
(x̄) = |∇ut(x̄)| − |∇uΩ(x̄)| ,

then (34) reads

(35) |∇ut(x̄)| ≤ |∇Ωu(x̄)| .
We will contradict the latter by giving estimates of the gradient of ut which show

that the reverse must be true. To do this we need the following property, whose proof
is given at the end of the section.

Lemma 5.3. If x ∈ ∂Ω∗ \ ∂Ω, then

(36) |∇uΩ∗(x)| ≥
(

N
∑

i=1

λi

√

∇u(xi)

)2

,

where x1, ...xN ∈ ∂Ω are such that x =
∑N

i=1 λixi, for some λ1, ..., λN ∈ [0, 1] with
∑N

i=1 λi = 1.

With Lemma 5.3 at hands, it is easy to prove that (35) can not hold true. Indeed a
straightforward calculation gives

(37) ∇ut(x) = t∇uΩ∗(
x

t
) for x ∈ tΩ∗.

Notice that, as x̄ ∈ ∂tΩ∗, there exist x1, ..., xN ∈ ∂tΩ and λ1, ..., λN ∈ [0, 1] such that
∑N

i=1 λi = 1 and x̄ =
∑N

i=1 λixi and ν(x̄)||ν(x0)||ν(x1)||ν, where ν(x) indicates the outer
unit normal vector to tΩ∗ at x ∈ ∂tΩ. Moreover, since x̄ ∈ ∂tΩ∗ \ ∂Ω, we have

|∇ut(x̄)| = t|∇uΩ∗(x̄/t)| ≥ t
(

∑N
i=1 λi

√

|∇u(xi/t)|
)2

= t
(

λi

√

g(xi

t )
)2

= t1−α
(

∑N
i=1 λi

√

g(xi)
)2

.
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On the other hand, Remark 5.1 yields

g(x̄) ≤
(

N
∑

i=1

λig(xi)
1
α

)α

,

and then

g(x̄) ≤
(

N
∑

i=1

λig(xi)
1
2

)2

,

since α ≥ 2. We finally get

|∇ut(x̄)| ≥ t1−αg(x̄) > g(x̄) = |∇u(x̄)| ,
where the strict inequality holds because t < 1, α > 1 and g(x̄) > 0, since x̄ 6= 0 for
0 ∈ Ω. The latter contradicts (35) and the proof is concluded. �

We give the proof of Lemma 5.3.

Proof of Lemma 5.3. We use the same notations and a similar construction as in the
proof of Theorem 5.2. So, let Ω∗ be the convex hull of Ω and let uΩ∗ , uΩ be their stress
functions, respectively. By Comparison Principle we have

(38) uΩ ≤ uΩ∗ in Ω .

Since
uΩ = uΩ∗ on ∂Ω∗ ∩ ∂Ω ,

equation (38) entails

|∇uΩ∗(x)| ≥ |∇uΩ(x)| for every x ∈ ∂Ω∗ ∩ ∂Ω .

Fix x̄ ∈ ∂Ω∗; there exist x1, ..., xN ∈ ∂Ω such that x̄ =
∑N

i=1 λixi, with λi ∈ [0, 1],
∑

λi =
1, and DuΩ(xi) are parallel to |DuΩ∗(x̄)| for i = 1, ..., N since the outer unit normal
vector to Ω∗ at x̄ and to Ω at xi must coincide. Let us set ν = ν(x̄) = ν(x0) = ν(x1).
In particular we have

(39) |∇uΩ∗(xi)| ≥ |∇uΩ(xi)| for i = 1, ..., N .

Next we prove that

(40) |∇uΩ∗(x̄)| ≥
(

N
∑

i=1

√

|∇uΩ∗(xi)|
)2

.

By the convexity of Ω∗ it is well known that uΩ∗ is 1/2-concave (see [13, 25, 26]), that is

(41) v =
√
uΩ∗ is concave in Ω

∗
.

Moreover, since
N
∑

i=1

λi(xi − tν) = x̄− tν ,

for every small enough t > 0 we have

uΩ∗(x̄− tν) = v(x̄− tν)2 ≥
(

N
∑

i=1

λiv(xi − tν)

)2

.
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By the definition of v the latter reads as

uΩ∗(x̄− tν)

t
≥
(

N
∑

i=1

λi

√

uΩ∗(xi − tν)

t

)2

.

Passing to the limit as t → 0+ and taking into account that

uΩ∗(x̄) = uΩ∗(xi) = 0 , i = 1, ..., N,

we get (40).
Coupling (40) and (39) gives (36) and the proof is concluded. �

6. Symmetries

In this section we prove that some symmetry properties of g are inherited by the
solution Ω. In particular in Theorem 6.1 we consider the radial case, while Theorem 6.6
treats the Steiner symmetric case. In both cases the presented technique is based on
rearrangements of sets and functions.

Theorem 6.1. If g is radial and satisfies assumptions (5), then the solution Ω to the
minimization problem (11) is a ball.

Notice that a radial solution can always be explicitly computed. The above result
states that in fact not radial solutions cannot exist. Let us remark that for α > 1 this
can also be seen as a straightforward corollary of Theorem 3.4.

Proof. Let us denote by Ω# the ball of the same volume than Ω and centre at O. Assume
Ω \ Ω# to be a set of positive measure. We are going to reach a contradiction proving
that the value J(Ω#) is strictly better than the minimum value J(Ω).

Notice that, since g is radial and increasing in each direction, we have

Ω# = {x ∈ RN : g(x) ≤ t̄},
for some t̄ > 0.

O

Ω

Ω
#
= {g(x) ≤ t̄}

Figure 4. The level lines of g are monotone increasing concentric balls.

Hence

inf
x∈Ω\Ω#

g2(x) > t̄ = sup
x∈Ω#\Ω

g2(x),
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which implies φ(Ω#) < φ(Ω), since

φ(Ω#) ≤
∫

Ω#∩Ω
g2(x) dx+ |Ω# \ Ω| sup

x∈Ω#\Ω

g2(x)

<

∫

Ω#∩Ω
g2(x) dx+ |Ω# \ Ω| inf

x∈Ω\Ω#
g2(x)

≤
∫

Ω#∩Ω
g2(x) dx+

∫

Ω\Ω#

g2(x) dx

= φ(Ω).

In order to compare the stress function of Ω with that of Ω#, we compare both of
them with a rearrangement of uΩ. More precisely, let u# be the Schwarz symmetric of
the stress function uΩ, that is the radial function whose sublevel sets are concentric balls
of the same measure than the corresponding sublevel sets of u (that is |{u# < t}| =
|{uΩ < t}|). We compare u# with the stress functions of Ω#, uΩ# (notice that it is a
radial function too) and that of Ω. Recalling the characterization of stress functions in
(4), we have

J(Ω#) ≤ 1

2

∫

Ω#

‖Du#‖2 dx−
∫

Ω#

u#
2
dx;

moreover, by classical results (see for instance [24]), it holds
∫

Ω#

u#
2
dx =

∫

Ω
uΩ

2dx,

∫

Ω#

‖Du#‖2 dx <

∫

Ω
‖DuΩ‖2dx,

where the strict inequality holds since uΩ is not radial (otherwise Ω would be a ball)
and hence it does not coincides with u# (see [24] Corollary 2.33). These latters entail
J(Ω#) < J(Ω), which is a contradiction. This shows that Ω is a ball, up to a zero
measure set. �

Notice that, under stronger assumptions a similar result on the symmetry of the
solution to the torsion problem has been proved by A. Greco. in [19]. More precisely he
considered Problem (6) with g(x) = c|x|, and he proved that if a solution exists and the
set Ω contains the origin, then the set must be a ball.

We want to use Theorem 7.1 to estimate the stability of the radial setting. Roughly
speaking we deal with the following questions: if, in some sense, g is close to be a radial
function, is Ω close (in a suitable sense) to be a ball? And how does the distance of Ω
from the ball shape depend on the distance of g from the radial shape?

It is then necessary to specify which kind of distance is convenient to use to measure
the closeness of g to be radial.

We present two stability results which are in fact corollaries of Theorem 3.2. More
precisely, we consider two different kinds of distances of functions: in Proposition 6.2
we ask g to be quasi radial in the L∞ norm, while in Proposition 6.3 the distance
between the function g and a radial function is controlled in terms of the α-homogeneous
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sublinear function |x|α. Notice that this latter is in fact quite natural since the space of
α-homogeneous functions is considered.

Proposition 6.2. Let g, h satisfy (5) with α > 1 and assume h to be radial with

|g(x) − h(x)| ≤ ε,

for every x ∈ RN and some ε > 0. Let Ω be the solution of (6) related to g, then there
exist Rε > rε > 0 such that B(O, rε) ⊆ Ω ⊆ B(O,Rε) with |Rε − rε| = O(ε).

Proof. Since the function h is α-homogeneous and radial, there exists a positive constant
k such that h(x) = k|x|α, where in fact k = h|SN−1 . Define

h−(x) =
h(x)

1− ε
, h+(x) =

h(x)

1 + ε
;

it holds h+ ≤ g ≤ h− since

{x ∈ RN : h+(x) ≤ 1} ⊆ {x ∈ RN : g(x) ≤ 1} ⊆ {x ∈ RN : h−(x) ≤ 1}.
Moreover h−, h+ satisfy the hypothesis of Theorem 3.2 and hence

Ω− ⊆ Ω ⊆ Ω+,

where Ω−,Ω+ are the solutions to (6) related to h−, h+, respectively.
By Theorem 6.1 there exist Rε > rε > 0 such that Ω− = B(O, rε) and Ω+ = B(O,Rε).

In particular, solving explicitly Problem 6 in the radial homogeneous case, we get

Rε =
(1 + ε

kN

)
1

α−1 , rε =
(1− ε

kN

)
1

α−1 ,

since the stress function of a ball B(O, ρ) is u(x) = ρ2−|x|2

2N , with |Du||∂B(O,ρ) = ρ
N .

Comparing Rε and rε we have

|Rε − rε| =
2

(α− 1)(Nk)
1

α−1

(ε+ o(ε)),

which entails the thesis. �

Proposition 6.3. Let g, h satisfy (5) with α > 1 and assume h to be radial with

|g(x) − h(x)| ≤ ε|x|α,
for every x ∈ RN and some ε > 0. Let Ω be the solution of (6) related to g. There exist
R′

ε > r′ε > 0 such that B(O, r′ε) ⊆ Ω ⊆ B(O,R′
ε) with |R′

ε − r′ε| = O(ε).

Proof. As before we notice that the assumptions on h implies that there exists a positive
constant k such that h(x) = k|x|α.

Since the stress function of a ball B(O, ρ) is of the form u(x) = 1
2N (ρ − |x|2), the

solutions to (6) related to h+ ε|x|α, h− ε|x|α are

u+(x) =
r′ε

2 − |x|2
2N

, u−(x) =
R′

ε
2 − |x|2
2N

,

with r′ε =
(

N(k + ε)
)− 1

α−1 , R′
ε =

(

N(k − ε)
)− 1

α−1 , respectively.

Then, for every α > 1, it holds limε→0+ r′ε = limε→0+ R′
ε = (kN)−

1
α−1 , which entails

the thesis. Notice that the value r = (kN)−
1

α−1 , corresponds to the value of the radius
of the ball solution to Problem (6) related to the function h(x). �
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Remark 6.4. Notice that, by the homogeneity of g and h, the condition |g(x)−h(x)| ≤
ε in Proposition 6.2 guarantees the validity of the condition |g(x) − h(x)| ≤ ε|x|α in
Proposition 6.3. Indeed

h(x) + ε|x|α = |x|α(h( x

|x| ) + ε) ≥ |x|α(g( x

|x| )) = g(x),

and, analogously, h(x)− ε ≤ g(x).
However Proposition 6.2 is stronger than Proposition 6.3, depending on the value

of k > 0. In particular if k < 1 − ε, then the balls B(O, rε), B(O,Rε) give a better
approximation to the set Ω, while for k > 1+ ε, it is more convenient to compare Ω with
B(O, r′ε), B(O,R′

ε). For 1− ε < k < 1 + ε we have Rε < R′
ε and rε > r′ε.

Remark 6.5. Since g is homogeneous, it is completely described by its degree of homo-
geneity α and one of its level set, say

G1 = {x ∈ RN : g(x) < 1} .
Indeed the sublevel set Gt can be written in terms of G1, see (43).

Hence the distance of g to be radial can be conveniently expressed in terms of the
distance of G1 from a ball.

Propositions 6.2 and 6.3 can in fact be rewritten in terms of sublevel sets. More
precisely the condition |g − h| ≤ ε becomes

B
(

O,
(1− ε

k

)
1
α

)

⊂ G1 ⊂ B
(

O,
(1 + ε

k

)
1
α

)

,

where k = h|SN−1 , while |g − h| ≤ ε|x|α entails

B
(

O,
1

(k + ε)
1
α

)

⊂ G1 ⊂ B
(

O,
1

(k − ε)
1
α

)

.

We now present another symmetry result concerning the Steiner symmetric case. More
precisely, let us assume g to be Steiner symmetric in the following sense:

(42)

{

g is symmetric with respect to {xN = 0} and

the sublevel sets of g are convex in the xN direction.

Notice that this can be rephrased as

g(x′, xN ) ≥ g(x′, yN ), whenever |xN | ≥ |yN |.
Theorem 6.6. Consider a function g satisfying assumptions (5) and assume g to be
Steiner symmetric in the sense of (42). Then the solution Ω to Problem (11) is sym-
metric with respect to the hyperplane {xN = 0}.
Proof. The proof makes use of Steiner symmetrization. Let us recall some notations; for
more details, we refer to [29].

We denote by Ω′ the projection of Ω onto RN−1:

Ω′ = {x′ ∈ RN−1 such that there exists xN with (x′, xN ) ∈ Ω}.
For x′ ∈ RN−1, we denote by Ω(x′) the intersection of Ω with the line {x′} × R; that is

Ω(x′) := {xN ∈ R such that (x′, xN ) ∈ Ω}.
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Obviously Ω(x′) is the empty set for every x′ ∈ RN−1 \ Ω′ while

⋃

x′∈Ω′

(

x′ × Ω(x′)
)

= Ω.

We introduce the one-dimensional set

Ω⋆(x′) :=

(

−1

2
|Ω(x′)|, 1

2
|Ω(x′)|

)

;

which is a symmetric interval with the same measure as Ω(x′).
The Steiner symmetrized of Ω with respect to the hyperplane {xN = 0} is the set Ω⋆

defined by

Ω⋆ :=

{

x = (x′, xN ) such that − 1

2
|Ω(x′)| < xN <

1

2
|Ω(x′)|, x′ ∈ Ω′

}

.

Now, since g is increasing in the xN direction from xN = 0 and symmetric, we have for
any x′ ∈ Ω′

∫

Ω(x′)
g2(x′, xN )dxN =

∫

Ω(x′)∩Ω⋆(x′)
g2(x′, xN )dxN +

∫

Ω(x′)\Ω⋆(x′)
g2(x′, xN )dxN

≥
∫

Ω⋆(x′)∩Ω(x′)
g2(x′, xN )dxN +

∫

Ω⋆(x′)\Ω(x′)
g2(x′, xN )dxN

=

∫

Ω⋆(x′)
g2(x′, xN )dxN .

Therefore, integrating over Ω′, we get
∫

Ω
g2dx =

∫

Ω′

dx′
∫

Ω(x′)
g2(x′, xN )dxN ≥

∫

Ω⋆

g2dx;

this shows that Ω⋆ is also admissible for the minimization problem (11). Denote by u⋆

the Steiner symmetrization of uΩ, that is the function whose level sets are the Steiner
symmetrization of level sets of uΩ. By Fubini Theorem and classical results on rearrange-
ment, it is well known that

∫

Ω
uΩ dx =

∫

Ω⋆

u⋆ dx,

∫

Ω
|∇uΩ|2 dx ≥

∫

Ω⋆

|∇u⋆|2 dx.

Thus, since u⋆ belongs to the Sobolev space H1
0 (Ω

⋆), using the variational characteriza-
tion (4) we get

J(Ω⋆) = GΩ⋆(uΩ⋆) ≤ GΩ⋆(u⋆) ≤ GΩ(uΩ) = J(Ω),

and the proof is complete. �
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7. A relation with the level sets of g

As largely proved in the previous sections, clearly the geometry of g influences the
geometry of the solution Ω. Following the radial case, one could expect the shape of
Ω to be strongly related to the shape of the level sets of g. Indeed in the radial case,
Ω is an homothetic copy of the level sets of g; unfortunately this happens only in this
particular case, as can be easily inferred from the Serrin result [31]. On the other hand,
some estimate of the solution Ω in terms of g is always possible and this is precisely the
aim of this final section. Roughly speaking, we will show that Ω must be incapsulated
between two a priori known level sets of g. To give a precise statement, it is convenient
to introduce first some notations.

As before, assume g to be homogeneous of degree α > 0 and g(x) > 0 if x 6= 0. Let
t ∈ (0,∞) and denote by Gt the (open) t-sublevel set of g, that is

Gt = {x ∈ Rn : g(x) < t} .
By homogeneity, it is easily seen that all the level sets are dilatation of G1, precisely

(43) Gt = t
1
α G1 .

Now let ut be the stress function of Gt and assume that g is regular enough to get
ut ∈ C2(Gt) ∩ C1(Gt) (for instance g ∈ C1,β(RN ) for some β > 0).

In particular u1 is the solution of

(44)

{

−∆u1 = 1 in G1

u1 = 0 on ∂G1,

and it holds

(45) ut(x) = t2/α u1

( x

t1/α

)

.

Set

(46) A = min
∂G1

|∇u1| , B = max
∂G1

|∇u1| .

Notice that A and B depends only on g and they are, in principle, a priori known.
Moreover, A ≤ B and A < B unless G1 is a ball (see [31]), that is g is radial; the radial
case is discussed in detail in the previous section.

Theorem 7.1. If α > 1 then

A1/(α−1)G1 ⊆ Ω ⊆ B1/(α−1)G1 .

Proof. Since the origin O is in the interior of both Ω and G1, and they are both bounded,
there exist r and s such that 0 < r ≤ s and

r = sup{t : Gt ⊆ Ω} and s = inf{t : Ω ⊆ Gt} .
Then Gr ⊆ Ω ⊆ Gs and there exist

xr ∈ ∂Gr ∩ ∂Ω and xs ∈ ∂Ω ∩ ∂Gs .

We want to estimate r and s in terms of g. Then let wr = uΩ − ur, where uΩ is as
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Gs

Gr

Ω

νs

x̄s

νr
x̄r

Figure 5. Gr ⊆ Ω ⊆ Gs

usual the stress function of Ω, and notice that wr satisfies










−∆wr = 0 in Gr

wr ≥ 0 on ∂Gr

wr(xr) = 0.

By maximum principle wr ≥ 0 in Gr and then xr is a minimum point. Whence

∂wr

∂νr
(xr) =

∂uΩ
∂νr

(xr)−
∂ur
∂νr

(xr) = |∇ur(xr)| − |∇uΩ(xr)| ≤ 0 ,

where νr is the outer normal of Gr (and Ω) at xr. Since Ω solves Problem (2) and
xr ∈ ∂Gr, the latter reads

(47) |∇ur(xr)| ≤ g(xr) = r .

On the other hand, (45) gives

|∇ur(xr)| = r1/α
∣

∣

∣
∇u1

( xr
r1/α

)∣

∣

∣

and thanks to (43) it holds
xr
r1/α

∈ ∂G1 .

Then from (46) we get

r ≥ r1/αA,

which implies, for α > 1,

(48) r ≥ Aα/(α−1);

and this proves the first inclusion of the statement, using (43).

To obtain the second inclusion we argue in a similar way. Let ws = us−uΩ and notice
that it solves











−∆ws = 0 in Ω

ws ≥ 0 on ∂Ω

ws(xs) = 0

Arguing as before we get

(49) |∇us(xs)| ≥ g(xs) = s .
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Coupling the latter with (45) and taking again into account (43) and (46), we get

s ≤ s1/αB,

whence, if α > 1, we obtain

(50) s ≤ Bα/(α−1),

which proves the second inclusion of the statement, using again (43). �
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[8] T. Briançon, Regularity of optimal shapes for the Dirichlet’s energy with volume constraint, ESAIM:
COCV, 10 (2004), 99-122.
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