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Three-Dimensional Vibrations of Tethered
Satellite Systems

Monica Pasca* and Marcello Pignataro¥
University of Rome, Rome, Italy

and

Angelo Luongoi
University of L’Aquila, L’Aquila, Italy

The three-dimensional free vibrations of an orbiter-towed tethered satellite system with nominally vertical
tether during stationkeeping phase are studied analytically. The tether is modeled as an elastic continuum with
mass and the orbiter and the subsatellite as two concentrated masses. The linearized equations of motion with
variable coefficients are solved by means of a perturbation technique. An analysis of the order of magnitude of
the different terms involved permits evaluation of the coupling between longitudinal and transversal in-plane
vibrations coming to an approximate closed-form solution of the eigenvalue problem.

Introduction

HE vast potential of the tethered satellite system (TSS)!:2

within the space research program has recently stimulated
many investigations on its dynamic behavior and control.
Most of the work deals with deployment and retrieval of the
subsatellite and the determination of the most appropriate
control law.?- Yet despite its importance, little attention has
been devoted to the dynamics of the stationkeeping phase.t-10
Knowledge of the elastic oscillations of the system is therefore
necessary to evaluate the disturbances introduced into the
experimental observations. A survey on the development in
these areas has been provided by Misra and Modi.!!

A continuum model was formulated previously!? by the
authors in order to investigate the free dynamics of the TSS
during the stationkeeping phase. The following simplifying
assumptions were introduced: 1) the orbiter and the satellite
are considered as two concentrated masses, 2) the tether is
modeled as an elastic continuum with mass, and 3) the orbital
eccentricity and the aerodynamic drag forces are neglected so
that the tether can be assumed vertical. The nonlinear equa-
tions of motion have been derived through an energy method
and then linearized around the static configuration. Out-of-
plane oscillations have been studied separately because the
relevant linear equations are uncoupled from in-plane equa-
tions of motion.

In this paper, by using the model previously introduced, the
in-plane motion is analyzed. The governing equations in the
longitudinal and transversal components are coupled by
means of gyroscopic forces, leading to a nonstandard eigen-
value problem.'>!* It is found that the eigenvalue problem in
the real and imaginary parts of the eigenfunctions of the
gyroscopic system splits into two equal problems because of
the particular structure of the mass and stiffness operators. A
perturbation technique is used to solve the system character-
ized by variable coefficients arising from the stress gradient
along the tether. As a result, eigenvalues and eigenfunctions
are determined by perturbing those relative to a constant state
of stress. In order to evaluate the influence of different terms
in the equations of motion, an asymptotic analysis has been
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performed. This shows that, within technical values of the
geometric and mechanical parameters, the two components of
motion are weakly coupled by gyroscopic forces and two sets
of eigenfunctions exist, one prevalently longitudinal and the
other prevalently transversal. These conclusions are supported
by numerical results.

In the authors’ opinion, some new contributions have been
made with respect to previous papers, arising from 1) the use
of a more sophisticated model and 2) the use of perturbation
techniques in computing eigenfrequencies and eigenvectors. In
particular, the gyroscopic forces associated with the in-plane
motion are taken into account and no assumptions are intro-
duced on the value of the satellite/orbiter mass ratio. As a
consequence, the model permits a more accurate description
of the motion and enables the systems to be analyzed with
lumped masses of the same order. Furthermore, the perturba-
tion method employed permits attainment of a simple closed-
form solution, in comparison, for example, with Ref. 10,
although it cannot always be applied. Finally, the asymptotic
analysis based on the estimate of the order of magnitude of the
terms of the equations of motion provides important insights
into the mechanical behavior of the system.

Formulation of the Problem

Let us consider the system consisting of a Space Shuttle (SS)
and a subsatellite, connected by an elastic tether. Let (O,X,
Y,Z) be a rest frame whose origin coincides with the Earth
mass center. Assume that the SS describes a circular, undis-
turbed orbit of radius ¢ in the X-Y plane, with constant
angular velocity n. It is convenient to introduce a reference
system (0,x,y,z) whose origin coincides with the SS center of
mass; the x,y axes lie in the X-Y plane and are oriented as
shown in Fig. 1. A curvilinear abscissa S measured from the
SS along the tether is also introduced.

Accounting for the kinetic and potential energies, the La-
grangian of the system is
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Fig. 1 TSS model.

where a dot indicates differentiation with respect to time 7. In
Eq. (1), p. denotes the gravitational constant, u the mass
density of the tether, ¢ its unstretched length, 4 its cross
section, E the Young’s modulus, and m; and m, the masses of
the SS and the subsatellite, respectively. In addition, r is the
position vector, r =(a + x) ¢, +y ¢, + Z ¢3, where ¢, ¢, ¢; are the
unit vectors of the moving system, and e is the stretching
defined as e = [(x "2+ y "2+ z’9)"2—1], where a prime denotes
differentiation with respect to S.

From the stationary condition of the Lagrangian, the gen-
eral equations of motion are obtained
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with appropriate boundary conditions.
Equations (2) admit a steady-state solution x =x(S), y =0,
z =0, where x(S) is obtained by solving the nonlinear equation

Bite
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with relevant boundary conditions.

By considering the motion with respect to the static configu-
ration and linearizing in the additional displacement compo-
nents U,V W, along x,y,z axes, respectively, we get the
nondimensional equations of motion
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ali —2a*v—3cu —u”" =0 (4a)
oV + 2% — o[ f(s)v'] =0 (4b)
o®W +a?w — o[ f(s)w’] =0 (4c)

with the associated boundary conditions
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where u=U/¢, v=V/f, w=W/{, and a prime and a dot
denote differentiations with respect tos =S/fand ¢t =¢/n. The
following nondimensional parameters have also been intro-
duced
272
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which is related to the axial stress by N(s)=un%f(s)x’(s).

An approximate form for f(s) is obtained by linearizing
Eq. (3) and neglecting the stretching of the tether. The follow-
ing expression is obtained

2
f(s)=3[% + <s5—52—>] ®)

where 6 =d /¢ is the nondimensional distance of the system
center of mass from the SS. As a particular case, for 3—0 is
6—0,6/8—1/2+1/4.

Equations (4) show that out-of-plane and in-plane motions
are uncoupled and can be solved separately.

In-Plane Vibrations

Solution Procedure
By using matrix notation, Eqgs. (4a) and (4b) with corre-
sponding boundary conditions, Egs. (5a-5d), can be written in
the form
Mi+Gg+Kqg=0 )
where g(s,?) is the generalized coordinates vector

g(s,)=(u(s,1), u(0,1), u(L,1), v(s,t), v(0,2), v(1,6)}7 (10)

The operators M, G, and K are given by

M=m0’ G=20—m
0 m m 0

K, 0
K= 11
[0 Kv] an
where
11
m = diag <l,—, —) (12a)
By
d 3 14d
K, = —diag <3+—2@, E+;&’S=O
3 14d
2= 12b
v atds S:l) (12b)
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K,= —diag ([f%] ,f% > (12¢)
s=1

The linear equation [Eq. (9)] admits a solution of the form
q(s,t)=gq(s)e’*, which, after separation of variables, leads to

s=0

—wMg +iwGq +Kqg =0 13)

Since G is real, ¢ (s) in Eq. (13) must be complex in order to
have a nontrivial solution. On account of the particular struc-
ture of the matrices involved, it is convenient to partition g(s)
into ¢ = {u,v}7, where u =u, + iu; and v =v, +iv;. Equation
(13) then may be rewritten as four equations,

w'mu, —2eomv; — K, u, =0 (14a)
w*mv; —2omu, —K,v; =0 (14b)
w?*mu; +20mv, — K, u; =0 (14¢)
w'mv, + 2wmu; — K.y, =0 (14d)

where 12 variables are present. It is apparent that Eqs. (14) are
coupled two by two and that the two systems of equations are
equal if we pose u;=u,, v,= —v;. By denoting with z the
vector z = {u,,v;}7, we can rewrite Eq. (13) as

WMz -wG*z —Kz =0 (15)

where M and K are the same as before, whereas G* is now a
symmetric matrix defined as

G*=2[0 m] (16)

m 0

After solving Eq. (15), we find that the general solution for
the displacement components is given by

u(s,ty = L; u;(s)C; sin(w;t + ;) (17a)
v(s,t) = L;v;(s)C;cos(wt +y;) (17b)

where C; and y; are arbitrary constants to be determined from
initial conditions.

The frequencies of the system can be related to the eigen-
functions u, and v; by the following expression

Bv/Kyv, ds—§ u'Ku, ds
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in which the single terms represent the contribution to poten-
tial and kinetic energy of each component of motion. In the
following, subscripts r and i will be omitted.

A perturbation technique is now employed to solve the
differential equations with variable coefficients [Eq. (15)]. To
this end, in the hypothesis y<O(1), 8/y < 0(1), it is possible to
consider the function f(s) as the sum of a constant and a
variable term

S&)=So+efils) a9

with e<1. For example, by using Eq. (8), it is possible to
assume fo=f(1)=/fnin (f my<my), or fo=F(8)=fnaxs OT Jo
=fav=3(6/8 + 6/2—1/6). The influence of the choice of f; will
be discussed with numerical results.

According to Eq. (19), K(s) can be written as

K, 0 0 0
K(s)=Ko+eK1(s)=[0 KO]+€|:0 K1:l 20

where

as| 1> (21a)

dl' [, d d
K, = —diag(l:fl E] 7|:f1 d_s] 7 [fl E‘J > (21b)
5=0 s=1

and K, is defined by Eq. (12b). Expanding z(s) and  in terms
of e using

' d2 d d
Ko, = _dlag<f0 7 Jo d_s' Y —Jfo—

2(8)=zg+ez;+ O(?) (22a)
w=wy+€w, +O(e) (22b)

we obtain the perturbation equations at the order ¢ and e,
respectively

w(z) Mzo— woG*Z()—'Ko 2= 0 (23)
ngzl —weG*21— Koz, = —2wpw Mzp+01G*20+ K120 (24)

At the zeroth order, the equation describes the problem of the
TSS with constant stress along the tether. Although the associ-
ated eigenvalue problem is not a standard one, particular
properties of the eigensolutions can be found. From Eq. (23),
written for two different eigenvalues with the corresponding
eigenfunctions, performing straightforward manipulations,
we get the orthonormalization condition

1 1
(wox + th)j ZgeMzon ds — S 2:G*Zon d 5 = bpy (25)
0 0

The first-order solution can be determined from Eq. (24) by
writing z,; as a linear combination of the eigenfunctions z,

21j = Lk @jpcZok (26)

By applying a standard procedure, we obtain the correction
to the frequency wy;,

1
Wy = S z&](ﬂqids (27)
0

where the eigenfunctions zo; have been normalized according
to Eq. (25). The coefficients a; are given by the solution of a
linear algebraic coupled system (see Ref. 15).

Explicit Solution of the Eigenvalue Problem

The explicit solution of Egs. (23) and (24) implies two steps,
the first corresponding to the problem with constant stress
along the tether (zeroth-order perturbation solution), the sec-
ond one furnishing the corrections due to the variability of the
tension (first-order perturbation solution).

The zeroth-order perturbation, Eq. (23), admits the solution

2o(s) = Ze s (28)

By introducing Eq. (28) into Eq. (23), we obtain a fourth-
degree characteristic equation whose solutions are

PO <3a2+wga2+9‘—2’> (1¢v1+§) 29)
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It is possible to show that (1 + {) is positive for any value of
wp as it can be written as the sum of two squares. Furthermore,
the following inequalities hold 0> ¢> —1 for wi>1, =0 for
wi=1, and {>0 for 1>w}>0; consequently the roots can be
real or imaginary. Only the case wy>1 is analyzed here since
wp=<1 corresponds to values of the geometric and mechanical
parameters, which are out of the ranges of technical interest
(see Ref. 15). By defining

o? wj —
p2=3[3+w(2)+anbj] <l+ 1+§') (3la)
q2=a_2[3+w2+_2‘%_:| (1_\/1+§-) (31b)

2 0 o*fy

we can write the roots & as =+ ip and ziqg and the displacement
components read

uo(s) = cp(A, sinps + A, cosps) +c,;(A; sings + A4 cosgs)
(32a)
vo(s)=A, sinps + A, cosps + A; sings + A4 cosgs  (32b)

where

2wo
= 33
€ 3+wi-p¥o? (332)

2(00

— 33b
3+wi—g¥a? (33b)

qu

By imposing boundary conditions, we get a homogeneous
system of linear algebraic equations in the unknown ampli-
tudes A4, (i =1,2,3,4). The vanishing of the determinant of the
coefficients leads to a transcendental characteristic equation in
the unknown w,, which has to be numerically solved. From
this, p and g and, therefore, the solutions uy(s) and vy(s) are
determined.

The first-order corrections to the frequencies are evaluated
easily by means of Eq. (27), which, in this specific case, reads

1
wyj = g fl(S)V('y2 ds (34)
0

where vg,(s) is furnished by Eq. (32b).

The eigenfunctions’ corrections are determined by numeri-
cally solving the system for coefficients a; (see Ref. 15) where
equations are coupled, since eigenfunctions are not orthogo-
nal in the classical sense defined for natural systems, i.e.,
systems with no gyroscopic forces.

Out-of-Plane Vibrations
The out-of-plane motion has been studied in Ref. 12; the
relevant results are summarized here. The problem is governed
by Eq. (4c) with the boundary conditions of Eqgs. (5¢) and
(5f). By posing w(s,t)=w(s)e’, we can write them in the
matrix form

(1-0Mw + Kw =0 35)

where M =m, K = K,, as defined previously for the in-plane
motion, and w = {w(s), w(0), w(1)}7. The solution of the
problem is obtained through the perturbation procedure previ-
ously employed by expanding 22 and w into series of the small
parameter € appearing in Eq. (19). The relevant perturbation
equations are

(Q2 — DMwy — Kowy =0 (36)

(Qg — I)MWI - Kowl = - Q%MWO + K]WO (37)

where K, and K| stand for Ky, and K, defined by Eqs. (21a)
and (21b).
The solution of Eq. (36) is given by

wo(s) = A, sinAs + A, COSAS (38)

where N2 = (2 — 1)/f, has been posed. By using boundary
conditions, we obtain the following characteristic equation:

B+y
N —By

tanA = A 39)

The eigenfunctions wy; verify the classical orthonormality con-
ditions for natural systems and are independent of the choice
of the constant stress value.

The first-order perturbation, Eq. (37), is solved by assuming
wy; =Li auwor. The frequency correction obtained is

1
@ =§ fils) wif ds (40)
0

from which the natural frequencies, up to the first order, are

1

Q=03 +e0} =1 +S fs) wi} ds S
0

where use has been made of Eq. (19) and of the orthonormal-
ization conditions. The coefficients aj are furnished by

1 1
aj =m So J(s) wor wg; ds 42)

It should be noticed that, whereas eigenfunctions w; depend
on the choice of fp, sz is independent of the constant vaiue of
the stress, which only affects the frequency approximation at
order €°.

Asymptotic Analysis of the In-Plane Motion

As already observed, the two components of the in-plane
motion, u(s,t) and v(s,t), are coupled by means of the gyro-
scopic forces; a measure of the coupling is given by the coeffi-
cients ¢, and ¢, appearing in Egs. (32). In particular, the
solution depends on the nondimensional parameter o?, de-
fined by Egs. (6), which, in the range of technical values of the
geometric and mechanical properties of the system, assumes
very small values, at the most of order ©(10~%). Therefore, it
is worth examining the order of magnitude of the different
terms of the solution in order to point out the coupling be-
tween the components of motion and to obtain an approxi-
mate solution.

To this end, two different approaches to the problem are
presented. In the first one, the asymptotic behavior of the
solution for small values of o is studied; in the second one,
the general equations of motion [Egs. (4a) and (4b)] are solved
by means of a perturbation technique in which o? is assumed
as the perturbation parameter. In both cases, for simplicity,
we refer to an infinite mass of the SS (3=0). Note that the
coefficients v and f(s) are both of order O(1).

Asymptotic Expansion of the Constant Stress Solution

The eigenvalue problem of in-plane motion, related to the
case 3=0, can be written more explicitly as

a 4an A1}=£0} 43
[021 azz] {As 0 “3)



where
Cp D .
ay = 55— (psinp —v cosp) (44a)
2wy
Cqq .
a = 3 L2 (g sing -y cosq) (44b)
Lo AN
2¢, .
ay = <1 ——;—”)w% sinp —vfop cosp (44c)
0
2c )
a,; = (l —;ﬂ)wﬁ sing —vf, g cosq (44d)
0

being A;=A;=0 from the boundary conditions u(0)=v(0)
=0. In Egs. (44), the coefficients ¢, and ¢, and the spatial
frequencies p and q are functions of o? according to Egs. (30),
(31), and (33). By expanding V1 + ¢ in terms of o? and substi-
tuting into Eqgs. (31), we get, up to the second order

29 2
p =7+4a (45a)
0
g*= —?(1-}) (1 +402 I%) (45b)
Wo

from which, by introducing into Eqgs. (33),

2 2,42
o= ";2‘”0 (462)
@ Jo
c=2 {1+a2;(2) (1—«;3)} (46b)

In view of these results, it is found that the eigenvalue
problem [Eq. (43)] admits the oo? solutions
A, #0,

A;=0, tanp =v/p (47a)

A =0, A3#0, tang =v/q (47b)

Equations (47) show that the spatial frequencies p and q are
equal in that they are the solution of the same characteristic
equation and, furthermore, they coincide with the eigenvalues
A of the out-of-plane motion. Therefore, it emerges from
Eqgs. (45a) and (38) that out-of-plane and in-plane frequencies
up to order « verify the relation wj=0%— 1. Moreover, from
Eqgs. (47), it appears that the harmonics in p and g are uncou-
pled. By accounting for Eqs. (46) and (47), we find that the
vibration modes [Eqs. (32)] are

2.2
uy(s) = — x zwoA, sinps (48a)
p
Vvo(s) = A, sinps (48b)
or
Wo .
uy(s) = 7A3 sings (49a)
Vo(s) = A, sings (49b)

In both cases, it ensues that uy(s)/vy(s) = const.

Equations (48) show that because of the presence of o? in
Eq. (48a) the two components of motion are weakly coupled
and, besides, the transverse component prevails over the axial
component. For this reason, we shall refer to Eqgs. (48) as
prevalently transverse eigenfunctions. Because of Eq. (45a),
the first vibration modes associated with values of p of order
0(1) correspond to frequencies wg of the same order.

From Eqgs. (49), it ensues that uy(s)/v(s) = wo/2 and, there-
fore, the longitudinal component of the motion is dominant
with respect to the transverse one since frequencies are of
order O(a~"). This is seen from Eq. (45b) if one considers that
the first ¢ is of order ©(1). Consequently, these modal shapes
will be referred to as prevalently longitudinal eigenfunctions,
which are characterized by higher values of the frequencies in
comparison with the prevalently transverse ones associated
with the same values of p.

In conclusion, in both cases the coupling between the two
components of motion due to the Coriolis forces is rather
weak.

Asymptotic Solution of the General Equations of Motion

Let us consider the linearized equations of the in-plane
motion [Eqs. (4a) and (4b)] and the corresponding boundary
conditions [Egs. (5a-5d)] where 8=0.

An asymptotic solution for o2—0 is sought. To this end,
attention is concentrated on modal shape wavelengths of order
0(1) for which u” =0(u) and v” =0O(v) and a distinction is
made between two cases according to the value of w:

1) w=0(1): In this case, frequencies are of the same order as
those of the transverse oscillations of a string. ii=O(u),
i =0(u), and similarly for v.

2) w= O(a~"): In this case, frequencies are of the same order
as those of the longitudinal oscillations of a string.
i = O(a~ ), it=O(a'u), and similarly for v.

The two cases are treated separately.

Transverse Type Modes

By performing a series expansion in terms of the perturba-
tion parameter o, we may write the solution of Eqs. (4a) and
(4b) as

U = Uy + oPuy (50a)
vV =Vy+ azvl (50b)

from which the perturbation equations with relevant
boundary conditions are derived:

Order o°:
ug=0 (630
u(0,t)=0 (52a)
ug(1,t)=0 (52b)
Order o?:
—2V—ui=0 (53a)
Vo= [f(s)vl =0 (53b)
u,(0,£)=0 (54a)
vo(0,2)=0 (54b)
—2v9(1,t) +yu{(1,t)=0 (54¢)
Vo(L,D) +vf(Dvg(l,t)=0 (54d)

The solution of Egs. (51) and (52) furnishes uy(s,#) =0 and,
therefore, u = O(a?). Equation (53b) describes the vibrations
of a string under variable tension f(s) and admits a solution of
the type

vo(s, 1) = vo(s) cos{wt + ¢) (55)

where vy(s) and « have to be determined by imposing the
boundary conditions [Egs. (54b) and (54d)]. If f(s) is approx-



imated with a constant value f,, for instance, its average value,
the solution is given by vy(s)=A sinps. The associated value
of the frequencies is

wo=fop (56)
where p is the solution of the characteristic equation
tanp =vy/p

By performing integrations on Eq. (53a) and by using the
characteristic equation and appropriate boundary conditions,
we obtain u(s,¢). Therefore, at the present level of the pertur-
bation procedure, the solution reads

u(s,t) = —2a? % A sinps sin(wof +¥) (57a)

v(s,t)= A sinps cos(wof + ) (57b)

Within this approximation, the following results have been
achieved.

1) The frequency coincides with that of the transverse oscil-
lations of a string and it is not modified by the longitudinal
motion.

2) The amplitude of the longitudinal displacement u(s,?) is
small of order O(¢?) in comparison with the transverse one.

3) The displacement components u(s,?) and v(s,?) oscillate
with a phase difference of /2.

Note that the frequencies and the modal shapes coincide
with those given by the series expansion of the exact solution
of the coupled oscillations with constant stress.

The employed perturbation procedure is susceptible to a
useful interpretation that helps understanding of the mechani-
cal behavior of the system. The equation that governs the most
important aspects of the phenomenon is Eq. (53b), which, as
previously stated, corresponds to a purely transverse motion.
Equation (53a) represents the equilibrium condition in the
longitudinal direction of the string where u{ and v, are,
respectively, proportional to the elastic reaction and to the
longitudinal component of the Coriolis force generated by the
transverse motion. A stress increment, which is proportional
to the linearized stretching u{, arises in the string to balance,
on the section of abscissa s, the Coriolis’ forces acting on the
cable from the current section up to the free end as well as the
Coriolis’ force on the satellite. It can be seen that the stress
increment is small in comparison with the prestress.

At the next order, which is not examined here, the longitudi-
nal displacements appear in the transverse equilibrium equa-
tion by producing a Coriolis’ force proportional to &, respon-
sible for a small frequency correction. In conclusion, the
procedure shows that in the prevalently transverse motion the
axial displacement of the cable represents only a secondary
aspect of the phenomenon if the cable is characterized by
sufficiently high axial rigidity.

Longitudinal Type Modes

In this case, it is convenient to modify the time scale by
introducing a new variable 7=a~'f/. It is, therefore,
wt = war = &1 where @ =wa = 0(1). In the new time scale, it is
du(s, 1)/8r=0(au) = O(u), d*u(s, 7)/97* = 0(@*u) = O(u).

By expanding « and v in series of a, i.e.,

U = Uy+au (58a)

Vv = ygtav (58b)

we obtain the relevant perturbation equations through stan-
dard steps. By solving the equations and coming back to
variable ¢, we obtain

u(s,t)= A sings sin(wf +y) (59a)

v(s,t)= (2/w) A sings cos(wt + ) (59b)

where w? = g%/o? and q satisfies the characteristic equation tan
g=v/q. It is interesting to observe that the characteristic
equation coincides with Eqs. (47b), Egs. (59) are in accor-
dance with Egs. (49), and, besides, «? is a good approximation
of Eq. (45b) since w3 1. Hence, in this case too, the solution
previously obtained is recovered.

Numerical Results

The main results presented here regard the analysis of a TSS
with m,> my; some results relative to systems with equal con-
centrated masses will be illustrated at the end of the section.
Let us assume the orbital angular velocity n?=
1.35-10-% 52, orbital radius ¢ =6657 km, SS mass m; =10
kg, satellite mass m,= 500 kg, tether mass u=15.76- 1073 kg/
m, and tether cross section A =4-10~% m2, Young’s modulus
E =7-10'N/m?, and tether length fis a variable. Two systems
are analyzed in detail corresponding to f=20 and 100 km, for
which nondimensional parameters assume the values
o?=1.111-10"%, §=0.001152, v=0.2304, §=0.0055, and
a?=2.777-10%, 8=0.00576, y=1.152, 6=0.0078, respec-
tively. The analysis has been performed by referring to the
solution reported in the third section and results are compared
with those of the asymptotic solution.

Table 1 collects the in-plane frequencies for =100 km
corresponding to three values of f;, namely, the lowest
(fimin=2.585), the average (f,,=3.574), and the largest
(finax =4.062) value of f(s). It is noticed that, whereas wo
usually grows with fy, the values of w=wy+ ew; are practically
independent of f;. Besides, the corrections w; relative to the
average value of f(s) are very small and decrease with the
mode number, thus giving w = wy. Similar results are obtained
for a length of 20 km.!3

A hypothesis that permits simplification of the numerical
analysis consists in assuming that the SS mass is infinite,
which implies 8=0. Under this assumption, apart from the
first modes, results change very little. For decreasing lengths,
the difference between results corresponding to 8=0and 8#0
tends to disappear.

Numerical results, confirmed by the asymptotic analysis,
show that the vibration modes are characterized by a weak
coupling between the two components of motion u(s) and
vo(s), and, therefore, they are of prevalently transversal or
longitudinal type. In particular, among the first modes, most
are of transversal type except for a few, for instance, i =11,
37, ... for =100 km or i =13, ... for =20 km. The corre-
sponding frequencies wp grow with f; in the prevalently
transversal modes since they are related to the geometric stiff-
ness or they remain practically constant in the prevalently
longitudinal ones because of their dependence on EA (see
Table 1). It is found that harmonics with circular frequency p
dominate over those in g in the prevalently transversal modes,
whereas the opposite occurs in the prevalently longitudinal
modes. This has been pointed out by the asymptotic analysis
according to which transverse modes contain only harmonics
in p [Eqs. (48) and (57)] and longitudinal modes contain only

Table 1 Time frequencies of in-plane oscillations (/=100 km)

Smin Jav Smax

Mode wo w wg w wo W

1 1.467 1.819 1.725 1.794 1.840 1.797
2 5.590 7.046 6.577 6.905 7.018 6.900
3 10.426 12.672 12.265 12.475 13.088  12.488
4 15.404 18.534 18.122 18.269 19.338  18.299
5
1
7

20.426 24.480 24.030 24.143 25.643 24.187
54.559 54.559 54.559 54.555 54.559  54.559
207.883 207.883 207.883 207.883 207.883 207.883




those in g [Eqs. (49) and (59)]. From this, it follows that the
motion components uy(s) and vy(s) can be assumed propor-
tional, with constant ratio equal to ¢, and c,, respectively.

Figures 2 show plots of the transversal and longitudinal
displacements relative to mode numbers 1-4, 11, and 37 for
¢=100 km and mode numbers 1-5 and 13 for £=20 km,
evaluated for fy=f,, in both cases. The values of the ratio
uy/ v, reported in Figs. 2 confirm that the motion components
are practically uncoupled. The first modes in Figs. 2a and 2b
are of a pendular type, whereas the subsequent modes are
similar to those of a vibrating string, except for the presence of
a small displacement at the end s =1 where the satellite is
attached; also at s =0 a small displacement of the SS occurs,
especially for great lengths of the tether. The behavior of uy(s)
at prevalently longitudinal modes is similar to that of vy(s) at
corresponding prevalently transversal ones, although wg is
much higher.

The values of p and q are collected in Table 2 for £= 100 km.
Each frequency p of the prevalently transverse modes is
matched by one frequency g of the prevalently longitudinal
modes, and, therefore, the wavelengths of the two modes are
approximately the same. These spatial frequencies are approx-
imately multiples of , except for the first modes. It is found
that these values are independent of the choice of the constant
value f,, according to Eqs. (47). Besides, they are practically
the same as frequencies A of out-of-plane modes, also listed in
Table 2.

Previous results regarding the weak coupling between uy(s)
and v(s) are confirmed by evaluating the kinetic and potential
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1) uy/v, = -1.2E-3
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Fig. 2 In-plane modal shapes: a) =100 km; b) £=20 km.

Table 2 Time and spatial frequencies of in-plane and out-
of-plane oscillations (fo = fav, £= 100 km)

In-plane oscillations Out-of-plane oscillations

Mode w p/xw q/w Q N7
1 1.794  0.289 0.007 2.006 0.289

2 6.905 1.103 0.034 6.587 1.103

3 12.457 2.056 0.065 12.263 2.056

4 18.269 3.038 0.096 18.119  3.038

5 24.143  4.029 0.127 24.027 4.029
10 53.807 9.013 0.285 53.754 9.013
11 54.559 9.148 0.289 59.724 10.012
12 59.758 10.012 0.317 65.680 10.823

37 207:883 34.855 1.103 214.734 36.003

energy terms present in Eq. (24). Table 3 shows that the energy
terms relative to uo(s) are small in comparison with those
relative to vy(s) in the prevalently transverse modes, whereas
they become dominant in the prevalently longitudinal modes.

Figure 3 shows a plot of the time frequencies vs the mode
number for different lengths of the tether. It is apparent that,
for each value of the length, the behavior is practically linear,
with the exception of the first modes; besides, the time fre-
quencies tend to be independent of the length as it increases.
This is confirmed by considering the perturbation equation
[Eq. (53b)] (no gyroscopic forces) and Eq. (8). It is seen that
for f— o, f(s)—3(s —s%)/2, i.e., the tension is length indepen-
dent; consequently, time frequencies tend to be a limit value
different from zero.

By enlarging the abscissa scale, we notice that the original
straight line associated with each value of the length translates
to parallel paths by correspondence with mode numbers
i=11, 37, ... for £=100 km or i =13, ... for {=20 km; these
jumps are associated with prevalently longitudinal modes.
Figure 4 and Table 2 illustrate this situation together with the
behavior of out-of-plane time frequencies & (straight lines in
Fig. 4). Note that the amount of the translation, measured
along the horizontal line, is equal to one mode and the same
difference occurs between in-plane and out-of-plane spatial
frequencies.

The coefficients aj relative to the shape corrections of the
eigenfunctions of in-plane vibrations have been determined by
solving the appropriate system of equations. It is found that
these equations are practically uncoupled since the ratio be-
tween out-of-diagonal and diagonal coefficients is at the most
of order ©(10~3), because the wavelengths of the eigenfunc-
tions are approximately multiples of x. Table 4 shows the
values of a;; calculated by considering for f;, the average value
of f(s). It is apparent that these values rapidly decrease start-
ing from the mode to be corrected so that, in the analysis, it is
sufficient to consider a narrow band around the mode in
question. Similar results are obtained for out-of-plane motion
(see Ref. 15).

Results obtained so far are compared with those illustrated
in Ref. 10. The present solution depends on three nondimen-
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Fig. 3 In-plane time frequencies for different lengths of the tether.

Table 3 Energy contributions of up and v (/= 100 km)

Mode Kinetic 2o Potential #g Kinetic vo Potential vo

1 391E-7 1.16E—-3 2.90E—1 8.62E—1
2 7.06E—9 3.05SE—4 7.60E -2 3.29E+0
3 1.09E—-9 1.64E—4 4.08E—2 6.13E+0
4 337E-10 1.11E-4 2.76E—-2 9.06E+0
5 1.46E—10 8.35E-5 2.08E—-2 1.20E+1
11 9.16E—-3 2.712E+1 1.23E-5 3.68E—35
37 241E-3 1.04E+2 2.23E-7 9.65E—-6




Table 4 Coefficients aj; of the shape corrections of in-plane modes (£=100 km)

Mode j=3 Jj—=2 J—1 J+1 Jj+2 j+3
1 — N - —6.56E—~2 9.44E—3 —3.21E-3
2 I - 1.06E—2 —9.44E-2 1.83E-2 -692E-3
3 e —881E—4 4.66E—-2 —1.36E—1 230E—2 —8.55E-3
4 2.86E—4 —5.26E—3 9.06E—2 -1.76E—1 2.78E—~2 —1.00E—2
5 1.47E—3 —1.13E-2 1.32E-1 -2.17E-1 3.28E-2 —1i.15E-2
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Fig. 4 Time frequencies of in-plane and out-of-plane oscillations.

Table 5 In-plane and out-of-plane frequencies
(2=1.111-10"3, =0, y=0.2)

Present theory Reference 10

Mode wo W Qo Q w Q

1.731  1.733  1.999 2.000 1.732 2.000
12.816 12.780 12.854 12.819 12.776 12.815
25.259 25.241 25.279 25.261 25.174 25.193
37.784 37.771 37.797 37.784 37.760 37.773
50.329 50.319 50.339 50.329 50.305 50.315

wnoH W —

Table 6 In-plane and out-of-plane frequencies
(a2=1.111-10-5, =0, y=1)

Reference 10
w Q

1.732  2.000
6.707 6.782
12.742 12.782
18.915 18.942
25.127 25.147

Present theory
Mode wo [2) Qo Q

1.721 1.742  1.990 2.000
6.851 6.750 6.294 6.823
12.875 12.811 12.913 12.850
19.059 19.014 19.085 19.040
25.291 25.256 25.310 25.276

[V N e S

Table 7 In-plane frequencies and displacements (¢=20 km)

8=0.001152, y=0.23 B=v=0.001152 B=v=0.2304
Mode w | vi/Vmax | | v2/Vmax | %) | v1,2/ Vmax | w | v1,2/ Vmax |
1 1.738 5.58E-3 1.0 1.728 1.0 1.742 1.0
2 11.993 3.58E—4 7.15E-2 113.385 3.66E—4 8.341 7.00E-2
3 23.644 1.82E—4 3.64E—2  226.736 1.83E—4 16.191 3.62E—2
4 35.368 1.21E—4 243E-2 340.095 1.22E—4 24.155 2.43E-2
5 47.112 0.92E—4 1.83E—2 453.455 0.92E-—4 32.142 1.82E-2

sional parameters o?, 3, v [Egs. (6)], whereas the solution in
Ref. 10 depends on the unique parameter . This is because, in
were neglected, thus implying the transversal modes to be
independent of o?. On the other hand, the solution in Ref. 10
is more accurate than the present one since Legendre polyno-
mials are employed. Tables 5 and 6 collect the first five in-
plane w and out-of-plane @ frequencies of two systems with
a?=1.111-10"5, =0, and y=0.2 and 1, respectively. When
v=0.2, it is seen that even zeroth-order frequencies wy and Qo
are in good accord with result of Ref. 10; the agreement is far
better for first-order frequencies. When v = 1, the approxima-
tion is not as good, but still acceptable. For increasing v,
differences increase because the stress f(s) is no more slowly
variable, and, therefore, the hypothesis of applicability of the
perturbation method fails.

Finally, the influence of the lumped masses m, and m; on
the frequencies and modal shapes of the system are analyzed.
Three TSS are considered and results relative to the in-plane

transversal modes are compared. The first system is one of
those previously considered, with m; = 10° kg, m,=500 kg,
whose modal shapes are plotted in Fig. 2b; in the second
system, m;=m,=10° kg, in the third one, m,= nm,=500 kg.
The mass of the tether is the same in the three cases. The
first-order frequencies w displayed in Table 7 are seen to be
strongly dependent on the increase of the masses because of
the increasing of the stress, except for the pendular mode
whose frequency is stress independent. The ratios between the
two end displacements v, and v, and the maximum displace-
ment Vmax are also shown in the table. It is seen that, starting
from the second mode, when the masses are both large, the
modal shapes are nearly sinusoidal with zero displacement at
the ends; when the masses decrease, the displacement becomes
noticeable. It is interesting to note that the displacement at one
end is nearly independent of the value of the mass at the other
end, especially for the higher modes. Finally, the first mode of
the TSS with equal masses is an approximation of the exact





