Gregory Kucherov
email: gregory.kucherov@univ-mlv.fr

Yakov Nekrich
email: yakov.nekrich@googlemail.com

Tatiana Starikovskaya
email: tat.starikovskaya@gmail.com

Cross-Document Pattern Matching

We study a new variant of the string matching problem called cross-document string matching, which is the problem of indexing a collection of documents to support an efficient search for a pattern in a selected document, where the pattern itself is a substring of another document. Several variants of this problem are considered, and efficient linear-space solutions are proposed with query time bounds that either do not depend at all on the pattern size or depend on it in a very limited way (doubly logarithmic). As a side result, we propose an improved solution to the weighted level ancestor problem.

Introduction

In this paper we study the following variant of the string matching problem that we call cross-document string matching: given a collection of strings (documents) stored in a "database", we want to be able to efficiently search for a pattern in a given document, where the pattern itself is a substring of another document. More formally, assuming we have a set of documents T 1 , . . . , T m , we want to answer queries about the occurrences of a substring T k [i..j] in a document T ℓ .

This scenario may occur in various situations when we have to search for a pattern in a text stored in a database, and the pattern is itself drawn from a string from the same database. In bioinformatics, for example, a typical project deals with a selection of genomic sequences, such as a family of genomes of evolutionary related species. A common repetitive task consists then in looking for genomic elements belonging to one of the sequences in some other sequences. These elements may correspond to genes, exons, mobile elements of any kind, regulatory patterns, etc., and their location (i.e. start and end positions) in the sequence of origin is usually known from a genome annotation provided by a sequence data repository (such as GenBank or any other). A similar scenario may occur in other application fields, such as the bibliographic search for example.

In this paper, we study different versions of the cross-document string matching problem. First, we distinguish between counting and reporting queries, asking respectively about the number of occurrences of T k [i..j] in T ℓ or about the occurrences themselves. The two query types lead to slightly different solutions. In particular, the counting problem uses the weighted level ancestor problem [START_REF] Farach | Perfect hashing for strings: Formalization and algorithms[END_REF][START_REF] Amir | Dynamic text and static pattern matching[END_REF] to which we propose a new solution with an improved complexity bound.

We further consider different variants of the two problems. The first one is the dynamic version where new documents can be added to the database. In another variant, called document counting and reporting, we only need to respectively count or report the documents containing the pattern, rather than counting or reporting pattern occurrences within a given document. This version is very close to the document retrieval problem previously studied (see [START_REF] Muthukrishnan | Efficient algorithms for document retrieval problems[END_REF] and later papers referring to it), with the difference that in our case the pattern is itself selected from the documents stored in the database. Finally, we also consider succinct data structures for the above problems, where we keep involved index data structure in compressed form.

Let m be the number of stored strings and n the total length of all strings. Our results are summarized below: (i) for the counting problem, we propose a solution with query time O(t + log log m), where t = min(log occ/ log log occ, log log |P |), P = T k [i..j] is the searched substring and occ is the number of its occurrences in T ℓ , (ii) for the reporting problem, our solution outputs all the occurrences in time O(log log m + occ), (iii) in the dynamic case, when new documents can be dynamically added to the database, we are able to answer counting queries in time O(log n) and reporting queries in time O(log n + occ), whereas the updates take time O(log n) per character, (iv) for the document counting and document reporting problems, our algorithms run in time O(log n) and O(t + ndocs) respectively, where t is as above and ndocs is the number of reported documents, (v) finally, we also present succinct data structures that support counting, reporting, and document reporting queries in cross-document scenario (see Theorems 6 and 7 in Section 4.3).

For problems (i)-(iv), the involved data structures occupy O(n) space. Interestingly, in the cross-document scenario, the query times either do not depend at all on the pattern length or depend on it in a very limited (doubly logarithmic) way.

Throughout the paper positions in strings are numbered from 1. Notation T [i..j] stands for the substrings T [i]T [i + 1] . . . T [j] of T , and T [i..] denotes the suffix of T starting at position i.

Preliminaries

Basic Data Structures

We assume a basic knowledge of suffix trees and suffix arrays.

Besides using suffix trees for individual strings T i , we will also be using the generalized suffix tree for a set of strings T 1 , T 2 , . . . , T m that can be viewed as the suffix tree for the string T 1 $ 1 T 2 $ 2 . . . T m $ m . A leaf in a suffix tree for T i is associated with a distinct suffix of T i , and a leaf in the generalized suffix tree is associated with a suffix of some document T i together with the index i of this document. We assume that for each node v of a suffix tree, the number n v of leaves in the subtree rooted at v, as well as its string depth d(v) can be recovered in constant time. Recall that the string depth d(v) is the total length of strings labelling the edges along the path from the root to v.

We will also use the suffix arrays for individual documents as well as the generalized suffix array for strings T 1 , T 2 , . . . , T m . Each entry of the suffix array for T i is associated with a distinct suffix of T i and each entry of the generalized suffix array for T 1 , . . . , T m is associated with a suffix of some document T i and the index i of the document the suffix comes from. We store these document indices in a separate array D, called document array, such that D[i] = k if the i-th entry of the generalized suffix array for T 1 , . . . , T m corresponds to a suffix coming from T k .

For each considered suffix array, we assume available, when needed, two auxiliary arrays: an inverted suffix array and another array, called the LCP-array, of longest common prefixes between each suffix and the preceding one in the lexicographic order.

Weighted Level Ancestor Problem

The weighted level ancestor problem, defined in [START_REF] Farach | Perfect hashing for strings: Formalization and algorithms[END_REF], is a generalization of the level ancestor problem [START_REF] Berkman | Finding level-ancestors in trees[END_REF][START_REF] Bender | The level ancestor problem simplified[END_REF] for the case when tree edges are assigned positive weights.

Consider a rooted tree T whose edges are assigned positive integer weights. For a node w, let weight(w) denote the total weight of the edges on the path from the root to w; depth(w) denotes the usual tree depth of w.

A weighted level ancestor query wla(v, q) asks, given a node v and a positive integer q, for the ancestor w of v of minimal depth such that weight(w) ≥ q (wla(v, q) is undefined if there is no such node w).

Two previously known solutions [START_REF] Farach | Perfect hashing for strings: Formalization and algorithms[END_REF][START_REF] Amir | Dynamic text and static pattern matching[END_REF] for weighted level ancestors problem achieve O(log log W) query time using linear space, where W is the total weight of all tree edges. Our data structure also uses O(n) space, but achieves a faster query time in many special cases. We prove the following result.

Theorem 1. There exists an O(n) space data structure that answers weighted ancestor query wla(v, q) in O(min(log g/ log log g, log log q)) time, where g = min(depth(wla(v, q)), depth(v) -depth(wla(v, q))).

If every internal node is a branching node, we obtain the following corollary.

Corollary 1. Suppose that every internal node in T has at least two children. There exists an O(n) space data structure that finds w = wla(v, q) in O(log n w / log log n w) time, where n w is the number of leaves in the subtree of w.

Our approach combines the heavy path decomposition technique of [START_REF] Amir | Dynamic text and static pattern matching[END_REF] with efficient data structures for finger searching in a set of integers. The proof is given in the Appendix.

3 Cross-document Pattern Counting and Reporting

Counting

In this section we consider the problem of counting occurrences of a pattern T k [i..j] in a document T ℓ .

Our data structure consists of the generalized suffix array GSA for documents T 1 , . . . , T m and individual suffix trees T i for every document T i .

For every suffix tree T ℓ we store a data structure of Theorem 1 supporting weighted level ancestor queries on T ℓ . We also augment the document array D with an O(n)-space data structure that answers queries rank(k, i) (number of entries storing k before position i in D) and select(k, i) (i-th entry from the left storing k). Using the result of [START_REF] Golynski | Rank/select operations on large alphabets: a tool for text indexing[END_REF], we can support such rank and select queries in O(log log m) and O(1) time respectively. Moreover, we construct a data structure that answers range minima queries (RMQ) on the LCP array: for any 1 ≤ r 1 ≤ r 2 ≤ n, find the minimum among LCP [r 1], . . . LCP [r 2]. There exists a linear space RMQ data structure that supports queries in constant time, see e.g., [START_REF] Bender | The lca problem revisited[END_REF]. An RMQ query on the LCP array computes the length of the longest common prefix of two suffixes GSA[r 1] and GSA[r 2], denoted LCP (r 1 , r 2).

Our counting algorithm consists of two stages. First, using GSA, we identify a position p of T ℓ at which the query pattern T k [i..j] occurs, or determine that no such p exists. Then we find the locus of T k [i..j] in the suffix tree T ℓ using a weighted ancestor query.

Let r be the position of T k [i..] in the GSA. We find indexes r 1 = select(ℓ, rank(r, ℓ)) and

r 2 = select(ℓ, rank(r, ℓ)+1) in O(log log m) time. GSA[r 1] (resp. GSA[r 2]
) is the closest suffix from document T ℓ that precedes (resp. follows) T k [i..] in the lexicographic order of suffixes. Observe now that T k [i..j] occurs in T ℓ if and only if either LCP (r 1 , r) or LCP (r, r 2) (or both) is no less than j -i + 1. If this holds, then the starting position

p of GSA[r 1] (respectively, starting position of GSA[r 2]) is the position of T k [i..j] in T ℓ . Once such a position p is found, we jump to the leaf v of T ℓ that contains the suffix T ℓ [p..].
The weighted level ancestor u = wla(v, (j

-i + 1)) is the locus of T k [i..j] in T ℓ . This is because T ℓ [p..p + j -i] = T k [i..j].
By Corollary 1, we can find node u in O(log n u / log log n u) time, where n u is the number of leaf descendants of u. Since u is the locus node of T k [i..j], n u is the number of occurrences of T k [i..j] in T ℓ . By Theorem 1, we can find u in O(log log(j -i + 1)) time.

Summing up, we obtain the following Theorem.

Theorem 2. For any 1 ≤ k, ℓ ≤ m and 1 ≤ i ≤ j ≤ |T k |, we can count the number of occurrences of T k [i..j] in T ℓ in O(t + log log m) time, where t = min(log occ/ log log occ, log log(j -i + 1)) and occ is the number of occurrences. The underlying indexing structure takes O(n) space and can be constructed in O(n) time.

Reporting

A reporting query asks for all occurrences of a substring T k [i..j] in T ℓ .

Compared to counting queries, we make a slight change in the data structures: instead of using suffix trees for individual documents T i , we use suffix arrays. The rest of the data structures is unchanged.

We first find an occurrence of T k [i..j] in T ℓ (if there is one) with the method described in Section 3.1. Let p be the position of this occurrence in T ℓ . We then jump to the corresponding entry r of the suffix array SA ℓ for the document T ℓ . Let LCP ℓ be the LCP-array of SA ℓ . Starting with entry r, we visit adjacent entries t of SA ℓ moving both to the left and to the right as long as LCP ℓ [t] ≥ j -i + 1. While this holds, we report SA ℓ [t] as an occurrence of T k [i..j]. It is easy to observe that the procedure is correct and that no occurrence is missing. As a result, we obtain the following theorem.

Variants of the Problem

Dynamic Counting and Reporting

In this section we focus on a dynamic version of counting and reporting problems, where the only dynamic operation consists in adding a document to the database 4 .

Recall that in the static case, counting occurrences of T k [i..j] in T ℓ is done through the following two steps (Section 3.1):

1. compute position p of some occurrence of T k [i..j] in T ℓ , 2. in the suffix tree of T ℓ , find the locus of string T ℓ [p..p + j -i], and retrieve the number of leaves in the subtree rooted at u.

For reporting queries (Section 3.2), Step 1 is basically the same, while Step 2 is different and uses an individual suffix array for T ℓ .

In the dynamic framework, we follow the same general two-step scenario. Note first that since Step 2, for both counting and reporting, uses data structures for individual documents only, it trivially applies to the dynamic case without changes. However, Step 1 requires serious modifications that we describe below.

Since the suffix array is not well-suited for dynamic updates, at Step 1 we will use the generalized suffix tree for T 1 , T 2 , . . . , T m hereafter denoted GST . For each suffix of T 1 , T 2 , . . . , T m we store a pointer to the leaf of GST corresponding to this suffix.

We maintain a dynamic doubly-linked list EL corresponding to the Euler tour of the current GST . Each internal node of GST is stored in two copies in EL, corresponding respectively to the first and last visits of the node during the Euler tour. Leaves of GST are kept in one copy. Observe that the leaves of GST appear in EL in the "left-to-right" order, although not consecutively.

On EL, we maintain the data structure of [START_REF] Bender | Two simplified algorithms for maintaining order in a list[END_REF] which allows, given two list elements, to determine their order in the list in O(1) time (see also [START_REF] Dietz | Two algorithms for maintaining order in a list[END_REF]). Insertions of elements in the list are supported in O(1) time too.

Furthermore, we maintain a balanced tree, denoted BT , whose leaves are elements of EL. Note that the size of EL is bounded by 2n (n is the size of GST) and the height of BT is O(log n). Since the leaves of GST are a subset of the leaves of BT , we call them suffix leaves to avoid the ambiguity.

Each internal node u of BT stores two kinds of information: (i) the rightmost and leftmost suffix leaves in the subtree of BT rooted at u, (ii) minimal LCP value among all suffix leaves in the subtree of BT rooted at u.

Finally, we will also need an individual suffix array for each inserted document T i .

We are now in position to describe the algorithm of Step 1. Like in the static case, we first retrieve the leaf of GST corresponding to suffix T k [i..]. To identify a position of an occurrence of T k [i..j] in T ℓ , we have to examine the two closest elements in the list of leaves of GST , one from right and from left, corresponding to suffixes of T ℓ . To find these two suffixes, we perform a binary search on the suffix array for T ℓ using order queries of [START_REF] Bender | Two simplified algorithms for maintaining order in a list[END_REF] on EL. This step takes O(log |T ℓ |) time.

We then check if at least one of these two suffixes corresponds to an occurrence of T k [i..j] in T ℓ . In a similar way to Section 3, we have to compute the longest common prefix between each of these two suffixes and T k [i..], and compare this value with (j -i+1). This amounts to computing the minimal LCP value among all the suffixes of the corresponding range.

This can be done in O(log n) time by using a standard range trees approach [?]: for any sublist of EL we can retrieve O(log n) nodes v i that cover it. The least among all minimal LCP values stored in nodes v i is the minimal LCP value for the specified range of suffixes.

The query time bounds are summarized in the following lemma. When a new node v is added to a suffix tree, the following updates should be done (in order):

(i) insert v at the right place of the list EL (in two copies if v is an internal node), (ii) rebalance the tree BT if needed, (iii) if v is a leaf of GST (i.e. a suffix leaf of BT), update LCP values and rightmost/leftmost suffix leaf information in BT , To see how update (i) works, we have to recall how suffix tree is updated when a new document is inserted. Two possible updates are creation of a new internal node v by splitting an edge into two (edge subdivision) and creating a new leaf u as a child of an existing node. In the first case, we insert the first copy of v right after the first copy of its parent, and the second copy right before the second copy of its parent. In the second case, the parent of u has already at least one child, and we insert u either right after the second (or the only) copy of its left sibling, or right before the first (or the only) copy of its right sibling.

Rebalancing the tree BT (update (ii)) is done using standard methods. Observe that during the rebalancing we may have to adjust the LCP and rightmost/leftmost suffix leaf information for internal nodes, but this is easy to do as only a constant number of local modifications is done at each level.

Update (iii) is triggered when a new leaf u is created in GST and added to EL. First of all, we have to compute the LCP value for u and possibly to update the LCP value of the next suffix leaf u ′ to the right of u in EL. This is done in O(1) time as follows. At the moment when u is created, we memorize the string depth of its parent D = d(parent(u)). Recall that the parent of u already has at least one child before u is created. If u is neither the leftmost nor the rightmost child of its parent, then we set LCP (u) = D and LCP (u ′) remains unchanged (actually it also equals D). If u is the leftmost child of its parent, then we set LCP (u) = LCP (u ′) and then LCP (u ′) = D. Finally, if u is the rightmost child, then LCP (u) = D and LCP (u ′) remains unchanged.

We then have to follow the path in BT from the new leaf u to the root and possibly update the LCP and rightmost/leftmost suffix leaf information for all nodes on this path. These updates are straightforward. Furthermore, during this traversal we also identify suffix leaf u ′ (as the leftmost child of the first right sibling encountered during the traversal), update its LCP value and, if necessary, the LCP values on the path from u ′ to the root of BT . All these steps take time O(log n).

Thus, updates of all involved data structures take O(log n) time per symbol. The following theorem summarizes the results of this section. Theorem 4. In the case when documents can be added dynamically, the number of occurrences of T k [i..j] in T ℓ can be computed in time O(log n) and reporting these occurrences can be done in time O(log n + occ), where occ is their number. The underlying data structure occupies O(n) space and an update takes O(log n) time per character.

Document Counting and Reporting

Consider a static collection of documents T 1 , . . . , T m . In this section we focus on document reporting and counting queries: report or count the documents which contain at least one occurrence of T k [i..j], for some 1 ≤ k ≤ m and i ≤ j.

For both counting and reporting, we use the generalized suffix tree, generalized suffix array and the document array D for T 1 , T 2 , . . . , T m . We first retrieve the leaf of the generalized suffix tree labelled by T k [i..] and compute its highest ancestor u of string depth at least j -i + 1, using the weighted level ancestor technique of Section 2.2. The suffixes of T 1 , T 2 , . . . , T m starting with T k [i..j] (i.e. occurrences of T k [i..j]) correspond then to the leaves of the subtree rooted at u, and vice versa. As shown in Section 3.1, this step takes O(t) time, where t = min(log occ/ log log occ, log log(j -i + 1)) and occ is the number of occurrences of T k [i..j] (this time in all documents).

Once u has been computed, we retrieve the interval [lef t(u)..right(u)] of ranks of all the leaves under interest. We are then left with the problem of counting/reporting distinct values in D[lef t(u)..right(u)]. This problem is exactly the same as the color counting/ color reporting problem that has been studied extensively (see e.g., [START_REF] Gagie | Colored range queries and document retrieval[END_REF] and references therein).

For color reporting queries, we can use the solution of [START_REF] Muthukrishnan | Efficient algorithms for document retrieval problems[END_REF] based on an O(n)-space data structure for RMQ, applied to (a transform of) the document array D. The pre-processing time is O(n). Each document is then reported in O(1) time, i.e. all relevant documents are reported in O(ndocs) time, where ndocs is their number. The whole reporting query then takes time O(t + ndocs) for t defined above.

For counting, we use the solution described in [START_REF] Bozanis | New upper bounds for generalized intersection searching problems[END_REF]. The data structure requires O(n) space and a color counting query takes O(log n) time. The following theorem presents a summary. Theorem 5. We can store a collection of documents T 1 , . . . , T m in a linear space data structure, so that for any pattern P = T k [i..j] all documents that contain P can be reported and counted in O(t + ndocs) and O(log n) time respectively. Here t = min(log occ/ log log occ, log log |P |), ndocs is the number of documents that contain P and occ is the number of occurrences of P in all documents.

Compact Counting, Reporting and Document Reporting

In this section, we show how our reporting and counting problems can be solved on succinct data structures [START_REF] Navarro | Compressed full-text indexes[END_REF].

Reporting and Counting. Our compact solution is based on compressed suffix arrays [START_REF] Grossi | Compressed suffix arrays and suffix trees with applications to text indexing and string matching (extended abstract)[END_REF]. A compressed suffix array for a text T uses |CSA| bits of space and enables us to retrieve the position of the suffix of rank r, the rank of a suffix T [i..], and the character T [i] in time Lookup(n). Different trade-offs between space usage and query time can be achieved (see [START_REF] Navarro | Compressed full-text indexes[END_REF] for a survey).

Our data structure consists of a compressed generalized suffix array CSA for T 1 , . . . , T m and compressed suffix arrays CSA i for each document T i . In [START_REF] Sadakane | Compressed suffix trees with full functionality[END_REF] In [START_REF] Sadakane | Succinct data structures for flexible text retrieval systems[END_REF], it was shown how to report, for any 1 ≤ r 1 ≤ r 2 ≤ n, all distinct documents T f such that at least one suffix of T f occurs at position r, r 1 ≤ r ≤ r 2 , of the generalized suffix array. The construction uses O(n + m log n m) additional bits, and all relevant documents are reported in O(Lookup(n) • ndocs) time, where ndocs is the number of documents that contain T k [i..j]. Summing up, we obtain the following result.

Theorem 3 .

 3 All the occurrences of T k [i..j] in T ℓ can be reported in O(log log m + occ) time, where occ is the number of occurrences. The underlying indexing structure takes O(n) space and can be constructed in O(n) time.

Lemma 1 .

 1 Using the above data structures, counting and reporting all occurrences of T k [i..j] in T ℓ can be done respectively in time O(log n) and time O(log n + occ), where occ is the number of reported occurrences. We now explain how the involved data structures are updated. Suppose that we add a new document T m+1 . Extending the generalized suffix tree by T m+1 is done in time O(|T m+1 |) by McCreight's or Ukkonen's algorithm, i.e. in O(1) amortized time per symbol.

Theorem 6 .

 6 it was shown that using O(n) extra bits, the length of the longest common prefix of any two suffixes can be computed in O(Lookup(n)) time. Besides, the ranks of any two suffixes T k [s..] and T ℓ [p..] can be compared in O(Lookup(n)) time: it suffices to compareT ℓ [p + f] with T k [s + f] for f = LCP (T k [s..], T ℓ [p..]).Note that ranks of the suffixes of T ℓ starting with T k [i..j] form an interval [r 1 ..r 2]. We use a binary search on the compressed suffix array of T ℓ to find r 1 and r 2 . At each step of the binary search we compare a suffix ofT ℓ with T k [i..]. Therefore [r 1 ..r 2] can be found in O(Lookup(n) • log n) time. Obviously, the number of occurrences of T k [i..j] in T ℓ is r 2 -r 1 .To report the occurrences, we compute the suffixes of T ℓ with ranks in interval[r 1 ..r 2]. All occurrences of T k [i..j] in T ℓ can be counted in O(Lookup(n)•log n) timeand reported in O((log n+occ)Lookup(n)) time, where occ is the number of those. The underlying indexing structure takes 2|CSA| + O(n + m log n m) bits of memory. Document Reporting Again, we use a binary search on the generalized suffix array to find the rank interval [r 1 ..r 2] of suffixes that start with T k [i..j]. This can be done in O(Lookup(n) • log n) time.

Theorem 7 .

 7 All documents containing T k [i..j] can be reported in O((log n + ndocs)Lookup(n)) time, where ndocs is the number of those. The underlying indexing structure takes 2|CSA| + O(n + m log n m) bits of space.

document deletions are also possible to support but require some additional constructions that are left to the extended version of this paper

Acknowledgments: T.Starikovskaya has been supported by the mobility grant funded by the French Ministry of Foreign Affairs through the EGIDE agency and by a grant 10-01-93109-CNRS-a of the Russian Foundation for Basic Research. Part of this work has been done during a one-month stay of Y.Nekrich at the Marne-la-Vallée University supported by the BEZOUT grant of the French government. The authors also would like to thank Tsvi Kopelowitz for fruitful discussions and valuable comments.

Appendix: Proof of Theorem 1

Here we prove Theorem 1. We use the heavy path decomposition technique of [START_REF] Amir | Dynamic text and static pattern matching[END_REF].

A path π in T is heavy if every node u on π has at most twice as many nodes in its subtree as its child v on π. A tree T can be decomposed into paths using the following procedure: we find the longest heavy path π r that starts at the root of T and remove all edges of π r from T . All remaining vertices of T belong to a forest; we recursively repeat the same procedure in every tree of that forest.

We can represent the decomposition into heavy paths using a tree T. Each node v j in T corresponds to a heavy path π j in T . A node v j is a child of a node v i in T if the head of π j (i.e., the highest node in π j) is a child of some node u ∈ π i . Some node in π i has at least twice as many descendants as each node in π j ; hence, T has height O(log n). O(n log n)-Space Solution. Let p j denote a root-to-leaf path in T. For a node v in T let weight(v) denote the weight of the head of π, where π is the heavy path represented by v in T. We store a data structure D(p j) that contains the values of weight(v) for all nodes v ∈ p j . D(p j) contains O(log n) elements; hence, we can find the highest node v ∈ p j such that weight(v) ≥ q in O(1) time. This can be achieved by storing the weights of all nodes from p j in the q-heap [START_REF] Fredman | Trans-dichotomous algorithms for minimum spanning trees and shortest paths[END_REF].

For every heavy path π j , we store the data structure E(π j) from [START_REF] Andersson | Dynamic ordered sets with exponential search trees[END_REF] that contains the weights of all nodes u ∈ π j and supports the following queries: for an integer q, find the lightest node u ∈ π j such that weight(u) ≥ q. Using Theorem 1.5 in [START_REF] Andersson | Dynamic ordered sets with exponential search trees[END_REF], we can find such a node u ∈ π j in O(log n ′ / log log n ′) time where

Moreover, we can also find the node u in O(log log q) time; we will show how this can be done in the full version of this paper. Thus E(π j) can be modified to support queries in O(min(log n ′ / log log n ′ , log log q)) time.

For each node u ∈ T we store a pointer to the heavy path π that contains u and to the corresponding node v ∈ T.

A query wla(v, q) can be answered as follows. Let v denote the node in T that corresponds to the heavy path containing v. Let p j be an arbitrary root-to-leaf path in T that also contains v. Using D(p j) we can find the highest node u ∈ p j , such that weight(u) ≥ q in O(1) time. Let π t denote the heavy path in T that corresponds to the parent of u, and π s denote the path that corresponds to u. If the weighted ancestor wla(v, q) is not the head of π s , then wla(v, q) belongs to the path π t . Using E(π t), we can find u = wla(v, q) in O(min(log n ′ / log log n ′ , log log q)) time where

All data structures E(π i) use linear space. Since there are O(n) leaves in T and each path

Lemma 2. There exists an O(n log n) space data structure that finds the weighted level ancestor u in O(min(log n ′ / log log n ′ , log log q)) time.

O(n)-Space Solution. We can reduce the space from O(n log n) to O(n) using a micro-macro tree decomposition. Let T 0 be a tree induced by the nodes of T that have at least log n/8 descendants. The tree T 0 has at most O(n/ log n) leaves. We construct the data structure described above for T 0 ; since T 0 has O(n/ log n) leaves, its heavy-path tree T 0 also has O(n/ log n) leaves. Therefore all structures D(p j) use O(n) words of space. All E(π i) also use O(n) words of space. If we remove all nodes of T 0 from T , the remaining forest F consists of O(n) nodes. Every tree T i , i ≥ 1, in F consists of O(log n) nodes. Nodes of T i are stored in a data structure that uses linear space and answers weighted ancestor queries in O(1) time. This data structure will be described later in this section. Suppose that a weighted ancestor wla(v, q) should be found. If v ∈ T 0 , we answer the query using the data structure for T 0 . If v belongs to some T i for i ≥ 1, we check the weight w r of root(T i). If w r ≤ q, we search for wla(v, q) in T i . Otherwise we identify the parent v 1 of root(T i) and find wla(v 1 , q) in T 0 . If wla(v 1 , q) in T 0 is undefined, then wla(v, q) = root(T i).

Data Structure for a Small Tree. It remains to describe the data structure for a tree T i , i ≥ 1. Since T i contains a small number of nodes, we can answer weighted level ancestor queries on T i using a look-up table V . V contains information about any tree with up to log n/8 nodes, such that node weights are positive integers bounded by log n/8. For any such tree T , for any node v of T , and for any integer q ∈ [1, log n/8], we store the pointer to wla(v, q) in T . There are O(2 log n/4) different trees T (see e.g., [START_REF] Bender | The level ancestor problem simplified[END_REF] for a simple proof); for any T , we can assign weights to nodes in less than (log n/8)! ways. For any weighted tree T there are at most (log n) 2 /64 different pairs v, q. Hence, the table V contains O(2 log n/4 (log n) 2 (log n/8)!) = o(n) entries. We need only one look-up table V for all mini-trees T i .

We can now answer a weighted level ancestor query on T i using reduction to rank space. The rank of a node u in a tree T is defined as rank(u, T) = |{ v ∈ T | weight(v) ≤ weight(u) }|. The successor of an integer q in a tree T is the lightest node u ∈ T such that weight(u) ≥ q. The rank rank(q, T) of an integer q is defined as the rank of its successor. Let rank(T) denote the tree T in which the weight of every node is replaced with its rank. The weight of a node u ∈ T is not smaller than q if an only if rank(u, T) ≥ rank(q, T). Therefore we can find wla(v, q) in a small tree T i , i ≥ 1, as follows. For every T i we store a pointer to T i = rank(T i). Given a query wla(v, q), we find rank(q, T i) in O(1) time using a q-heap [START_REF] Fredman | Trans-dichotomous algorithms for minimum spanning trees and shortest paths[END_REF]. Let v ′ be the node in T i that corresponds to the node v. We find u ′ = wla(v ′ , rank(q, T i)) in T i using the table V . Then the node u in T i that corresponds to u ′ is the weighted level ancestor of v.