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Variable Metric Forward-Backward algorithm for minimizing

the sum of a differentiable function and a convex function

Emilie Chouzenoux, Jean-Christophe Pesquet and Audrey Repetti ∗

Abstract

We consider the minimization of a function G defined on R
N , which is the sum of a

(non necessarily convex) differentiable function and a (non necessarily differentiable)
convex function. Moreover, we assume that G satisfies the Kurdyka- Lojasiewicz prop-
erty. Such a problem can be solved with the Forward-Backward algorithm. However,
the latter algorithm may suffer from slow convergence. We propose an acceleration
strategy based on the use of variable metrics and of the Majorize-Minimize princi-
ple. We give conditions under which the sequence generated by the resulting Variable
Metric Forward-Backward algorithm converges to a critical point of G. Numerical re-
sults illustrate the performance of the proposed algorithm in an image reconstruction
application.

1 Introduction

We consider the following problem:

Find x̂ ∈ Argmin G, (1)

where G : R
N → (−∞,+∞] is a coercive (i.e. lim‖x‖→+∞G(x) = +∞) function. In

addition, we assume that G can be split as

G = F +R, (2)

where F is a differentiable function and R is a proper lower semicontinuous convex
function. A standard approach in this context consists of using the proximal Forward-
Backward (FB) algorithm [1, 2], which generates a sequence (xk)k∈N by the following
iterations:

x0 ∈ R
N

For k = 0, 1, . . .⌊
yk = proxγkR

(xk − γk∇F (xk)),

xk+1 = xk + λk(yk − xk),

(3)

where, for every k ∈ N, (γk, λk) ∈ (0,+∞)2, ∇F (xk) is the gradient of F at xk, and
proxγkR

denotes the so-called proximity operator of γkR. Let us introduce the weighted
norm: (

∀x ∈ R
N

)
‖x‖U =

(
x⊤Ux

)1/2
, (4)

where U ∈ R
N×N is some symmetric positive definite matrix. Then, the proximity oper-

ator ( [3, Sec. XV.4], [4]) is defined as follows:
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Definition 1.1. Let ψ : R
N → (−∞,+∞] be a proper, lower semicontinuous, convex

function, let U ∈ R
N×N be a symmetric positive definite matrix, and let x ∈ R

N . The
proximity operator of ψ at x relative to the metric induced by U is the unique minimizer
of ψ+ 1

2‖ · −x‖2
U , and it is denoted by proxU,ψ(x). If U is equal to IN , the identity matrix

of R
N×N , then proxψ ≡ proxIN ,ψ is the proximity operator originally defined in [5].

When F is a convex function having an L-Lipschitzian gradient with L > 0, the
sequence (xk)k∈N

given by (3) converges to a solution to Problem (1), under the following
assumptions on the step lengths (γk)k∈N and the relaxation parameters (λk)k∈N [6, 7]:

• 0 < infl∈N γl ≤ supl∈N γl < 2L−1,

• (∀k ∈ N) 0 < inf l∈N λl ≤ λk ≤ 1.

The convergence properties of the FB algorithm have been recently extended to the case of
non-convex functions F andR in [8,9] when λk ≡ 1. The convergence results in [8,9] mainly
rely on the assumption that the objective function G satisfies the Kurdyka- Lojasiewicz
(KL) inequality [10]. The interesting point is that this inequality holds for a wide class of
functions. In particular, it is satisfied by real analytic functions, semi-algebraic functions
and many others [10–13].

In the case of large scale optimization problems such as those encountered in image
restoration, one major concern is to find an optimization algorithm able to deliver reliable
numerical solutions in a reasonable time. The FB algorithm is characterized by a low
computational cost per iteration. However, as many first-order minimization methods,
it may suffer from slow convergence [1]. Two families of acceleration strategies can be
distinguished in the literature. The first approach, adopted for example in the FISTA
method, relies on subspace acceleration [14–18]. In such methods, the convergence rate
is improved by using informations from previous iterates for the construction of the new
estimate. Another efficient way to accelerate the convergence of the FB algorithm is
based on a variable metric strategy [1, 19–24]. The underlying metric of FB is modified
at each iteration, giving rise to the so-called Variable Metric Forward-Backward (VMFB)
algorithm:

x0 ∈ R
N

For k = 0, 1, . . .⌊
yk = proxγ−1

k
Ak,R

(xk − γkA
−1
k ∇F (xk)),

xk+1 = xk + λk(yk − xk),

(5)

where, for every k ∈ N, Ak ∈ R
N×N is a symmetric positive definite matrix. On the one

hand, when Ak is the identity matrix, the FB algorithm (3) is recovered. On the other
hand, when R ≡ 0, Algorithm (5) corresponds to a preconditioned gradient algorithm. If
F is a twice differentiable convex function, the preconditioning matrix Ak is then usually
chosen as an approximation of the Hessian of F at xk. This amounts to performing a
change of variables leading to a function whose Hessian has more clustered eigenvalues
( [25, Sec.1.3.], [26, 27]). A convergence analysis of Algorithm (5) is provided in [23],
under the assumptions that F and R are convex functions and that there exists a positive
bounded sequence (ηk)k∈N such that, for every k ∈ N,

(∀x ∈ R
N ) (1 + ηk)(x⊤Ak+1x) ≥ x⊤Akx. (6)

More specific convergence results are available in the literature in the particular case when
R is the indicator function of a convex set [28–30]. However, in the aforementioned works,
the convergence study is limited to the case of a convex smooth function F . As pointed



3

out in [24], for an arbitrary matrix Ak, the proximal step in (5) is not explicit in general,
and sub-iterations are thus needed. Our contribution in this paper is to derive an inexact
version of the VMFB algorithm, based on majorize-minimize arguments. The convergence
of this algorithm is established for a non necessarily convex smooth function F .

The rest of the paper is organized as follows: Section 2 introduces the assumptions
made in the paper and presents the proposed inexact VMFB strategy. In Section 3,
we investigate the convergence properties of the proposed algorithm. Finally, Section 4
provides some numerical results and a discussion of the algorithm performance by means
of experiments concerning image recovery problems.

2 Proposed optimization method

2.1 Background and assumptions

Let us first recall some definitions and notations that will be used throughout the paper.

Definition 2.1. Let ψ be a function from R
N to (−∞,+∞]. The domain of ψ is domψ ={

x ∈ R
N | ψ(x) < +∞

}
. Function ψ is proper if domψ is nonempty. The level set of ψ

at height δ ∈ R is lev≤δ ψ = {x ∈ R
N | ψ(x) ≤ δ}.

Definition 2.2. [31, Def. 8.3], [32, Sec.1.3] Let ψ : R
N → (−∞,+∞] be a proper function

and let x ∈ domψ. The Fréchet sub-differential of ψ at x is the following set:

∂̂ψ(x) =




t ∈ R
N | lim inf

y→x
y 6=x

1

‖x− y‖
(
ψ(y) − ψ(x) − (y − x)⊤t

)
≥ 0




 .

If x 6∈ domψ, then ∂̂ψ(x) = ∅.
The sub-differential of ψ at x is defined as

∂ψ(x) =
{
t̂ ∈ R

N | ∃yk → x, ψ(yk) → ψ(x), tk ∈ ∂̂ψ(yk) → t̂
}
.

Recall that a necessary condition for x ∈ R
N to be a minimizer of ψ is that x is a

critical point of ψ, i.e. 0 ∈ ∂ψ(x). Moreover, if ψ is convex, this condition is sufficient.

Remark 2.1. Definition 2.2 implies that ∂ψ is closed [9]. More precisely, we have the
following property:
Let (yk, t̂k)k∈N be a sequence of Graph ∂ψ =

{
(x, t̂) ∈ R

N × R
N | t̂ ∈ ∂ψ(x)

}
. If

(
yk, t̂k

)

converges to
(
x, t̂

)
and ψ(yk) converges to ψ(x), then (x, t̂) ∈ Graph ∂ψ.

Let us introduce our notation for linear operators. SN denotes the space of symmetric
matrices of R

N×N . The Loewner partial ordering on R
N×N is defined as

(∀U1 ∈ R
N×N)(∀U2 ∈ R

N×N ) U1 < U2 ⇔ (∀x ∈ R
N ) x⊤U1x ≥ x⊤U2x.

In the remainder of this work, we will focus on functions F and R satisfying the
following assumptions:

Assumption 2.1.

(i) R : R
N → (−∞,+∞] is proper, lower semicontinuous and convex, and its restriction

to its domain is continuous.
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(ii) F : R
N → R is differentiable. Moreover, F has an L-Lipschitzian gradient on domR

where L > 0, i.e.

(
∀(x, y) ∈ (domR)2

)
‖∇F (x) −∇F (y)‖ ≤ L‖x− y‖.

(iii) G as defined by (2) is coercive.

Some comments on these assumptions which will be useful in the rest of the paper are
made below.

Remark 2.2.

(i) Assumption 2.1(ii) is weaker than the assumption of Lipschitz differentiability of F
usually adopted to prove the convergence of the FB algorithm [6, 9]. In particular,
if domR is compact and F is twice continuously differentiable, Assumption 2.1(ii)
holds.

(ii) According to Assumption 2.1(ii), domR ⊂ domF . Then, as a consequence of As-
sumption 2.1(i), domG = domR is a nonempty convex set.

(iii) Under Assumption 2.1, G is proper and lower semicontinuous, and its restriction to
its domain is continuous. Hence, due to the coercivity of G, for every x ∈ domR,
lev≤G(x)G is a compact set. Moreover, the set of minimizers of G is nonempty and
compact.

Assumption 2.2.

Function G satisfies the Kurdyka- Lojasiewicz inequality i.e., for every ξ ∈ R, and, for
every bounded subset E of R

N , there exist three constants κ > 0, ζ > 0 and θ ∈ [0, 1) such
that (

∀t(x) ∈ ∂G(x)
)

‖t(x)‖ ≥ κ|G(x) − ξ|θ,
for every x ∈ E such that |G(x) − ξ| ≤ ζ (with the convention 00 = 0).

Note that other forms of the KL inequality can be found in the literature [12,33].

2.2 Majorize-Minimize metric

Some matrices serving to define some appropriate variable metric will play a central role in
the algorithm proposed in this work. More specifically, let (xk)k∈N be some given sequence
of domR and let (Ak)k∈N be a sequence of matrices of SN that fulfill the following so-called
majorization conditions:

Assumption 2.3.

(i) For every k ∈ N, the quadratic function defined as

(∀x ∈ R
N ) Q(x, xk) = F (xk) + (x− xk)

⊤∇F (xk) +
1

2
(x− xk)

⊤Ak(x− xk),

is a majorant function of F at xk on domR, i.e.,

(∀x ∈ domR) F (x) ≤ Q(x, xk).

(ii) There exists (ν, ν) ∈ (0,+∞)2 such that

(∀k ∈ N) ν IN � Ak � ν IN .
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The following lemma points out the existence of such a sequence of matrices:

Lemma 2.1. Suppose that Assumption 2.1 holds and, for every k ∈ N, let Ak be equal
to L IN , where L > 0 is the Lipschitz constant of ∇F . Then, (Ak)k∈N satisfies Assump-
tion 2.3 with ν = ν = L.

Proof. Under Assumption 2.1, domR is a convex set and, since F is Lipschitz-differentiable
on domR, the Descent Lemma [25, Prop.A.24] applies, yielding:

(
∀(x, y) ∈ (domR)2

)
F (x) ≤ F (y) + (x− y)⊤∇F (y) +

L

2
‖x− y‖2.

Consequently, when (∀k ∈ N) Ak = L IN , Assumption 2.3(i) is satisfied while Assumption
2.3(ii) obviously holds..

Although the above lemma provides a simple choice for sequence (Ak)k∈N, it is worth
noticing that other choices have been investigated in the literature [34, 35] for some sub-
classes of functions F .

2.3 Inexact Variable Metric Forward-Backward algorithm

In general, the proximity operator relative to an arbitrary metric does not have a closed
form expression. To circumvent this difficulty, we propose to solve Problem 1 by intro-
ducing the following inexact version of the Variable Metric FB method:

τ ∈ (0,+∞), x0 ∈ domR

For k = 0, 1, . . .

Find yk ∈ R
N and r(yk) ∈ ∂R(yk) such that

R(yk) + (yk − xk)
⊤∇F (xk) + γ−1

k ‖yk − xk‖2
Ak

≤ R(xk),

‖∇F (xk) + r(yk)‖ ≤ τ‖yk − xk‖Ak
,

xk+1 = (1 − λk)xk + λkyk,

(7a)

(7b)

(7c)

where (Ak)k∈N is a sequence of SN associated with (xk)k∈N for which Assumption 2.3
holds. In addition, (γk)k∈N

and (λk)k∈N
are sequences of nonnegative reals satisfying the

following two assumptions:

Assumption 2.4.

(i) There exists (η, η) ∈ (0,+∞)2 such that, for every k ∈ N, η ≤ γkλk ≤ 2 − η.

(ii) There exists λ ∈ (0,+∞) such that, for every k ∈ N, λ ≤ λk ≤ 1.

Assumption 2.5.

There exists α ∈ (0, 1] such that, for every k ∈ N,

G(xk+1) ≤ (1 − α)G(xk) + αG(yk).

Remark 2.3.

(i) If, for every k ∈ N, one chooses xk+1 such that G(xk+1) ≤ G(yk), then Assump-
tion 2.5 holds for α = 1.

(ii) (λk)k∈N can always be chosen such that Assumption 2.5 is satisfied (by taking for
every k ∈ N, λk = α = 1).
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(iii) Under Assumption 2.1(i), domR is convex. Hence, for every k ∈ N, both xk and yk
belong to domR.

(iv) As already mentioned, Algorithm (7) can be viewed as an inexact version of Algo-
rithm (5). Indeed, let (xk)k∈N and (yk)k∈N be sequences generated by Algorithm (5).
On the one hand, due to the variational characterization of the proximity operator
and the convexity of R, for every k ∈ N, there exists r(yk) ∈ ∂R(yk) such that

{
r(yk) = −∇F (xk) + γ−1

k Ak(xk − yk)
(yk − xk)

⊤r(yk) ≥ R(yk) −R(xk),
(8)

which yields

R(yk) + (yk − xk)
⊤∇F (xk) + γ−1

k ‖yk − xk‖2
Ak

≤ R(xk).

So the sufficient-decrease condition (7a) holds. On the other hand, let us assume
that Assumption 2.4 holds. According to (8), we have

‖∇F (xk) + r(yk)‖ = γ−1
k ‖Ak(yk − xk)‖ ≤ η−1

√
ν‖yk − xk‖Ak

,

which is the inexact optimality condition (7b) with τ = η−1
√
ν.

3 Convergence analysis

3.1 Descent properties

The present section gathers some technical results concerning the behaviour of the se-
quences

(
G(yk)

)
k∈N

and
(
G(xk)

)
k∈N

generated by Algorithm (7), which will be used to
prove the convergence of the proposed algorithm.

Lemma 3.1. Under Assumptions 2.1, 2.3 and 2.4, there exists µ1 ∈ (0,+∞) such that
for every k ∈ N,

G(xk+1) ≤ G(xk) − µ1

2
‖xk+1 − xk‖2 (9)

≤ G(xk) − λ2µ1

2
‖yk − xk‖2. (10)

Proof. For every k ∈ N, the update equation (7c) yields

G(xk+1) = F (xk+1) +R ((1 − λk)xk + λkyk) .

The convexity of R and Assumption 2.3(i) allow us to deduce that

G(xk+1) ≤ F (xk+1) + (1 − λk)R(xk) + λkR(yk)

≤ F (xk) + (xk+1 − xk)
⊤∇F (xk) +

1

2
‖xk+1 − xk‖2

Ak

+ (1 − λk)R(xk) + λkR(yk). (11)

In addition, according to (7c),

xk+1 − xk = λk(yk − xk). (12)

Using (7a) and (12) leads to the following inequality:

(xk+1 − xk)
⊤∇F (xk) ≤ −γ−1

k λ−1
k ‖xk+1 − xk‖2

Ak
+ λk

(
R(xk) −R(yk)

)
. (13)
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Therefore, by combining (11) and (13), we obtain

G(xk+1) ≤ G(xk) − (γ−1
k λ−1

k − 1

2
)‖xk+1 − xk‖2

Ak

≤ G(xk) − 1

2

η

2 − η
‖xk+1 − xk‖2

Ak
,

where the last inequality follows from Assumption 2.4(i). Then, the lower bound in As-

sumption 2.3(ii) allows us to derive (9) by setting µ1 =
νη

2 − η
> 0. Inequality (10) results

from (12) and Assumption 2.4(ii).

As a consequence of the above lemma, Assumption 2.5 can be reexpressed in a different
form:

Corollary 3.1. Let α ∈ (0, 1] and let k ∈ N. Under Assumptions 2.1, 2.3 and 2.4,
Assumption 2.5 is satisfied if and only if there exists αk ∈ [α, 1] such that

G(xk+1) ≤ (1 − αk)G(xk) + αkG(yk). (14)

Proof. Under Assumption 2.5, (14) holds if we take, for every k ∈ N, αk = α.
Conversely, (14) is equivalent to

αk(G(xk) −G(yk)) ≤ G(xk) −G(xk+1). (15)

If the above inequality holds with αk ∈ [α, 1], then two cases may arise:

(i) Case when G(xk) ≤ G(yk). From Lemma 3.1 we have G(xk+1) ≤ G(xk). Thus,

α(G(xk) −G(yk)) ≤ 0 ≤ G(xk) −G(xk+1).

(ii) Case when G(xk) ≥ G(yk). Then, (15) yields

α(G(xk) −G(yk)) ≤ αk(G(xk) −G(yk)) ≤ G(xk) −G(xk+1).

This shows that, if (14) holds, then Assumption 2.5 is satisfied.

When G satisfies some convexity property, we recover standard assumptions on the
relaxation parameter as shown below.

Corollary 3.2. Under Assumptions 2.1, 2.3 and 2.4, if G is convex on [xk, yk] for every
k ∈ N, then Assumption 2.5 holds.

Proof. According to (7c), we have

(∀k ∈ N) G(xk+1) = G
(
(1 − λk)xk + λkyk

)
,

where λk ∈ (0, 1]. If G is convex on [xk, yk] for every k ∈ N, then

G(xk+1) ≤ (1 − λk)G(xk) + λkG(yk).

Using Corollary 3.1 and the fact that, for every k ∈ N, λk is lower-bounded by λ > 0, we
conclude that Assumption 2.5 is satisfied.

The next result will allow us to evaluate the variations of G when going from xk to yk
at each iteration k of Algorithm (7).
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Lemma 3.2. Under Assumptions 2.1, 2.3 and 2.4, there exists µ2 ∈ R such that

(∀k ∈ N) G(yk) ≤ G(xk) − µ2‖yk − xk‖2.

Proof. According to Assumption 2.3(i) and (7a), we have

F (yk) ≤ Q(yk, xk) ≤ F (xk) +R(xk) −R(yk) − (γ−1
k − 1

2
)‖yk − xk‖2

Ak
,

which, by using Assumption 2.4, yields,

G(yk) ≤ G(xk) − (
λ

2 − η
− 1

2
)‖yk − xk‖2

Ak
.

The result then follows from Assumption 2.3(ii) by setting

µ2 =






ν(
λ

2 − η
− 1

2
) if 2λ+ η ≥ 2

ν(
λ

2 − η
− 1

2
) otherwise.

3.2 Convergence result

Our convergence proof hinges upon the following preliminary result:

Lemma 3.3. Let (uk)k∈N, (gk)k∈N, (g′k)k∈N and (∆k)k∈N be sequences of nonnegative reals
and let θ ∈ (0, 1). Assume that

(i) For every k ∈ N, u2
k ≤ gθk∆k.

(ii) (∆k)k∈N is summable.

(iii) For every k ∈ N, gk+1 ≤ (1 − α)gk + g′k where α ∈ (0, 1].

(iv) For every k ≥ k∗, (g′k)θ ≤ βuk where β > 0 and k∗ ∈ N.

Then, (uk)k∈N is a summable sequence.

Proof. According to (iii), for every k ∈ N,

gθk+1 ≤ (1 − α)θgθk + (g′k)θ.

Assumption (iv) then yields

(∀k ≥ k∗) gθk+1 ≤ (1 − α)θgθk + βuk,

which implies that, for every K > k∗,

K∑

k=k∗+1

gθk ≤ (1 − α)θ
K−1∑

k=k∗

gθk + β
K−1∑

k=k∗

uk

⇔
(
1 − (1 − α)θ

) K−1∑

k=k∗

gθk ≤ gθk∗ − gθK + β

K−1∑

k=k∗

uk. (16)
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On the other hand, (i) can be rewritten as

(∀k ∈ N) u2
k ≤

(
β−1

(
1 − (1 − α)θ

)
gθk

)(
β
(
1 − (1 − α)θ

)−1
∆k

)
.

By using now the inequality
(
∀(v, v′) ∈ [0,+∞)2

) √
vv′ ≤ (v + v′)/2 and since, for every

k ∈ N, uk ≥ 0, we get

(∀k ∈ N) uk ≤
1

2

(
β−1

(
1 − (1 − α)θ

)
gθk + β

(
1 − (1 − α)θ

)−1
∆k

)
. (17)

We deduce from (16) and (17) that, for every K > k∗,

K−1∑

k=k∗

uk ≤
1

2

( K−1∑

k=k∗

uk + β−1(gθk∗ − gθK) + β
(
1 − (1 − α)θ

)−1
K−1∑

k=k∗

∆k

)

⇒
K−1∑

k=k∗

uk ≤ β−1gθk∗ + β
(
1 − (1 − α)θ

)−1
K−1∑

k=k∗

∆k.

The summability of (uk)k∈N then follows from (ii).

Our main result concerning the asymptotic behaviour of Algorithm (7) can now be
stated:

Theorem 3.1. Under Assumptions 2.1-2.5, the following hold.

(i) The sequences (xk)k∈N and (yk)k∈N defined by (7) both converge to a critical point x̂
of G.

(ii) These sequences have a finite length in the sense that

+∞∑

k=0

‖xk+1 − xk‖ < +∞ and
+∞∑

k=0

‖yk+1 − yk‖ < +∞.

(iii)
(
G(xk)

)
k∈N

and
(
G(yk)

)
k∈N

are sequences converging to G(x̂). Moreover,
(
G(xk)

)
k∈N

is a nonincreasing sequence.

Proof. According to Lemma 3.1, we have

(∀k ∈ N) G(xk+1) ≤ G(xk),

thus, (G(xk))k∈N is a nonincreasing sequence. In addition, by Remark 2.2(iii) and Re-
mark 2.3(iii), the sequence

(
xk

)
k∈N

belongs to a compact subset E of lev≤G(x0)G ⊂ domR

and G is lower bounded. Thus,
(
G(xk)

)
k∈N

converges to a real ξ, and
(
G(xk) − ξ

)
k∈N

is
a nonnegative sequence converging to 0.
Moreover, by invoking again Lemma 3.1, we have

(∀k ∈ N) λ2µ1

2
‖yk − xk‖2 ≤ (G(xk) − ξ) − (G(xk+1) − ξ). (18)

Hence, the sequence (yk − xk)k∈N converges to 0.
On the other hand, Assumption 2.5 implies that, for every k ∈ N,

G(xk+1) − ξ ≤ (1 − α)(G(xk) − ξ) + α(G(yk) − ξ).
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Then, combining the last inequality with Lemma 3.2, we obtain that, for every k ∈ N,

α−1
(
G(xk+1) − ξ − (1 − α)(G(xk) − ξ)

)
≤ G(yk) − ξ ≤ G(xk) − ξ − µ2‖yk − xk‖2.

Thus, since (yk −xk)k∈N and (G(xk)− ξ)k∈N both converge to 0, the sequence (G(yk))k∈N

converges to ξ.
Let us come back to (18) and let us apply to the convex function ψ : [0,+∞) →

[0,+∞) : u 7→ u
1

1−θ , with θ ∈ [0, 1), the gradient inequality

(∀(u, v) ∈ [0,+∞)2) ψ(u) − ψ(v) ≤ ψ̇(u)(u− v),

which, after a change of variables, can be rewritten as

(∀(u, v) ∈ [0,+∞)2) u− v ≤ (1 − θ)−1uθ(u1−θ − v1−θ).

Using the latter inequality with u = G(xk) − ξ and v = G(xk+1) − ξ leads to

(∀k ∈ N)
(
G(xk) − ξ

)
−

(
G(xk+1) − ξ

)
≤ (1 − θ)−1

(
G(xk) − ξ

)θ
∆′
k,

where
(∀k ∈ N) ∆′

k =
(
G(xk) − ξ

)1−θ −
(
G(xk+1) − ξ

)1−θ
.

Thus, combining the above inequality with (18) yields

(∀k ∈ N) ‖yk − xk‖2 ≤ 2λ−2µ−1
1 (1 − θ)−1

(
G(xk) − ξ

)θ
∆′
k. (19)

On the other hand, since E is bounded and Assumption 2.2 holds, there exist constants
κ > 0, ζ > 0 and θ ∈ [0, 1) such that

(
∀r(x) ∈ ∂R(x)

)
κ|G(x) − ξ|θ ≤ ‖∇F (x) + r(x)‖, (20)

for every x ∈ E such that |G(x) − ξ| ≤ ζ. Since
(
G(yk)

)
k∈N

converges to ξ, there exists
k∗ ∈ N, such that, for every k ≥ k∗, |G(yk) − ξ| < ζ. Hence, we have, for every r(yk) ∈
∂R(yk),

(∀k ≥ k∗) κ|G(yk) − ξ|θ ≤ ‖∇F (yk) + r(yk)‖.
Let r(yk) be defined as in Algorithm (7). Then, we have

κ|G(yk) − ξ|θ ≤ ‖∇F (yk) −∇F (xk) + ∇F (xk) + r(yk)‖
≤ ‖∇F (yk) −∇F (xk)‖ + ‖∇F (xk) + r(yk)‖
≤ ‖∇F (yk) −∇F (xk)‖ + τ‖xk − yk‖Ak

. (21)

Thus, by using Assumptions 2.1(ii) and 2.3(ii), we get

|G(yk) − ξ|θ ≤ κ−1(L+ τ
√
ν)‖xk − yk‖. (22)

In addition, according to Assumption 2.5,

G(xk+1) − ξ ≤ (1 − α)(G(xk) − ξ) + |G(yk) − ξ|. (23)

Besides, it can be noticed that

+∞∑

k=k∗

∆′
k =

+∞∑

k=k∗

(
G(xk) − ξ

)1−θ −
(
G(xk+1) − ξ

)1−θ

=
(
G(xk∗) − ξ

)1−θ
,
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which shows that (∆′
k)k∈N is a summable sequence. From (19), the summability of

(∆′
k)k∈N, (23), and (22), and by setting

(∀k ∈ N)






uk = ‖yk − xk‖
gk = G(xk) − ξ ≥ 0

g′k = |G(yk) − ξ| ≥ 0

β = κ−1(L+ τ
√
ν) > 0

∆k = 2λ−2µ−1
1 (1 − θ)−1∆′

k,

Lemma 3.3 allows us to conclude that (‖yk − xk‖)k∈N is summable when θ 6= 0. When
θ = 0, as xk − yk → 0, there exists k∗∗ ≥ k∗ such that

(∀k ≥ k∗∗) κ−1(L+ τ
√
ν)‖xk − yk‖ < 1.

Hence, according to (22) (recall that 00 = 0), one necessarily has, for every k ≥ k∗∗,
G(yk) = ξ. Then, according to (19), for every k ≥ k∗∗, xk = yk, which trivially shows that
(‖yk − xk‖)k∈N is summable.

Moreover, according to (7c) and Assumption 2.4(ii), we have

(∀k ∈ N) ‖xk+1 − xk‖ = λk‖yk − xk‖ ≤ ‖yk − xk‖.

Hence, the sequence (xk)k∈N satisfies the finite length property. In addition, since this
latter condition implies that (xk)k∈N is a Cauchy sequence, it converges towards a point
x̂. As (xk−yk)k∈N converges to 0, (yk)k∈N also converges to the same limit x̂, and (yk)k∈N

satisfies the finite length property since

(∀k ∈ N) ‖yk+1 − yk‖ ≤ ‖yk+1 − xk‖ + ‖xk − yk‖
≤ ‖yk+1 − xk+1‖ + ‖xk+1 − xk‖ + ‖xk − yk‖.

It remains us to show that the limit x̂ is a critical point of G. To this end, let us define

(∀k ∈ N) t(yk) = ∇F (yk) + r(yk),

where r(yk) is given by (7), so that (yk, t(yk)) ∈ Graph ∂G. In addition, by proceeding
like in (21), we obtain

(∀k ∈ N) ‖t(yk)‖ ≤ (L + τ
√
ν)‖xk − yk‖.

Since the sequences (xk)k∈N
and (yk)k∈N

both converge to x̂, (yk, t(yk))k∈N
converges to

(x̂, 0). Furthermore, according to Remark 2.2(iii), the restriction of G to its domain is
continuous. Thus, as (∀k ∈ N) yk ∈ domG, the sequence (G(yk))k∈N

converges to G(x̂).
Finally, according to the closedness property of ∂G (see Remark 2.1), (x̂, 0) ∈ Graph∂G
i.e., x̂ is a critical point of G.

As an offspring of the previous theorem, the proposed algorithm can be shown to
locally converge to a global minimizer of G:

Corollary 3.3. Suppose that Assumptions 2.1-2.5 hold, and suppose that (xk)k∈N and
(yk)k∈N are sequences generated by Algorithm (7). There exists υ > 0 such that, if

G(x0) ≤ inf
x∈RN

G(x) + υ, (24)

then (xk)k∈N and (yk)k∈N both converge to a solution to Problem (1).
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Proof. According to Remark 2.2(iii),

ξ = inf
x∈RN

G(x) < +∞.

Let E = levξ+δG, where δ > 0. As a consequence of Assumption 2.1(iii), E is bounded. In
view of Assumption 2.2, there exists constants κ > 0, ζ > 0 and θ ∈ [0, 1) such that (20)
holds for every x ∈ E such that |G(x) − ξ| ≤ ζ, that is, G(x) ≤ ξ + ζ since, by definition
of ξ, we always have G(x) ≥ ξ. Let us now set υ = min{δ, ζ} > 0 and choose x0 satisfying
(24). It follows from Theorem 3.1(iii) that, for every k ∈ N,

G(xk) ≤ ξ + υ.

By continuity of the restriction of G to its domain and Theorem 3.1(i), (xk)k∈N and (yk)k∈N

converge to x̂ which is such that G(x̂) ≤ ξ + υ. In other words, the Kurdyka- Lojasiewicz
inequality is satisfied at x̂:

(∀t(x̂) ∈ ∂G(x̂)) ‖t(x̂)‖ ≥ κ|G(x̂) − ξ|θ.

As x̂ is a critical point of G, 0 belongs to ∂G(x̂), and then we have

|G(x̂) − ξ|θ ≤ 0.

This shows that G(x̂) = infx∈RN G(x).

We now comment on the differences between the results in some related works and our
results.

Remark 3.1.

(i) In [23], the convergence is established under the assumption that G is convex, while
our study relies on the fulfillment of Assumption 2.2. Moreover, it can be noticed
that Assumption 2.3 on the matrices (Ak)k∈N

are less restrictive than Condition (6)
considered in [23].

(ii) Note that the convergence of (7) was established in [9] in the non-preconditioned
case, i.e. Ak ≡ L IN , but for a non necessarily convex function R. Constant values
of the relaxation parameters (λk)k∈N and of the step sizes (γk)k∈N were considered.

4 Application to image reconstruction

4.1 Optimization problem

In this section, we consider an inverse problem where a degraded image z = (z(m))1≤m≤M ∈
R
M related to an original image x ∈ [0,+∞)N is observed through the model:

(∀m ∈ {1, . . . ,M}) z(m) = [Hx](m) + σ(m)([Hx](m))w(m),

where H ∈ R
M×N is a matrix with non-negative elements and, for every m ∈ {1, . . . ,M},

[Hx](m) denotes the m-th component of Hx. Moreover, (w(m))1≤m≤M is a realization of
a Gaussian random vector with zero-mean and covariance matrix IM , and

(∀m ∈ {1, . . . ,M}) σ(m) : [0,+∞) → (0,+∞)

u 7→
√
a(m)u+ b(m) (25)
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with (a(m))1≤m≤M ∈ [0,+∞)M , (b(m))1≤m≤M ∈ (0,+∞)M . Such a noise model arises in
a number of digital imaging devices [36–38] where the acquired image is contaminated by
signal-dependent Photon shot noise and by independent electrical or thermal noise. Signal-
dependent Gaussian noise can also be viewed as a second-order approximation of Poisson-
Gauss noise which is frequently encountered in astronomy, medicine and biology [39, 40].
Our objective is to produce an estimate x̂ ∈ [0,+∞)N of the target image x from the
observed data z.

The original image can be estimated by solving (1) where F is a so-called data fi-
delity term and R is a penalty function serving to incorporate a priori information. In
the Bayesian framework, this is equivalent to compute a maximum a posteriori (MAP)
estimate [41] of the original image. In this context, a usual choice for the data fidelity
term is the neg-log-likelihood of the data which is expressed as

(∀x ∈ R
N ) F (x) =

{
F1(x) + F2(x) if x ∈ [0,+∞)N

+∞ otherwise,

where

(∀x ∈ [0,+∞)N ) F1(x) =
1

2

M∑

m=1

ρ
(m)
1 ([Hx](m)), (26)

F2(x) =
1

2

M∑

m=1

ρ
(m)
2 ([Hx](m)), (27)

and

(∀m ∈ {1, . . . ,M})(∀u ∈ [0,+∞)) ρ
(m)
1 (u) =

1

2

(
u− z(m)

)2

a(m)u+ b(m)
(28)

ρ
(m)
2 (u) =

1

2
l̂og(a(m)u+ b(m)). (29)

In the equation (29), l̂og is a semi-algebraic approximation of the logarithm defined on
(0,+∞), which, like the original function, is concave and Lipschitz differentiable on any
interval [b,+∞) with b ∈ (0,+∞). Such approximations are commonly used in numerical
implementations of the logarithmic function [42, Chap.4].

Furthermore, a hybrid penalty function, made up of two terms R = R1 + R2 is con-
sidered. First, in order to take into account the dynamic range of the target image, we
define R1 = ιC , where C = [xmin, xmax]N , xmin ∈ [0,+∞) and xmax ∈ (xmin,+∞) are
the minimal and the maximal values of the components of x, respectively, and ιC is the
indicator function of C defined as

ιC(x) =

{
0 if x ∈ C

+∞ otherwise.

Secondly, a sparsity prior in an analysis frame [43–45] is introduced by taking

(∀x ∈ R
N ) R2(x) =

J∑

j=1

ϑ(j)|[Wx](j)|,

where (ϑ(j))1≤j≤J ∈ [0,+∞)J and W ∈ R
J×N is a tight frame operator, i.e. there exists

µW ∈ (0,+∞) such that W⊤W = µW IN .
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It is clear that Assumption 2.1(i) holds. For every m ∈ {1, . . . ,M}, the first and second

derivatives1 of ρ
(m)
1 at u ∈ [0,+∞) are

ρ̇
(m)
1 (u) =

(u− z(m))(a(m)u+ a(m)z(m) + 2b(m))

2(a(m)u+ b(m))2
, (30)

ρ̈
(m)
1 (u) =

(a(m)z(m) + b(m))2

(a(m)u+ b(m))3
. (31)

Hence, ρ̈
(m)
1 is bounded and, as ρ̇

(m)
2 is Lipschitzian, Assumption 2.1(ii) is satisfied. As-

sumption 2.1(iii) follows from the fact that domR = C is bounded.
Finally, since F1, F2 and R2 are semi-algebraic functions and C is a semi-algebraic set,

G is a semi-algebraic function and Assumption 2.2 holds.

4.2 Construction of the majorant

Let us now present a family of diagonal matrices (Ak)k∈N
that fulfill Assumption 2.3.

First, note that, on its domain, F is the sum of the convex function F1 and the concave
function F2, respectively defined by (26) and (27). For every k ∈ N, let xk be generated
by the k-th iteration of Algorithm (7). A majorant function of F2 on [0,+∞)N at xk is

(∀x ∈ R
N ) Q2(x, xk) = F2(xk) + (x− xk)⊤∇F2(xk), (32)

where ∇F2(xk) is the gradient of F2 at xk. The next lemma allows us to construct a
majorant function of F1 at xk. Before stating this lemma, we introduce the function
ω : [0,+∞) → R

M : u 7→
(
ω(m)(u)

)
1≤m≤M

where, for every m ∈ {1, . . . ,M},

(∀u ∈ [0,+∞)) ω(m)(u) =

{
ρ̈
(m)
1 (0) if u = 0,

2
ρ
(m)
1 (0)−ρ

(m)
1 (u)+uρ̇

(m)
1 (u)

u2 if u > 0,
(33)

and ρ1 is defined by (28).

Lemma 4.1. Let F1 be defined by (26) where H =
(
H(m,n)

)
1≤m≤M,1≤n≤N

∈ [0,+∞)M×N .
For every k ∈ N, let

Ak = Diag
(
P⊤ω(Hxk)

)
+ ε IN , (34)

where ε ∈ [0,+∞) and P =
(
P (m,n)

)
1≤m≤M,1≤n≤N

is the matrix whose elements are given
by

(∀m ∈ {1, . . . ,M})(∀n ∈ {1, . . . , N}) P (m,n) = H(m,n)
N∑

p=1

H(m,p). (35)

Then, Q1 defined as

(∀x ∈ R
N) Q1(x, xk) = F1(xk) + (x− xk)

⊤∇F1(xk) +
1

2
(x− xk)

⊤Ak(x− xk),

is a majorant function of F1 on [0,+∞)N at xk.

Proof. For every m ∈ {1, . . . ,M}, ρ
(m)
1 is convex and infinitely derivable on [0,+∞). Let

us define

(∀(u, u′) ∈ [0,+∞)2)

q(m)(u, u′) = ρ
(m)
1 (u′) + (u− u′)ρ̇

(m)
1 (u′) +

1

2
ω(m)(u′) (u− u′)2, (36)

1We consider right derivatives when u = 0.
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where functions ρ̇
(m)
1 and ω(m) are respectively given by (28) and (33). If a(m) = 0, then

ρ
(m)
1 is a quadratic function and we have

(∀(u, u′) ∈ [0,+∞)2) ρ
(m)
1 (u) = q(m)(u, u′).

Let us now assume that a(m) ∈ (0,+∞). The third derivative of ρ
(m)
1 is given by

...
ρ (m)

1 : u ∈

[0,+∞) 7→ −3a(m) (a(m)z(m) + b(m))2

(a(m)u+ b(m))4
, which is negative. Then, ρ̇

(m)
1 is a strictly concave

function on [0,+∞). By using a simplified version of [35, App.B.], we will prove the

positivity of function q(m)(·, u′) − ρ
(m)
1 on [0,+∞), for every u′ ∈ (0,+∞). The second

derivative of the latter function is given by

(∀u ∈ [0,+∞)) q̈(m)(u, u′) − ρ̈
(m)
1 (u) = ω(m)(u′) − ρ̈

(m)
1 (u). (37)

Moreover, according to second-order Taylor’s formula, there exists ũ ∈ (0, u′) such that

ρ
(m)
1 (0) = ρ

(m)
1 (u′) − u′ρ̇

(m)
1 (u′) +

1

2
u′2ρ̈

(m)
1 (ũ),

hence, using (33) and (37),

(∀u ∈ [0,+∞)) q̈(m)(u, u′) − ρ̈
(m)
1 (u) = ρ̈

(m)
1 (ũ) − ρ̈

(m)
1 (u). (38)

Since
...
ρ (m)

1 is negative, ρ̈
(m)
1 is strictly decreasing, and (38) implies that q̇(m)(·, u′) − ρ̇

(m)
1

is first strictly decreasing on (0, ũ), then strictly increasing on (ũ,+∞). On the one hand,
(33) and (36) yield {

q(m)(u′, u′) − ρ
(m)
1 (u′) = 0,

q(m)(0, u′) − ρ
(m)
1 (0) = 0.

(39)

Thus, according to the mean value theorem, there exists u∗ ∈ (0, u′) such that q̇(m)(u∗, u′)−
ρ̇
(m)
1 (u∗) = 0. On the other hand, according to (36),

q̇(m)(u′, u′) − ρ̇
(m)
1 (u′) = 0.

Therefore, from the monotonicity properties of q̇(m)(·, u′)− ρ̇
(m)
1 , we deduce that u∗ is the

unique zero of this function on (0, u′), and






q̇(m)(u, u′) − ρ̇
(m)
1 (u′) > 0, ∀u ∈ [0, u∗),

q̇(m)(u, u′) − ρ̇
(m)
1 (u′) < 0, ∀u ∈ (u∗, u′),

q̇(m)(u, u′) − ρ̇
(m)
1 (u′) > 0, ∀u ∈ (u′,+∞).

(40)

Equation (40) implies that q(m)(·, u′) − ρ
(m)
1 (·) is strictly increasing on [0, u∗), strictly

decreasing on (u∗, u′) and strictly increasing on (u′,+∞). Thus, given (39),

(∀(u, u′) ∈ [0,+∞) × (0,+∞)) ρ
(m)
1 (u) ≤ q(m)(u, u′). (41)

Moreover, from the expression of ω(m)(0) in (33) and from (31), it is easy to show that

(∀u ∈ [0,+∞)) ρ
(m)
1 (u) ≤ q(m)(u, 0). (42)

Therefore, by gathering (41) and (42), we obtain

(∀(u, u′) ∈ [0,+∞)2) ρ
(m)
1 (u) ≤ q(m)(u, u′), (43)
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which, as pointed out before, is still valid when a(m) = 0.
Majoration (43) implies that, for every k ∈ N,

(∀x ∈ [0,+∞)N ) F1(x) ≤ F1(xk) + (x− xk)
⊤∇F1(xk)

+
1

2
(Hx−Hxk)

⊤ Diag
(
ω(Hxk)

)
(Hx−Hxk).

Let (Λ(m,n))1≤m≤M,1≤n≤N ∈ [0,+∞)M×N be such that

(∀(m,n) ∈ {1, . . . ,M} × {1, . . . , N}) Λ(m,n) =






0 if H(m,n) = 0

H(m,n)

∑N
p=1H

(m,p)
if H(m,n) > 0.

According to Jensen’s inequality and (35), for every m ∈ {1, . . . ,M},

(
[Λ(m,1), . . . ,Λ(m,N)](x− xk)

)2 ≤
N∑

n=1

Λ(m,n)
(
x(n) − x

(n)
k

)2

⇔
(
[H(m,1), . . . ,H(m,N)](x− xk)

)2 ≤
N∑

n=1

P (m,n)
(
x(n) − x

(n)
k

)2
.

Since the convexity of ρ
(m)
1 for m ∈ {1, . . . ,M} implies the positivity of ω(m) on [0,+∞),

we deduce that

(Hx−Hxk)
⊤ Diag

(
ω(Hxk)

)
(Hx−Hxk) ≤ (x− xk)

⊤ Diag
(
P⊤ω(Hxk)

)
(x− xk),

which yields the result.

It can be deduced from (32) and Lemma 4.1 that Assumption 2.3(i) is satisfied for
Q = Q1 +Q2.

It can be further noticed that, for every m ∈ {1, . . . ,M}, the derivative of ω(m) at
u′ ∈ (0,+∞) is

ω̇(m)(u′) = 2
u′2ρ̈

(m)
1 (u′) − 2

(
ρ
(m)
1 (0) − ρ

(m)
1 (u′) + u′ρ̇

(m)
1 (u′)

)

u′3

= 2
ρ̈
(m)
1 (u′) − ρ̈

(m)
1 (ũ)

u′
,

where ũ ∈ (0, u′). Since the third-order derivative of ρ
(m)
1 is negative, ω(m) is a strictly

decreasing positive function. According to the expression of R, domR = [xmin, xmax]N , so
that its image {Hx | x ∈ domR} is a compact set. Thus, the function x 7→ ω(m)([Hx](m))

admits a minimum value ω
(m)
min > 0. Then, Assumption 2.3(ii) is satisfied for the matrices

(Ak)k∈N defined by (34) with





ν = ε+ min

1≤n≤N

∑M
m=1 P

(m,n) ω
(m)
min,

ν = ε+ max
1≤n≤N

∑M
m=1 P

(m,n) ρ̈
(m)
1 (0).

(44)

Note that, if each column of H is non-zero, we can choose ε = 0 in (44). Otherwise, we
must choose ε > 0.
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4.3 Backward step

The implementation of the VMFB algorithm (in its exact form) requires to compute,
at each iteration k ∈ N, variable yk corresponding to the proximity operator of R at
x̃k = xk − γkA

−1
k ∇F (xk), relative to the metric induced by γ−1

k Ak, i.e.

yk = argmin
x∈R

N

{ J∑

j=1

ϑ(j)|[Wx](j)| + ιC(x) +
1

2
‖x− x̃k‖2

γ−1
k
Ak

}
. (45)

Due to the presence of matrix W , it is not possible to obtain an explicit expression for yk.
Sub-iterations are thus needed to compute it. Equation (45) is equivalent to

yk = γ
1/2
k A

−1/2
k argmin

x∈R
N

{1

2
‖x− γ

−1/2
k A

1/2
k x̃k‖2

+

J∑

j=1

ϑ(j)γ
1/2
k |[WA

−1/2
k x](j)| + ιC(γ

1/2
k A

−1/2
k x)

}
.

The above optimization problem can be solved by various algorithms. The numerical re-
sults provided in the next section have been obtained by using the Dual Forward-Backward
algorithm [46].

4.4 Experimental results

We now demonstrate the practical performance of our algorithm on two image recon-
struction scenarios. In the first scenario, the standard Peppers image of size 256 × 256
from http://sipi.usc.edu/database/ is degraded by a blur operator H corresponding
to a uniform convolution kernel of size 5 × 5, and further corrupted with the considered
signal-dependent additive noise with standard-deviation given by (25) where, for every
m ∈ {1, . . . ,M}, a(m) = 0.5 and b(m) = 1. Here, xmin = 0, xmax = 252, and the Lip-
schitz constant of F is equal to L = 1.8 × 104. In the second scenario, x corresponds
to one slice of the standard Zubal phantom from [47] with dimensions 128 × 128 and H
is the Radon matrix modeling M = 16384 parallel projections from 128 acquisition lines
and 128 angles. The sinogram Hx is corrupted with signal-dependent noise where, for
every m ∈ {1, . . . ,M}, a(m) = 0.01 and b(m) = 0.1. In this case, xmin = 0, xmax = 1,
and the Lipschitz constant is L = 6.0 × 106. For both experiments, the employed frame
is a redundant (undecimated) wavelet transform using Daubechies’ eight-taps filters over
three resolution levels. The related tight frame constant is equal to µW = 64. Parameters(
ϑ(j)

)
1≤j≤J

are adjusted so as to maximize the signal-to-noise ratio (SNR) between the
original image x and the reconstructed one x̂, which is expressed as

SNR = 20 log10

( ‖x‖
‖x̂− x‖

)
.

Figs. 1, 3 and. 4 show the degraded data, and the reconstructed images with VMFB,
for the considered deblurring and reconstruction problems. We also present in Fig. 4 the
reconstruction result obtained using the standard filtered back-projection approach [48].
The proposed VMFB algorithm is compared with FB [1] and FISTA [14] algorithms. The
setting λk ≡ 1 has been chosen for FB and VMFB. Two values of the step-size are tested,
namely γk ≡ 1 and γk ≡ 1.9. For these values of (λk)k∈N and (γk)k∈N, Assumption 2.4
is satisfied. Moreover, according to Remark 2.3(ii), Assumption 2.5 also holds. Figs. 2
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and 5 illustrate the variations of
(
G(xk) − G(x̂)

)
k

and
(
‖xk − x̂‖

)
k

with respect to the
computation time, using the proposed VMFB algorithm, FB and FISTA algorithms, when
performing tests on an Intel(R) Xeon(R) CPU X5570 at 2.93GHz, in a single thread, using
a Matlab 7 implementation. Note that the optimal solution x̂ has been precomputed for
each algorithm, using a large number of iterations. We can observe that, in the deblurring
experiment, FISTA converges faster than FB algorithm, while, in the tomography example,
the two methods behave similarly. Concerning the choice of the step-size, our results show
that, for FB and VMFB algorithms, a faster convergence is obtained for γk ≡ 1.9 in both
experiments.

In conclusion, the variable metric strategy leads to a significant acceleration in terms
of decay of both the objective function and the error on the iterates in each experiment.

Figure 1: Deblurring: Degraded image, SNR=19.3 dB (left) and restored image (right)
with the proposed algorithm, SNR=24.3 dB.
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