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Optimal dynamis of soft shapes in shallowwatersBijan Mohammadi and Afaf BouharguaneInstitut de Mathématiques et de Modélisation de MontpellierUniversité Montpellier II, CC51, 34095 Montpellier, FranePublished by Computers and Fluids,DOI:10.1016/j.omp�uid.2010.09.031Abstrat - A sandy sea bottom is seen as a struture with low sti�ness whihadapts to the motion of water in a shallow domain desribed by the Saint Venantequations. The oupling is based on the minimization of water wave energy withminimal sand transport. The approah is shown being similar to the use of anoriginal Exner equation for the bottom with non loal �ux expressions. Also,examples of the appliations of the framework to inverse problems in oastalengineering are shown.Keywords: Bottom sea morphodynamis, level set, shape optimization,�uid-struture oupling, Saint Venant Equations, sensitivity analysis by adjoint,Exner equation.
1 IntrodutionIn oastal morphodynamis some events our over small spae and time sales.One an ite the removal of sediment from the toe of oastal strutures whihoften ours and reovers ompletely during the ourse of a single tide (hourly1



basis). Then, the time and spae sales onern storm response lasting for afew tides (say daily basis). Here the beah an be modi�ed both long andross-shore by hundreds of meters. Reovery between storms will take longer(monthly basis). This lassi�ation an ontinue with seasonal and inter-annualvariability. Hene, oastal morphodynamis our over a broad range of timeand length sales where the spatial sale inreases with the timesale. This latterremark also implies that long-shore transport gains importane over ross-shorewith inreasing timesale.The litterature on oastal morphodynamis use either loal onepts suhas sediment transport using �uid-indued shear in the sediment modelling andbottom frition oe�ient or global ones suh as global beah morphodynamisbased on long and ross-shore �uxes and global beah lines dynamis [7, 8, 19℄.We would like to unify loal and global analysis by the appliation of theontrol theory to the evolution of sandy bottom seas. This melange of loaland global natures is made evident when looking at how the question of bottommorphodynamis is often treated in the literature using the solution of an Exnerequation [25℄. One will indeed show that the approah provides a new �ux termfor the Exner equation linking loal and global informations.In the past we have used minimization priniple to design defene struturesagainst beah erosion [3, 4℄. In these works, the designed struture were in-dependent of time and were built one for all. Here, we would like to go onestep further giving the possibility to the struture to hange in time. One par-tiular ase is then the sea bottom seen as a struture with low sti�ness. Thefundamental assumption is that the bottom adapts to the �ow by some sort ofoptimal sand transport in order to minimize some energy expression. Optimaltransport an be seen as minimal hange in the bottom shape. The approahis not limited by the partiular expressions we onsider here for the funtionalnor by the �ow equations whih an also be more sophistiated.The paper starts with the problem of bottom motion formulated as an opti-mal ontrol problem. Shallow water equations are brie�y realled with emphasis2



on boundary onditions by level set for emerged strutures. Follows a disussionon the hoie of ost funtions. A omparison is then made between modellingthe transport of sediments by the Exner equation and by our minimization prin-iple. Sensitivity evaluation being an important issue in this alulus of variationproblem, a model problem is introdued to disuss various questions on omplex-ity and the need for the adjoint equation for the �ow equation. The extensionto the ase of the Saint Venant equations is also presented. Throughout thepaper, one shows simulations featuring qualitative behavior of the approah.2 Bottom motion as a ontrol problemIn what follows, the parameterization of the bottom sea and the orrespondingbathymetry are both denoted by ψ. The latter is a two dimensional positivefuntion ψ(x, y) : Ω ⊂ R
2 → R

+ and the former is a multidimensional funtionin an admissible spae Oad ⊂ R
n with n the dimension of the parameter spaeand de�ning uniquely ψ(x, y).We onsider a ontrol problem where the ontrol is the bottom sea repre-sented through a parameterization ψ. ψ hanges with time following the hangesin the state given by the �ow onditions U. The admissible spae is to spe-ify not any shape an be taken by the bottom. For instane, ψ should be aunivoal funtion with some regularity. The regularity is spei�ed through theparameterization hosen. We assume that ψ hanges in order to minimize atime dependent funtional: min ψ∈OadJ(ψ,U(ψ)), (1)where U(ψ) = {U(ψ, τ), τ ∈ [t − T, t]} gathers the state evolution in timesolution of some state equation (here the shallow water equations). The ost
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funtion involves this state evolution as, for instane, in:
J(ψ,U(ψ)) =

∫ t

t−T

j(ψ,U(ψ, τ))dτ. (2)
T indiates a time dependeny window and also permits to introdue a di�er-ene in time sales between the bottom sea and the �ow motions. We will seeexamples of suh funtionals in setion 4.3 Governing equations for shallow watersGiven a sea bed bathymetry ψ, the two-dimensional nonlinear shallow water orSaint Venant equations [5℄ with topobathymetry are:

∂tU + ∂xF (U) + ∂yG(U) = S(U), (3)where U = t(h, hu, hv), F (U) = t(hu, hu2+
g

2
h2, huv), G(U) = t(hv, huv, hv2+

g

2
h2) and S(U) = t(0,−g h ∂xψ,−g h ∂yψ). u = t(u, v) the depth-averagedveloity with u and v the salar omponents in the horizontal x, y diretionsand h is the loal water depth. U is the vetor for the onservative variables,

F (U) and G(U) stand for the �ux funtions respetively along the x and ydiretions and S(U) represents the bed slope soure term.These equations are disretized by a �nite volume formulation [10℄. Our�nite volume implementation preserves steady state solutions on non �at bottomseas in the absene of perturbations [1, 2℄. It is also suitable to apture wettingand drying phenomena [18, 17℄.Overall, four boundary onditions are needed at slip, inlet, shoreline andoutlet boundaries. The slip boundary ondition (u.n = 0) is naturally takeninto aount in a �nite volume formulation. The outlet ondition for open seasis a transmissive boundary ondition. Values at boundary ells are obtainedby seond order extrapolations normal to the boundary from the values insidethe domain. To desribe inoming waves we use an absorbing/generating inlet4



boundary ondition where the values of water depth are presribed. To sim-ulate sea onditions, water depth variations at inlet are obtained by additionof monohromati waves following, for instane, a Jonswap energy spetral dis-tribution [14, 13℄. In subritial regimes, harateristi urves and Riemanninvariants provide normal veloity. In open sea we allow for re�eted waves tofreely exit the domain not reating re�etion [16℄. The shoreline is an impliitfuntion of the �ow and the bed. Dry ells are those where the water depth isbelow a given value (say 10−10). One those identi�ed, the shoreline loation issolution of Riemann problems at the interfaes between wet and dry ells [18℄.For the basin simulations presented here only the slip and inlet onditionshave been applied as there is not outgoing wave in the basin and also waterdepth never vanishes here so none of the open sea or the shoreline onditionshave been ativated.Time integration is expliit for the �ow. Due to the di�erene of the timesales between �uid motion and hanges in sea beds, several times steps will betaken in the �ow solver before a new time step by the bed model.3.1 Level setWhen there is an emerged struture or bathymetry, slip boundary onditionneeds be applied along the emerged surfae. In order to avoid �tting the meshto the ontour of emerged strutures, we use their level set representation and donot modify the mesh to aount for their presenes. Level set is an establishedtehnique to represent �xed or moving interfaes on artesian grids. Immersedboundary, �titious domain methods as well as penalizing tehniques are meth-ods to impose boundary onditions on surfaes whih are not unions of edgesand faes of elements of the (non-body �tted) omputational mesh [9, 24, 26, 23℄.A parametrization of a boundary Γ of a domain Ω by the level set methodis based on the zero-level urve of a funtion φ:
Γ = {x ∈ Ω : φ(x) = 0}5



The funtion φ ould be the signed Eulidean distane to Γ:
φ(x) = ± inf

y∈Γ
|x− y|with the onvention of a plus sign if x ∈ Ω and minus sign otherwise. Hene

φ|Γ = 0, φ|R2\Ω < 0, φ|Ω > 0 (4)The de�nition an be extended to open shapes by using Γ± instead of Ω.For a given shape given by (4) the normal to Γ is n = ∇φ/|∇φ| at φ = 0.A relaxed harateristi funtion of Ω is
χ = max(0, φ/(|φ| + εopt(h))) (5)where εopt(h) is a stritly positive relaxation funtion whih tends to zero withthe bakground mesh size h. It is de�ned solving minimization problems for asampling in h:

εopt(h) = argminε(h)>0‖uh(χ(φh(ε(h)))) − Πh uref‖where Πh is the restrition operator to mesh h and uh the disrete state. Thenumerial results given below have been omputed with εopt(h) = ch for someonstant c > 0. This hoie guarantees the onsisteny of the sheme. Theoe�ient c is �tted, one for all, in order to minimize the error ‖uref − uεh‖ fora referene solution uref whih an be either a solution obtained with a body�tted mesh or, when available, an analytial solution.One φh is known, we take into aount the boundary onditions for a theshallow water equations through:
(∂tUh + ∂xFh(Uh) + ∂yGh(Uh) − Sh(Uh))χ(φh) + Eh(uh.nh)δφh = 0 (6)Here Eh builds an extension of the boundary ondition on Γh over the domain6



Ωh and δφ is a relaxed Dira measure whih is onstruted using χ(φh) andwhose support approximates the boundary. In other words, the shallow waterequations degrade to an algebrai equation on the veloity when χ tends to zero.At this level, we have still a limitation: the struture an be either submergedor fully emerged. One does not target situations where the water pass and runsover the struture and drops afterward. This is not a limitation for our problemas these situations do not represent muh in term of water wave energy (seesetion 4).Figure 1 shows an example of an inoming wave where slip boundary ondi-tion is enfored along a ylindrial struture using (6).4 Cost funtionOne of the main ingredients in the hain of ontrol is the ost funtion to beminimized. One expets the bottom to at as a �exible struture and to adaptto �ow onditions in order to minimize some energy-based funtional. Onean, for instane, onsider an energy made of the sum of instantaneous watermehanial energy and involving a onstraint on sand displaements requiringminimal bathymetry hanges from ψ(t− T ) at the beginning of a time intervalof in�uene T . We assume that the in�uene of water onditions on a sandybottom at a given instant does not involve time history of more than a few waveperiods:
J1(ψ) =

∫ t

t−T

∫

Ω

(

1

2
ρwgη

2 + ρsg(ψ(τ) − ψ(t− T ))2
)

dτdΩ, (7)where Ω is the physial domain, ρw and ρs respetively the water and sanddensity and η is the �ow elevation de�ned as:
η(x, y, ψ, t) = h(x, y, ψ, t) −

1

T

∫ t

t−T

h(x, y, ψ, τ)dτ
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This funtional aims at reduing wave elevations with minimal hanges in theoriginal bottom. Minimizing J1 does not mean that a �at bottom will remain�at. Indeed, one observes the apparition of ripples and dunes on a �at bottomeven at moderate �ow speeds.We have observed that ontrolling water wave energy is ruial to �ght ero-sion. Indeed, this is responsible for sediments put in suspension by generatingbottom orbital veloity [19, 8, 4℄. Figure 2 shows an example of bottom seahanges due to interations with water motion based on the minimization of(7) after about one day. The approah predits the apparition of two longshorenatural sand bars. The bars appear after six hours and remain stable in time.Water elevation in time is presribed on the left boundary whih reates wavesentering normal to this boundary. The starting bottom pro�le is linear. Theapparition of sand bars is ompatible with what observed in nature.A fundamental idea motivating the introdution of the seond term in thefuntional (7) is the onept of optimal transport. In other words, one thinksthat the bottom will adapt to the �ow in some optimal way in term of sandtransport. A more general funtional ould therefore involve the Wassersteindistane between two bottom seas. Suppose ψ(t − T, x, y) and ψ(t, x, y) arepositive funtion desribing two bathymetries at instants t− T and t suh thatthe total amount of sand is onserved:
∫

Ω

ψ(t, x, y) dΩ =

∫

Ω

ψ(t− T, x, y) dΩ (8)An optimal transport of ψ(t − T, x, y) to ψ(t, x, y) will onsist in �nding theappliation M : Ω → Ω realizing the transformation from ψ(t − T, x, y) to
ψ(t, x, y) minimizing:

dW (ψ(t− T, x, y), ψ(t, x, y)) =

∫

Ω

‖(x, y) −M(x, y)‖2ψ(t− T, x, y) dΩ (9)
8



and suh that for all ontinuous funtion ϕ
∫

Ω

ψ(t− T, x, y)ϕ(M(x, y)) dΩ =

∫

Ω

ψ(t, x, y)ϕ(x, y) dΩ (10)
dW is a measure of the transport e�ort from one bathymetry to another. Oneknows that there is a unique M = ∇φ with φ a onvex potential satisfying (9)[27, 6, 21℄. And, as the bathymetries in sandy bottom seas are stritly positiveand ontinuous funtions then one an look for φ solution of the Monge-AmpèreEquation (MAE) (H(φ) being the Hessian of φ and det(H) its determinant),

det(H(φ(x, y))) =
ψ(t− T, x, y)

ψ(t,∇φ(x, y))
(11)In other words, the governing equations for our �uid-struture system are theShallow water equations for the �uid, and the Monge-Ampère equation for thestruture and one would like to minimize the total water mehanial energyunder these PDE onstraints. Solving the MAE equation is a di�ult task andwe would like to avoid it. The seond term in ost funtion (7) is an upperbound for dW .The previous funtional involves water elevations. In the same way, oneould imagine that bottom sea will adapt to the �ow in order to redue itshorizontal veloity gradients with minimum variation in bathymetry. A seondfuntional an then be built:

J2(ψ) =

∫ t

t−T

∫

Ω

(

‖∇xyu‖ + ρsg(ψ(τ) − ψ(t− T ))2
)

dτdΩ, (12)where ∇xy indiates the spatial gradient of the variables along x and y andthe norm stands for ‖∇xyu‖ = (u2
x + v2

x + u2
y + v2

y)
1/2. Figure 3 shows anexample of bathymetry hanges after 20 hours starting from the same linearinitial bottom pro�le than in Figure 2 and applying the same water elevation intime on the left boundary. One noties a transfer from ross-shore to long-shorevariations. The latter was zero initially. The ost funtion is redued during9



time as the bottom adapts to the �ow. Figure 4 shows the same analysis butwith an emerged ylindrial struture represented by the level set tehnique.The ost funtion redution is less e�ient as some part of the bottom is nowrigid and the emerged struture ampli�es the �ow gradients.Another ost funtion of interest involves average urrent patterns:
J3(ψ) =

(

1

T

∫

Ω

(

∫ T

0

u dτ

)

− udes dΩ

)2

, (13)where udes indiates a target mean urrent distribution. Minimizing this fun-tional means �nding the bottom sea shape whih realizes 'best' a mean �owpattern. Of ourse, as often in inverse problems, existene of a solution is notobvious. Indeed, it is not always possible to �nd a shape realizing the requiredstate distribution.Figure 5 shows an example of appliation. In a square basin of side L,we start from a �at bottom for whih the mean urrent vanishes for periodi�ow elevations presribed on the left boundary. we aim at �nding a new shaperealizing a given target mean �ow urrent. Here, the target mean urrent isgiven by 1
T

∫ T

0 u dτ = (a, 0) for y ∈ [0, L/3] ∪ [2L/3, L] and (−2a, 0) for y ∈

[L/3, 2L/3]. One sees that a non intuitive bottom shape found by minimizationalmost realizes the target mean urrent. One this is ahieved, the funtionaland gradient are small and the bottom shape does not hange anymore. Herethe bottom shape does not depend on time beause the target mean urrent istaken stationary. One ould have targeted a mean urrent with low frequenytime variations. Then the bottom shape adapts to the variation in time of
udes(t) and the ost funtion is then time dependent too.

J4(t, ψ) =

(

1

T

∫

Ω

(
∫ t

t−T

u dτ

)

− udes(t) dΩ

)2

, (14)
10



5 Minimization priniple and the Exner equationConsider the following equation whih in disrete form minimizes J(ψ):
ψt = −ρ∇ψJ, ψ(t = 0, x, y) = ψ0 (15)Here ρ haraterizes the ability of sand to be put in motion by water. Togetherwith the interval of in�uene T , mentioned in (7), ρ is the seond parameter tobe assimilated using experimental data.One well-known approah to model bottom motion is through the Exnerequation [25℄. This equation models the onservation of mass between in the bedand transported sediments. More preisely, this is a onservation equation forthe mass of sediments in the bed of a hannel and sediments that are in motiondue to transport by the �ow. Bed elevation or degradation are supposed linearwith respet to the amount of sediment that drops out or beomes entrained bythe �ow:

ψt +
1

1 − λp
∇.q = 0, ψ(t = 0, x, y) = given, (16)where λp ∈ [0, 1[ is the porosity of the bed. One remarks that 1/(1 − λp) playsthe role of ρ in the minimization equation (15). This inreases with the porosityof the bed. To link both analysis we de�ne ρ byρ = 1/(1 − λp)

n, 1 ≤ n. q isusually a funtion of U and involves several onstants haraterizing the sand.Lak of data is one major di�ulty with this approah. This is why Exnerequation is often onsidered in one dimension in spae
ψt +

1

1 − λp
qx = 0, ψ(t = 0, x) = given,where one simple and popular expression for q is of the form q ∼ u|u|m−1 with

m > 1 [28℄.
11



Equation (15) is an Exner equation with a non loal �ux:
q(x) = q(−∞) +

∫ x

−∞

(1 − λp(ζ))
1−nJψ(ζ)dζ,where one an suppose that q(−∞) = 0 as x → −∞ denotes o�shore loationsand far from the shallow domain where the e�et of the �ow motion on thebottom sea is negligible. In the same way, Jψ(ζ) → 0 when ζ → −∞. Thisalso means that the integral will have a �nite support. One an also notie thatthe main ontributions to the �ux ome from regions in the bed where λp → 1(porous).Now, onsider J = 1

2u
2
x. Minimizing J would fore the bottom to adaptin order to redue gradients in the �ow. This is similar to what we expetminimizing (12). For this funtional q reads:

q(x) =

∫ x

−∞

(1 − λp)
1−n uζ uψζ dζ,and integrating by part,

q(x) = −

∫ x

−∞

(

(1 − λp)
1−n uζ

)

ζ
uψ dζ + (1 − λp(x))

1−n ux(x)uψ(x).This shows a loal term plus a global orretion involving seond order deriva-tives of the state upstream. Similar nonloal terms an be found, for instane,in a model by Fowler for the motion of sand dunes [11℄.6 Sensitivity evaluationSensitivity evaluation for large dimension minimization problems, like our sit-uation, is not an easy task. The most e�ient approah is to use an adjointvariable with the di�ulty that it requires the development of a spei� soft-ware. Automati di�erentiation (AD) brings some simpli�ation, but does notavoid the main di�ulty of intermediate states storage in time dependent alu-12



lations. Chek-pointing tehnis bring, however, some relief [12℄. In this setion,we explain the adjoint method through a model problem and its omputer-basedimplementation through automati di�erentiation for a time-dependent modelproblem [20, 22℄.6.1 A model problemConsider the following time dependent state equation for u(y, t), − ψ ≤ y ≤

ψ, t ≥ 0 in a in�nite hannel of width 2ψ.
ut − uyy = F (ψ, y, t), u(ψ, t) = u(−ψ, t) = 0, (17)with

F (ψ, y, t) = −εω sin(ωt)(ψ2 − y2) + 2(1 + ε cos(ωt)),induing small perturbation in time around a paraboli solution if ε << 1. Theexat solution for this equation is:
u(y, t) = (ψ2 − y2)f(t), f(t) = (1 + ε cos(ωt)).And onsider a funtional J of the form:

J(ψ, t) = ψmuy(y = ψ, t), m ∈ IN∗ (18)involving instantaneous state quantities. The sensitivity with respet to ψ is:
J
ψ
(ψ, t) = mψm−1uy(ψ, t) + ψmuyψ(ψ, t). (19)The �rst term is what we all inomplete sensitivity [20℄ where the sensitiv-ity of the state with respet to the shape is negleted. This is a very strongapproximation. But, as we have:

uy(ψ, t) = −2ψf(t), and uyψ(ψ, t) = −2f(t),13



the di�erent ontributions in (19) an be expressed:
J
ψ
(ψ, t) = mψm−1(−2ψf(t)) + ψm(−2f(t)).Comparing with −2(m + 1)ψmf(t), one sees that the inomplete sensitivityapproximation of the gradient is aurate and its preision inreases with m.Most important, the inomplete sensitivity has always the right sign. It isobvious that the analysis still holds if the funtional involves a time integral:
J(ψ, T ) =

∫

(0,T )

ψmuy(y = ψ, t) dt.Now, if the funtional involves an integral over time and spae:
J(ψ, T ) =

∫

(0,T )×(−ψ,ψ)

j(y, t) dt dy, j(ψ, t) = ψmuy(y = ψ, t), m ∈ IN∗Linearizing J one has:
J
ψ
(ψ, T ) =

∫

(0,T )×(−ψ,ψ)

(mψm−1uy(ψ, t) + ψmuyψ(y, t)) dt dy

+

∫

(0,T )

[ψmuy(y, t)]±ψ dt.An inomplete evaluation of the sensitivity is still aurate beause uyψ = 0.One also noties that if m is odd the last integral vanishes. However, thisintegral is heap to get as it does not involve any state sensitivity with respetto ψ.Inomplete sensitivity is therefore e�ient and very heap to get beause itdoes not require the linearization of the state equations. However, it only holdsfor funtionals of the form:
J(ψ, T ) =

∫

(0,T )

j(ψ, t) dt, (20)
14



where j features a separation in variables ψ and u [20℄:
j(ψ, t) = α(ψ)β(u),with α and β di�erentiable funtions.Now, if J is of the form:

J(ψ, T ) =

∫

(0,T )×(−ψ,ψ)

j(y, t) dt dy, (21)with j arbitrary, the sensitivity reads:
Jψ(ψ, T ) =

∫

(0,T )×(−ψ,ψ)

(j
ψ

+ juuψ) dt dy +

∫

(0,T )

j(±ψ, t) dt.In this expression only u
ψ
is ostly to get as it requires the linearization of thestate equation.The solution of the linearized state equation (17) permits to write for allfuntion v:

0 =

∫

(0,T )×(−ψ,ψ)

((u
ψ
)t − (u

ψ
)yy − F

ψ
)v dt dy.Integrating by part, it gives:

0 =

∫

(0,T )×(−ψ,ψ)

(−vt−vyy)uψ dt dy+

∫

(0,T )×(−ψ,ψ)

−F
ψ
v dt dy+

∫

(−ψ,ψ)

[vu
ψ
]0Tdy.Let us introdue a bakward adjoint problem, suitable when the dimension ofthe ontrol spae parameter is large (as it is the ase in our problem of bottomsea modi�ation):

vt − vyy = ju, v(y, T ) = v(±ψ, t) = 0. (22)Therefore, with v solution of the bakward adjoint equation (22) with the hosen
15



boundary and �nal onditions one has:
∫

(0,T )×(−ψ,ψ)

juuψ dt dy =

∫

(−ψ,ψ)

u
ψ
(0)v(0)dy −

∫

(0,T )×(−ψ,ψ)

F
ψ
v dt dy.The important point here is that, unlike with the linearized equation, with ψ ofany dimension v is omputed only one before assembling the right-hand-sideabove.Here, the state equation is linear and no storage of intermediate states wasneessary in adjoint alulation. On the other hand, if the state equation isnonlinear, solution of the adjoint equation requires the storage all intermediatestates between 0 and T . For instane, onsider

ut + uuy − uyy = F (t), u(ψ, t) = u(−ψ, t) = 0.For the same funtional (21), the adjoint equation in this ase reads
vt + uvy − vyy = ju, v(y, T ) = v(±ψ, t) = 0,

u is now present in the left-hand-side of the equation to be solved bakwardfrom T to 0.In the ontext of the Saint Venant equations, if W is solution of the bakwardSaint Venant adjoint equation (W has the same struture than U), the analysisabove leads to:
∫

(0,T )×Ω

j
U
U
ψ

= −

∫

Ω

Uψ(0)W(0) +

∫

(0,T )×Ω

WS
ψ
(U, ψ), (23)where S is the soure term in the Saint Venant equations (3). Indeed, forthe Saint Venant equations the diret dependeny in ψ is only in gh∇ψ inthe momentum equations. Also, as in our ase there is no diret dependenybetween the initial ondition U(0) and ψ the �rst term in the right-hand-side of(23) vanishes. Denoting W = (w1,w2)t with w2 the adjoint variable assoiated16



to u, one has in weak form:
∫

(0,T )×Ω

WS
ψ
(U, ψ) = −

∫

(0,T )×Ω

g∇.(hw2).Slip or Dirihlet boundary onditions give the same homogeneous onditions forthe orresponding adjoint variables removing the boundary terms in weak form.7 Conluding remarksMinimization priniples have been used in a ontext of �uid-struture ouplingand the adaptation of a soft struture to a �ow in order to minimize somefuntional under geometri and state onstraints. This study, therefore, takesplae in the ontext of shape optimization for unsteady �ows where both timedependent and independent shapes an be targeted. Bottom sea motion is anexample of the former and building defene strutures against erosion the latter.For instane, one an design an immersed struture with geotextile tube [4℄ totarget a �ow having a given energy spetrum (e.g. spetrum of waves breakingon the shore based on the number of waves versus their height for a given timeinterval). When used to model sandy bottom seas evolutions, the study showsthat the outome of the oupling has suitable qualitative behavior omparableto what observed on natural sites. Still, as in any modelling proedure, oneneeds now an assimilation step for the two parameters of the model (ρ and T ).The �ow motion is desribed by the shallow water equations but this an beextended to more sophistiated models inluding dispersion e�ets. Also, theapproah an obviously be applied to situations where the �ow is desribed bya spetral approah and where time has been removed from the equations usingseparation of variables in time and spae [15, 3, 4℄. This is espeially interestingif the funtional is based on spetral information as well, as mentioned above.Several assumptions have been analyzed and the orresponding ost fun-tionals desribed. The approah enables for the introdution of the physialmehanisms responsible for sand motions. Also, geographi and eonomial17



onsiderations an be introdued in the funtional.Sensitivity analysis has been then used to loally minimize these funtionals.The gradients of these funtionals also provide valuable information to identifydominant fators whih should therefore reeive more attention in the modellingproess. It has been shown that when possible the funtional should be hosenin order to take advantage of inomplete sensitivity evaluation whih makes theost of sensitivity evaluation negligible and so the minimization proedure. Inases the funtional annot be of the form of (20), one needs to develop anadjoint solver for the state equations. This is the ase for the funtionals (7),(12) and (13) desribed in setion 4.Finally, it has been shown that the minimization approah is equivalent tosolving an Exner equation for the bottom with an original �ux term linkingglobal and loal informations. In one dimension in spae, this �ux term anbe derived as non loal funtion involving at a given point the ontributions ofupwind regions and the ontribution inreases with the porosity of the bed.
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Figure 1: Example of �ow in a domain without and with an emerged ylindrialstruture modelled by a level set funtion. Snapshots of �ow veloity �elds(upper line) and water elevation (lower line) for both ases. In partiular, onesees the slip boundary ondition on the veloity is well enfored by the level setformulation.
22



Figure 2: Bottom morphodynamis by �uid-struture oupling based on mini-mization priniples. Upper line: water elevation (left) and bathymetry hanges(right) after 10 hours. Middle line: same after 20 hours. Lower line showsbathymetry variabilities longshore. The oupling is started from an initial lin-ear bathymetry. The horizontal line indiates water level at rest.
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Figure 3: Bottom hanges minimizing J2 after 20 hours starting from a linearbottom. Water elevation (upper/left), bathymetry (upper/right) and evolutionof the normalized ost funtion in time (lower).

Figure 4: Bottom hanges minimizing J2 starting from a linear bottom plusan immersed ylindrial struture. Water elevation (upper/left), bathymetry(upper/right) and evolution of the normalized ost funtion in time (lower).24



Figure 5: Finding a bottom surfae (right) generating a target mean urrent(left). On the �at bottom the mean urrent is zero. The �ow elevation isperiodi and presribed on the left boundary. The �nal shape is far from beingintuitive.
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