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Abstract - A sandy sea bottom is seen as a structure with low stiffness which
adapts to the motion of water in a shallow domain described by the Saint Venant
equations. The coupling is based on the minimization of water wave energy with
minimal sand transport. The approach is shown being similar to the use of an
original Ezxner equation for the bottom with non local flux expressions. Also,
examples of the applications of the framework to inverse problems in coastal
engineering are shown.
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Exner equation.

1 Introduction

In coastal morphodynamics some events occur over small space and time scales.
One can cite the removal of sediment from the toe of coastal structures which

often occurs and recovers completely during the course of a single tide (hourly



basis). Then, the time and space scales concern storm response lasting for a
few tides (say daily basis). Here the beach can be modified both long and
cross-shore by hundreds of meters. Recovery between storms will take longer
(monthly basis). This classification can continue with seasonal and inter-annual
variability. Hence, coastal morphodynamics occur over a broad range of time
and length scales where the spatial scale increases with the timescale. This latter
remark also implies that long-shore transport gains importance over cross-shore
with increasing timescale.

The litterature on coastal morphodynamics use either local concepts such
as sediment transport using fluid-induced shear in the sediment modelling and
bottom friction coefficient or global ones such as global beach morphodynamics
based on long and cross-shore fluxes and global beach lines dynamics [7, 8, 19].

We would like to unify local and global analysis by the application of the
control theory to the evolution of sandy bottom seas. This melange of local
and global natures is made evident when looking at how the question of bottom
morphodynamics is often treated in the literature using the solution of an Exner
equation [25]. One will indeed show that the approach provides a new flux term
for the Exner equation linking local and global informations.

In the past we have used minimization principle to design defence structures
against beach erosion [3, 4]. In these works, the designed structure were in-
dependent of time and were built once for all. Here, we would like to go one
step further giving the possibility to the structure to change in time. One par-
ticular case is then the sea bottom seen as a structure with low stiffness. The
fundamental assumption is that the bottom adapts to the flow by some sort of
optimal sand transport in order to minimize some energy expression. Optimal
transport can be seen as minimal change in the bottom shape. The approach
is not limited by the particular expressions we consider here for the functional
nor by the flow equations which can also be more sophisticated.

The paper starts with the problem of bottom motion formulated as an opti-

mal control problem. Shallow water equations are briefly recalled with emphasis



on boundary conditions by level set for emerged structures. Follows a discussion
on the choice of cost functions. A comparison is then made between modelling
the transport of sediments by the Exner equation and by our minimization prin-
ciple. Sensitivity evaluation being an important issue in this calculus of variation
problem, a model problem is introduced to discuss various questions on complex-
ity and the need for the adjoint equation for the flow equation. The extension
to the case of the Saint Venant equations is also presented. Throughout the

paper, one shows simulations featuring qualitative behavior of the approach.

2 Bottom motion as a control problem

In what follows, the parameterization of the bottom sea and the corresponding
bathymetry are both denoted by . The latter is a two dimensional positive
function ¥(x,y) : @ € R? — R* and the former is a multidimensional function
in an admissible space O,q C R™ with n the dimension of the parameter space
and defining uniquely ¥ (z, y).

We consider a control problem where the control is the bottom sea repre-
sented through a parameterization 1. 1 changes with time following the changes
in the state given by the flow conditions U. The admissible space is to spec-
ify not any shape can be taken by the bottom. For instance, 1) should be a
univocal function with some regularity. The regularity is specified through the
parameterization chosen. We assume that ¢ changes in order to minimize a

time dependent functional:

minweoa,dJ(@/’;u(?/’)); (1)

where U(Y) = {U(,7),7 € [t — T,t]} gathers the state evolution in time

solution of some state equation (here the shallow water equations). The cost



function involves this state evolution as, for instance, in:

Twu(w) = [ .00, @

T indicates a time dependency window and also permits to introduce a differ-
ence in time scales between the bottom sea and the flow motions. We will see

examples of such functionals in section 4.

3 Governing equations for shallow waters

Given a sea bed bathymetry v, the two-dimensional nonlinear shallow water or

Saint Venant equations [5] with topobathymetry are:
0,U + 0, F(U) +0,G(U) = S(U), (3)

where U = t(h, hu, hv), F(U) = (hu, hu®+ gh2, huv), G(U) = *(hv, huv, hv? +
gh2) and S(U) = Y(0,—gh 09, —ghdyp). u = *(u, v) the depth-averaged
velocity with v and v the scalar components in the horizontal x, y directions
and h is the local water depth. U is the vector for the conservative variables,
F(U) and G(U) stand for the flux functions respectively along the z and y
directions and S(U) represents the bed slope source term.

These equations are discretized by a finite volume formulation [10]. Our
finite volume implementation preserves steady state solutions on non flat bottom
seas in the absence of perturbations [1, 2]. It is also suitable to capture wetting
and drying phenomena [18, 17].

Overall, four boundary conditions are needed at slip, inlet, shoreline and
outlet boundaries. The slip boundary condition (u.n = 0) is naturally taken
into account in a finite volume formulation. The outlet condition for open seas
is a transmissive boundary condition. Values at boundary cells are obtained
by second order extrapolations normal to the boundary from the values inside

the domain. To describe incoming waves we use an absorbing/generating inlet



boundary condition where the values of water depth are prescribed. To sim-
ulate sea conditions, water depth variations at inlet are obtained by addition
of monochromatic waves following, for instance, a Jonswap energy spectral dis-
tribution [14, 13]. In subcritical regimes, characteristic curves and Riemann
invariants provide normal velocity. In open sea we allow for reflected waves to
freely exit the domain not creating reflection [16]. The shoreline is an implicit
function of the flow and the bed. Dry cells are those where the water depth is
below a given value (say 1071Y). Once those identified, the shoreline location is
solution of Riemann problems at the interfaces between wet and dry cells [18].

For the basin simulations presented here only the slip and inlet conditions
have been applied as there is not outgoing wave in the basin and also water
depth never vanishes here so none of the open sea or the shoreline conditions
have been activated.

Time integration is explicit for the flow. Due to the difference of the time
scales between fluid motion and changes in sea beds, several times steps will be

taken in the flow solver before a new time step by the bed model.

3.1 Level set

When there is an emerged structure or bathymetry, slip boundary condition
needs be applied along the emerged surface. In order to avoid fitting the mesh
to the contour of emerged structures, we use their level set representation and do
not modify the mesh to account for their presences. Level set is an established
technique to represent fixed or moving interfaces on cartesian grids. Immersed
boundary, fictitious domain methods as well as penalizing techniques are meth-
ods to impose boundary conditions on surfaces which are not unions of edges
and faces of elements of the (non-body fitted) computational mesh [9, 24, 26, 23].

A parametrization of a boundary T" of a domain Q2 by the level set method

is based on the zero-level curve of a function ¢:

F={xeQ : ¢(x)=0}



The function ¢ could be the signed Euclidean distance to I':
=+ inf |z —
¢(z) = = inf |z —y|
with the convention of a plus sign if x € 2 and minus sign otherwise. Hence

¢lr =0, dlr2\o <0, ¢lo>0 (4)

The definition can be extended to open shapes by using I'* instead of €.
For a given shape given by (4) the normal to I is n = V¢/|V¢| at ¢ = 0.

A relaxed characteristic function of Q2 is

x = max(0,¢/(|4] + eopt (7)) (5)

where €,pt(h) is a strictly positive relaxation function which tends to zero with
the background mesh size h. It is defined solving minimization problems for a

sampling in h:

Eopt(h) = argmin, )~ [[un(x(Pn(e(h)))) — n wres|

where IIj is the restriction operator to mesh h and u; the discrete state. The
numerical results given below have been computed with eopt(h) = ch for some
constant ¢ > 0. This choice guarantees the consistency of the scheme. The
coefficient c is fitted, once for all, in order to minimize the error ||u,.¢ — uj || for
a reference solution u,.; which can be either a solution obtained with a body
fitted mesh or, when available, an analytical solution.

Once ¢y, is known, we take into account the boundary conditions for a the

shallow water equations through:
(8tUh + 8IFh(Uh) + ayGh(Uh) - Sh(Uh)) X(¢h) + gh(uh.nh)5¢h =0 (6)

Here &, builds an extension of the boundary condition on I'j, over the domain



Qy, and 6y is a relaxed Dirac measure which is constructed using x(¢p) and
whose support approximates the boundary. In other words, the shallow water
equations degrade to an algebraic equation on the velocity when y tends to zero.
At this level, we have still a limitation: the structure can be either submerged
or fully emerged. One does not target situations where the water pass and runs
over the structure and drops afterward. This is not a limitation for our problem
as these situations do not represent much in term of water wave energy (see
section 4).

Figure 1 shows an example of an incoming wave where slip boundary condi-

tion is enforced along a cylindrical structure using (6).

4 Cost function

One of the main ingredients in the chain of control is the cost function to be
minimized. One expects the bottom to act as a flexible structure and to adapt
to flow conditions in order to minimize some energy-based functional. One
can, for instance, consider an energy made of the sum of instantaneous water
mechanical energy and involving a constraint on sand displacements requiring
minimal bathymetry changes from (¢ — T') at the beginning of a time interval
of influence T. We assume that the influence of water conditions on a sandy
bottom at a given instant does not involve time history of more than a few wave

periods:

1) = [ [ (3pu +pustom) - vte -1 arae. @

where (Q is the physical domain, p,, and ps respectively the water and sand

density and 7 is the flow elevation defined as:

1 t
a0t = bl nt) = 7 [ hav e



This functional aims at reducing wave elevations with minimal changes in the
original bottom. Minimizing J; does not mean that a flat bottom will remain
flat. Indeed, one observes the apparition of ripples and dunes on a flat bottom
even at moderate flow speeds.

We have observed that controlling water wave energy is crucial to fight ero-
sion. Indeed, this is responsible for sediments put in suspension by generating
bottom orbital velocity [19, 8, 4]. Figure 2 shows an example of bottom sea
changes due to interactions with water motion based on the minimization of
(7) after about one day. The approach predicts the apparition of two longshore
natural sand bars. The bars appear after six hours and remain stable in time.
Water elevation in time is prescribed on the left boundary which creates waves
entering normal to this boundary. The starting bottom profile is linear. The
apparition of sand bars is compatible with what observed in nature.

A fundamental idea motivating the introduction of the second term in the
functional (7) is the concept of optimal transport. In other words, one thinks
that the bottom will adapt to the flow in some optimal way in term of sand
transport. A more general functional could therefore involve the Wasserstein
distance between two bottom seas. Suppose (¢t — T, z,y) and ¥(t,x,y) are
positive function describing two bathymetries at instants ¢ — 7" and ¢ such that

the total amount of sand is conserved:

/¢(t,a:,y) dQ:/w(t—T,x,y) e (8)
Q Q

An optimal transport of ¥(t — T, x,y) to ¥(t,z,y) will consist in finding the
application M : Q —  realizing the transformation from ¢ (t — T,z,y) to

Y(t, z,y) minimizing:

dw (B(t — T2, y)b(ts 2, y)) = /Q | y) — M(z,g)[26(t — T,z,y) d2 (9)



and such that for all continuous function ¢

/ bt — T, 2, y)p(M(z,y)) d2 = / b(try)p(e,y) 2 (10)
Q Q

dw is a measure of the transport effort from one bathymetry to another. One
knows that there is a unique M = V¢ with ¢ a convex potential satisfying (9)
[27, 6, 21]. And, as the bathymetries in sandy bottom seas are strictly positive
and continuous functions then one can look for ¢ solution of the Monge-Ampére

Equation (MAE) (H(¢) being the Hessian of ¢ and det(H) its determinant),

¢(t _ Tvxvy)

det(H (¢(z.v))) = [rrgam s

(11)

In other words, the governing equations for our fluid-structure system are the
Shallow water equations for the fluid, and the Monge-Ampére equation for the
structure and one would like to minimize the total water mechanical energy
under these PDE constraints. Solving the MAE equation is a difficult task and
we would like to avoid it. The second term in cost function (7) is an upper
bound for dyy.

The previous functional involves water elevations. In the same way, one
could imagine that bottom sea will adapt to the flow in order to reduce its
horizontal velocity gradients with minimum variation in bathymetry. A second

functional can then be built:

50) = [ [ (IVayull+ pug(wir) =6 =T)7) dran, (12

where V., indicates the spatial gradient of the variables along x and y and
the norm stands for ||V.yul = (u2 + v2 + u2 + v2)'/2. Figure 3 shows an
example of bathymetry changes after 20 hours starting from the same linear
initial bottom profile than in Figure 2 and applying the same water elevation in
time on the left boundary. One notices a transfer from cross-shore to long-shore

variations. The latter was zero initially. The cost function is reduced during



time as the bottom adapts to the flow. Figure 4 shows the same analysis but
with an emerged cylindrical structure represented by the level set technique.
The cost function reduction is less efficient as some part of the bottom is now
rigid and the emerged structure amplifies the flow gradients.

Another cost function of interest involves average current patterns:

T 2
0= (3 [ ([ war) - oo a9) 3

where uges indicates a target mean current distribution. Minimizing this func-
tional means finding the bottom sea shape which realizes ’best’ a mean flow
pattern. Of course, as often in inverse problems, existence of a solution is not
obvious. Indeed, it is not always possible to find a shape realizing the required
state distribution.

Figure 5 shows an example of application. In a square basin of side L,
we start from a flat bottom for which the mean current vanishes for periodic
flow elevations prescribed on the left boundary. we aim at finding a new shape
realizing a given target mean flow current. Here, the target mean current is
given by %fOTu dr = (a,0) for y € [0,L/3] U [2L/3,L] and (—2a,0) for y €
[L/3,2L/3]. One sees that a non intuitive bottom shape found by minimization
almost realizes the target mean current. Once this is achieved, the functional
and gradient are small and the bottom shape does not change anymore. Here
the bottom shape does not depend on time because the target mean current is
taken stationary. One could have targeted a mean current with low frequency
time variations. Then the bottom shape adapts to the variation in time of

Udes(t) and the cost function is then time dependent too.

2

nen)= (3 [ ([ war) - vawtt ) | (14)
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5 Minimization principle and the Exner equation

Consider the following equation which in discrete form minimizes J(1)):

¢t = —pva, 1/)(t = Oa xvy) = 1/}0 (15)

Here p characterizes the ability of sand to be put in motion by water. Together
with the interval of influence T', mentioned in (7), p is the second parameter to
be assimilated using experimental data.

One well-known approach to model bottom motion is through the Exner
equation [25]. This equation models the conservation of mass between in the bed
and transported sediments. More precisely, this is a conservation equation for
the mass of sediments in the bed of a channel and sediments that are in motion
due to transport by the flow. Bed elevation or degradation are supposed linear
with respect to the amount of sediment that drops out or becomes entrained by

the flow:

1
P + 3 V.qg=0, 9(t=0,z,y)=given, (16)

L=2p
where A, € [0, 1] is the porosity of the bed. One remarks that 1/(1 — A,) plays
the role of p in the minimization equation (15). This increases with the porosity
of the bed. To link both analysis we define p byp = 1/(1 —X,)", 1 < n. g is
usually a function of U and involves several constants characterizing the sand.
Lack of data is one major difficulty with this approach. This is why Exner

equation is often considered in one dimension in space

P + ¢ =0, ¥({t=0,z)=given,

1
11—,

where one simple and popular expression for ¢ is of the form ¢ ~ u|u|™~! with

m>1[28].

11



Equation (15) is an Exner equation with a non local flux:

@) =a(=0)+ [ (1= () (e,

— 0o

where one can suppose that ¢(—oco) = 0 as © — —oo denotes offshore locations
and far from the shallow domain where the effect of the flow motion on the
bottom sea is negligible. In the same way, Jy({) — 0 when { — —oo. This
also means that the integral will have a finite support. One can also notice that
the main contributions to the flux come from regions in the bed where A\, — 1
(porous).

2. Minimizing J would force the bottom to adapt

Now, consider J = su

1
2
in order to reduce gradients in the flow. This is similar to what we expect

minimizing (12). For this functional ¢ reads:

q(z) = / (1= Ap)' ™™ g uye dg,

— 00
and integrating by part,

X

ae) == [ (=27 ), g A+ (1 X)) (g ).

— 00

This shows a local term plus a global correction involving second order deriva-
tives of the state upstream. Similar nonlocal terms can be found, for instance,

in a model by Fowler for the motion of sand dunes [11].

6 Sensitivity evaluation

Sensitivity evaluation for large dimension minimization problems, like our sit-
uation, is not an easy task. The most efficient approach is to use an adjoint
variable with the difficulty that it requires the development of a specific soft-
ware. Automatic differentiation (AD) brings some simplification, but does not

avoid the main difficulty of intermediate states storage in time dependent calcu-

12



lations. Check-pointing technics bring, however, some relief [12]. In this section,
we explain the adjoint method through a model problem and its computer-based
implementation through automatic differentiation for a time-dependent model

problem [20, 22].

6.1 A model problem

Consider the following time dependent state equation for u(y,t), —1 <y <

1, t >0 in a infinite channel of width 2.

up — uyy = F(,y,1), u(,t) = u(=¢,t) =0, (17)

with

F(,y,t) = —ew sin(wt)(1b2 — y2) + 2(1 + £ cos(wt)),

inducing small perturbation in time around a parabolic solution if ¢ << 1. The

exact solution for this equation is:

u(y,t) = (¥ —y*)f(t),  f(t) = (1 +ecos(wt)).

And consider a functional J of the form:

J(@,t) = " uy(y = ¢, t), meIN* (18)

involving instantaneous state quantities. The sensitivity with respect to ¥ is:

T, (1) = map™ Ly ($,8) + ™ uy, (4, 1). (19)

The first term is what we call incomplete sensitivity [20] where the sensitiv-
ity of the state with respect to the shape is neglected. This is a very strong

approximation. But, as we have:

uy(w7t) = _2wf(t)v and Uy, (¢at) = —2f(t),

13



the different contributions in (19) can be expressed:

I, (W, 1) = mp™TH (=29 f (1)) + ™ (~2f(1)).

Comparing with —2(m + 1)y™ f(t), one sees that the incomplete sensitivity
approximation of the gradient is accurate and its precision increases with m.
Most important, the incomplete sensitivity has always the right sign. It is

obvious that the analysis still holds if the functional involves a time integral:

J(,T) = /(0 . V" uy(y =1, t) dt.

Now, if the functional involves an integral over time and space:

J(W,T) = / 1) dt dy, §(,t) = Puy(y = 1), me N
(0,T)x (=)

Linearizing J one has:

T, (. T) = / (™ Yty (1, £) + 6™y, (3, 1)) dt dy
0,7)x(=1,7)

+ / ™y (s )] .
(0,1)

An incomplete evaluation of the sensitivity is still accurate because u,, = 0.
One also notices that if m is odd the last integral vanishes. However, this
integral is cheap to get as it does not involve any state sensitivity with respect
to .

Incomplete sensitivity is therefore efficient and very cheap to get because it
does not require the linearization of the state equations. However, it only holds

for functionals of the form:

I, T) = /( w0 d (20)

14



where j features a separation in variables ¢ and u [20]:

3@, 1) = a(¥)B(w),

with « and 3 differentiable functions.

Now, if J is of the form:

T, T) = / J(y.t) dt dy, (21)
(0,T)x (=,2)

with j arbitrary, the sensitivity reads:

(4, + Juu,) dt dy+/ j(Ee,t) di.
(07T)

sw.1) = [

(0,T)x (—,%)

In this expression only u, is costly to get as it requires the linearization of the
state equation.
The solution of the linearized state equation (17) permits to write for all

function v:

0= / ((,)s — (w,)yy — F, o dt dy.
(0,T)x (=)

Integrating by part, it gives:

0= / (—ve—vyy)u, dt dy+/ —F,vdt dy+/ [vu,]3dy.
(O»T)X(ﬂ/’ﬂ/’) (OvT)X(flbv"b) (7"#»"#)

Let us introduce a backward adjoint problem, suitable when the dimension of
the control space parameter is large (as it is the case in our problem of bottom

sea modification):
Ut — Uyy = juv U(y7T) = U(:I:wa t) =0. (22)

Therefore, with v solution of the backward adjoint equation (22) with the chosen

15



boundary and final conditions one has:

/ Juu,, dt dy = / u,, (0)v(0)dy — / F,v dt dy.
(0,T)x(=,%) (=¢,¢) (0,T)x (—,%)

The important point here is that, unlike with the linearized equation, with 1 of
any dimension v is computed only once before assembling the right-hand-side
above.

Here, the state equation is linear and no storage of intermediate states was
necessary in adjoint calculation. On the other hand, if the state equation is
nonlinear, solution of the adjoint equation requires the storage all intermediate

states between 0 and 7. For instance, consider
Up + Uy — Uyy = F (1), u(),t) = u(—1,t) =0.

For the same functional (21), the adjoint equation in this case reads
Vg + UVy — Vyy = Ju, v(y, T) = v(x,t) =0,

u is now present in the left-hand-side of the equation to be solved backward
from T to 0.

In the context of the Saint Venant equations, if W is solution of the backward
Saint Venant adjoint equation (W has the same structure than U), the analysis

above leads to:

/ joU, = - / Uy, (0)W(0) + / WS, (U0),  (23)
(0, T)xQ2 Q (0, T)xQ2

where S is the source term in the Saint Venant equations (3). Indeed, for
the Saint Venant equations the direct dependency in ¢ is only in ghVi in
the momentum equations. Also, as in our case there is no direct dependency
between the initial condition U(0) and ¢ the first term in the right-hand-side of

(23) vanishes. Denoting W = (w1, wz)! with wa the adjoint variable associated

16



to u, one has in weak form:

[ows o == Vi)
(0,T)xQ

(0,T)xQ

Slip or Dirichlet boundary conditions give the same homogeneous conditions for

the corresponding adjoint variables removing the boundary terms in weak form.

7 Concluding remarks

Minimization principles have been used in a context of fluid-structure coupling
and the adaptation of a soft structure to a flow in order to minimize some
functional under geometric and state constraints. This study, therefore, takes
place in the context of shape optimization for unsteady flows where both time
dependent and independent shapes can be targeted. Bottom sea motion is an
example of the former and building defence structures against erosion the latter.
For instance, one can design an immersed structure with geotextile tube [4] to
target a flow having a given energy spectrum (e.g. spectrum of waves breaking
on the shore based on the number of waves versus their height for a given time
interval). When used to model sandy bottom seas evolutions, the study shows
that the outcome of the coupling has suitable qualitative behavior comparable
to what observed on natural sites. Still, as in any modelling procedure, one
needs now an assimilation step for the two parameters of the model (p and T').
The flow motion is described by the shallow water equations but this can be
extended to more sophisticated models including dispersion effects. Also, the
approach can obviously be applied to situations where the flow is described by
a spectral approach and where time has been removed from the equations using
separation of variables in time and space [15, 3, 4]. This is especially interesting
if the functional is based on spectral information as well, as mentioned above.
Several assumptions have been analyzed and the corresponding cost func-
tionals described. The approach enables for the introduction of the physical

mechanisms responsible for sand motions. Also, geographic and economical

17



considerations can be introduced in the functional.

Sensitivity analysis has been then used to locally minimize these functionals.
The gradients of these functionals also provide valuable information to identify
dominant factors which should therefore receive more attention in the modelling
process. It has been shown that when possible the functional should be chosen
in order to take advantage of incomplete sensitivity evaluation which makes the
cost of sensitivity evaluation negligible and so the minimization procedure. In
cases the functional cannot be of the form of (20), one needs to develop an
adjoint solver for the state equations. This is the case for the functionals (7),
(12) and (13) described in section 4.

Finally, it has been shown that the minimization approach is equivalent to
solving an Exner equation for the bottom with an original flux term linking
global and local informations. In one dimension in space, this flux term can
be derived as non local function involving at a given point the contributions of

upwind regions and the contribution increases with the porosity of the bed.
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Figure 1: Example of flow in a domainavighout |a
structure modelled by a level set funcfion.
(upper line) and water elevation (lower line)
sees the slip boundary condition on tBe¢ZABlocits
formulation.
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Figure 2: Bottom morphodynamics by fluid-structure coupling based on mini-
mization principles. Upper line: water elevation (left) and bathymetry changes
(right) after 10 hours. Middle line: same after 20 hours. Lower line shows
bathymetry variabilities longshore. The coupling is started from an initial lin-
ear bathymetry. The horizontal line indicates water level at rest.

23



Figure 3: Bottom changes minimizing Jo after 20 hours starting from a linear

bottom. Water elevation (upper/left), bathymetry (upper/right) and evolution
of the normalized cost function in time (lower).
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Figure 4: Bottom changes minimizing Jo starting from a linear bottom plus
an immersed cylindrical structure. Water elevation (upper/left), bathymetry
(upper/right) and evolution of the normalized cost function in time (lower).
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Figure 5: Finding a bottom surface (right) generating a target mean current
(left). On the flat bottom the mean current is zero. The flow elevation is
periodic and prescribed on the left boundary. The final shape is far from being
intuitive.
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