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Abstract

In this paper we study a microfluidic flow model where the movement of several
charged species is coupled with electric field and the motion of ambient fluid. The
main numerical difficulty in this model is the net charge neutrality assuption which
makes the system essentially overdetermined. Hence we propose to use the involutive
and the associated augmented form of the system in numerical computations. The
numerical experiments show that our approach gives significantly better results than
the standard approach. Our methodology is also applicable to other overdetermined
systems.
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1 Introduction

Over the past 15 years, integrated electrokinetic microsystems have been devel-
oped with a variety of functionalities including sample pretreatment, mixing,
and separation. Electric fields are used either to generate bulk fluid motion
(electroosmosis) or to separate charged species (electrophoresis). In this article
we study a widely used mathematical model for electrophoresis [1,2,5,8,16,20].

Mathematically this leads to a complicated system of nonlinear PDEs. The
system is naturally composed of 2 blocks. The first is the Stokes system which

Email addresses: bijan.mohammadi@univ-montp2.fr (Bijan Mohammadi),
jukka.tuomela@joensuu.fi (Jukka Tuomela).

Preprint submitted to Journal of Computational and Applied Mathematics 15 July 2008



governs the motion of the ambient fluid where the charged species of interest
are. The second block is a nonlinear convection diffusion system for charged
species and elliptic equation for electric potential. The real challenge comes
from the physically reasonable charge neutrality assumption: charge distribu-
tions for different species add up to zero. This constraint makes the system
essentially overdetermined, and leads immediately to problems with standard
numerical methods which are designed to deal only with square systems (as
many equations as unknowns).

Our method, already used in [9,10], uses the involutive and its associated aug-
mented form of the system in numerical computations. The augmented form
can be constructed once the involutive system and its compatibility operator
are known. Typically this leads us back to the class of square systems where
again standard methods are applicable. All relevant constraints of the prob-
lem are now explicitly included in the augmented system, hence the numerical
errors related to constraints can effectively be controlled. The computations
thus become more stable because one does not need to worry about possible
instabilies due to nonrespect of constraints. Also the results will be more re-
liable, and they are more likely to reproduce essential qualitative properties
of the solution than the standard methods. An example of this is presented
below. Note that our approach is not restricted to microfluidic systems, but
on the contrary can be applied in a wide variety of situations.

The content of the article is as follows. In section 2 we briefly recall what
is meant by involutive, completed and augmented systems. In section 3 we
present the physical model and then in section 4 derive the corresponding
completed systems, both in stationary and time dependent case. Then in sec-
tion 5 the relevant augmented systems are introduced and in section 6 we
present our numerical results. Our method gives clearly better results than
the standard approach. Finally in section 7 we conclude with some perspec-
tives for future work.

2 Involutive, completed and augmented systems

2.1 Involutive systems

The important concept of involutivity is unfortunately quite difficult to de-
fine precisely. However, for our purposes it is sufficient to explain the idea in
concrete terms and indicate how to work with this notion constructively. For
more details we refer to [3,6,7,9,10,15,18,19,21].

Let us consider the system ∇×y+y = 0. Taking the divergence we see that if
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y is a solution, then it must also satisfy ∇·y = 0. This new equation is called a
differential consequence or integrability condition of the initial system. Hence
we have two systems:

S : ∇× y + y = 0 S ′ :







∇× y + y = 0

∇ · y = 0
(1)

We say that S ′ is the involutive form of S because no more new first order
differential consequences can be found. So informally we may say that a system
is involutive, if it contains all its differential consequences (up to given order).

There are many tricky issues involved when one actually tries to compute the
involutive form, but the important point is that these constructions can be
in fact carried out. Hence the approach we are proposing here is potentially
useful for solving quite general systems of PDE.

It turns out that for the purposes of numerical computation it is sometimes
convenient to use not the “full” involutive form of the system, but to add just
some of the integrability conditions to the original system. Hence we will use
the term completed system to indicate that we may not use the full involutive
system.

But since completed systems usually have more equations than unknowns
while the numerical methods for PDEs are designed for square systems, it is
not obvious how to generalize for example the finite element method to this
more general case. We outline below one possible approach.

2.2 Augmented systems

Let us consider our problem in a general form

A0y = f (2)

and let us suppose that A0 is already in completed form. Now since A0 is in
general overdetermined, there are typically no solutions for arbitrary f ; hence
there are some compatibility conditions for f . These conditions are given by a
compatibility operator A1 such that A1A0 = 0 and (2) has a solution only if
A1f = 0.

Let us now introduce some function spaces Vi such that Ai : Vi → Vi+1. Let us

suppose that A0 is injective, A1 is surjective, and that image
(

A0

)

= ker
(

A1

)

;
in other words the following complex is exact:

0 //V0
A0

//V1
A1

//V2
// 0
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This suggests that we can decompose V1 as follows:

image
(

A0) ⊕ image
(

AT
1 ) ≃ V1

where AT
1 is the formal transpose of A1. Of course to be able to write equality

instead of ≃ we should specify carefully the relevant vector spaces. However,
proceeding formally, this decomposition suggests that it is indeed possible to
find some functional framework such that the combined operator (A0, A

T
1 )

would be bijective or at least Fredholm.

So instead of trying to solve the original system (2) in some least square sense,
we introduce an auxiliary variable ỹ and solve

A0y + AT
1 ỹ = f (3)

We call this system the augmented system. This formulation is reasonable
because the augmented system is square, hence standard software is readily
available. Also all the relevant information about the original system is con-
tained in the completed operator A0 which means that the results will be
reliable. The drawback is that we have introduced an extra variable z which
increases the computational cost. However, we can use ỹ in error control as
explained in [9].

3 Governing equations of ionic microfluids

3.1 Physical background.

Electrokinetic systems have been developed to perform a variety of functions
including chemical separations, pre-concentration, and mixing [2,20]. Exam-
ples of separation assays include on-chip capillary zone electrophoresis and
isoelectric focusing. Preconcentration methods include field amplified sample
stacking and isotachophoretic preconcentration. These applications involve the
convective-diffusion-electromigration of multiple ionic and neutral species.

Below we will discuss a fairly general convective diffusion system of equa-
tions applicable to electrokinetic microfluidics. We assume uniform and con-
stant electrical permittivity and low Reynolds number flows. We also assume
species are dilute enough to apply the Nernst-Planck equations and the dilute
approximation for Fick’s law [16].

Our formulation is applicable in thin electrical double layers, and accounts for
net charge accumulation in the bulk resulting from a coupling between electric
fields and conductivity gradients. The principal computational difficulty in this
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model is due to the net electroneutrality assumption. This assumption is valid
on the length scales relevant to the phenomena under study [5,8,16].

3.2 Initial model.

Let us consider the case where we have m different charged species in some
ambient fluid. Let ρe = F

∑

i ziC
i =

∑

i zic
i be the net charge density where

zi ∈ Z is the valence number of species i, Ci is the molar concentration and
F is the Faraday’s constant. The charge induces an electric field which is
supposed to come from the potential φ. Hence we get our first equation

−ε∆φ− ρe = 0

where ε is the permittivity of the ambient fluid. The motion of ambient fluid
is governed by Navier-Stokes equations, but because in typical applications
the Reynolds number is very low we can as well use the Stokes system. We
will further suppose that the ambient fluid is incompressible. Hence the Stokes
system in the presence of electric field can be written as

ρut − µ∆u+ ∇p− ρe∇φ = 0

∇ · u = 0

Here ρ is the density of the fluid and µ is the dynamic viscosity. Now the
movement of different species are governed by equations cit +∇ · Ji = 0 where
the current density Ji is given by

Ji = −νic
i∇φ− di∇c

i + ciu

where νi is the mobility times the Faraday’s constant and di the diffusivity
of species i. We have now introduced all necessary variables and parameters.
Taking into account that ∇ · u = 0 one has:

∇ · Ji = −νi〈∇c
i,∇φ〉 − νic

i∆φ− di∆c
i + 〈∇ci, u〉

This gives the system

ρut − µ∆u+ ∇p− ρe∇φ = 0

∇ · u = 0

cit − di∆c
i − νic

i∆φ− νi〈∇c
i,∇φ〉 + 〈∇ci, u〉 = 0 , i = 1, . . . ,m

− ε∆φ− ρe = 0

ρe −
∑

i

zic
i = 0
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In the following we will only consider the net neutrality assumption case where
ρe = 0. Assuming this, and taking the divergence of the first equation and
simplifying we obtain

ρut − µ∆u+ ∇p = 0

− ∆p = 0

∇ · u = 0

cit − di∆c
i − νic

i∆φ− νi〈∇c
i,∇φ〉 + 〈∇ci, u〉 = 0 , i = 1, . . . ,m

− ∆φ = 0

−
∑

i

zic
i = 0

(4)

Note that the system is naturally composed of 2 blocks: the Stokes system for
variables (u, p) and a diffusion like system for variables (c, φ).

The main difficulty in solving (4) with standard methods is that the elec-
troneutrality constraint (the last equation) is not respected. Of course one of
the species could be deduced from the constraint:

cm = −
1

zm

m−1
∑

i=1

zic
i (5)

However, this is a real limitation because in this case the physical character-
istics of one species are not taken into account during integration. Hence it
is definitely interesting to include the electroneutrality constraint explicitly in
the numerical model.

To complete the model (4) we should now impose the relevant boundary con-
ditions. However, now an essential difficulty appears concerning the potential
φ. On one hand from physical point of view it is clear that values of φ on the
boundary depend on other variables of the problem. However, in order to get
physically reasonable boundary conditions one should model the quite com-
plicated interactions of variables in a thin boundary layer. On the other hand
in the intended application the precise behavior of the solution in the bound-
ary layer is not very important and hence one would like to use some simple
boundary conditions and model the interactions of potential with other vari-
ables in another way. Hence we drop the equation ∆φ = 0 in (4) and proceed
with

ρut − µ∆u+ ∇p = 0

− ∆p = 0

∇ · u = 0

cit − di∆c
i − νic

i∆φ− νi〈∇c
i,∇φ〉 + 〈∇ci, u〉 = 0 , i = 1, . . . ,m

−
∑

i

zic
i = 0

(6)
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4 Completion of the initial model.

It is convenient to introduce the following quantities:

β =
∑

i

ziνic
i

di

η =
∑

i

zic
i

di

ψ =
∑

i

ziνic
i

(7)

These are all different kind of weighted averages of concentration fields and
they appear naturally in the analysis of the system (6).

4.1 Stationary case

Let us consider first the stationary case of (6):

− µ∆u+ ∇p = 0

− ∆p = 0

−∇ · u = 0

− di∆c
i − νi∇ ·

(

ci∇φ
)

+
〈

∇ci, u
〉

= 0 , i = 1, . . . ,m

−
∑

i

zic
i = 0

(8)

There seems to be too few equations: there is apparently no “natural” 2nd
order equation for φ. However, we can get an independent equation for φ
using the “constraint”

∑

i zic
i = 0. Differentiating this we obviously have

∑

i

zi∆c
i = 0

Multiplying the equations for ci in (8) by zi/di and adding them to the above
equation we obtain

−
∑

i

ziνi

di

∇ ·
(

ci∇φ
)

+
∑

i

zi

di

〈

∇ci, u
〉

= 0
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Our current system can thus be written as

− µ∆u+ ∇p = 0

− ∆p = 0

−∇ · u = 0

− di∆c
i − νic

i∆φ+
〈

∇ci, u− νi∇φ
〉

= 0 , i = 1, . . . ,m

−∇ ·
(

β∇φ
)

+ 〈∇η, u〉 = 0

−
∑

i

zic
i = 0

(9)

Because the system is quasilinear, the principal symbol of its linearized version
does not depend on the nonlinear terms of the original system. In fact the
symbol is

σL = |ξ|2







L1 0

0 L2





 where

L1 =





























µ 0 0 0

0 µ 0 0

0 0 µ 0

0 0 0 1

0 0 0 0





























and L2 =



































d1 0 . . . 0 ν1c̄
1

0 d2 . . . 0 ν2c̄
2

...
...

. . .
...

...

0 0 . . . dm νmc̄
m

0 0 . . . 0 β̄

0 0 0 0 0



































Hence the linearised system is elliptic, if β̄ 6= 0 because σL is injective for all
ξ 6= 0 in this case. Here c̄i and β̄ indicate the reference solution around which
the system is linearized.

4.2 Time dependent case

Let us consider the system (6). To obtain an equation for φ we now multiply
the equations for ci by zi, then operate with ∂t − a∆ to the last equation and
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add. This gives

ρut − µ∆u+ ∇p = 0

− ∆p = 0

−∇ · u = 0

cit − di∆c
i − νi∇ ·

(

ci∇φ
)

+
〈

∇ci, u
〉

= 0 , i = 1, . . . ,m

−∇ ·
(

ψ∇φ
)

−
∑

i

zi(di − a)∆ci = 0

−
∑

i

zic
i = 0

(10)

Now arguing as above in the stationary case we expect that the system is well-
posed if ψ 6= 0, because the (linearised version of the) next to last equation is
elliptic in this case.

Note that the system as a whole is not parabolic according to standard def-
initions [4]. Instead we could say that it is of elliptic–parabolic type in the
following sense:

– putting p = φ = 0 the linearised system is parabolic for (u, c)
– putting u = 0, c = 0 the linearised system is elliptic for (p, φ)

Hence we could call (p, φ) elliptic variables and (u, c) parabolic variables. It
seems that there is no “general” theory for these kind of systems, although
in addition to Stokes system there are apparently quite many models of this
type, for example the chemotaxis model [12].

5 From completed to augmented systems.

5.1 Stationary case

Our next task is to construct the augmented system corresponding to (9), and
in order to do that we need to find the compatibility operator. Let us denote
y = (u1, u2, u3, p, c1, . . . , cm, φ) and write the system (9) as A0y = 0. Now the
Stokes system is a subsystem of (9), hence one compatibility condition comes
from that. The second one is simply given by our construction of the equation
for φ. So if we define

A1 =







∇· 1 −µ∆ 0 . . . 0 0 0

0 0 0 z1/d1 . . . zm/dm −1 −∆






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then it is easy to check that A1A0 = 0. Now introducing ỹ = (ỹ1, ỹ2) the
augmented system A0y + AT

1 ỹ = 0 can be written as

− µ∆u+ ∇p−∇ỹ1 = 0

− ∆p+ ỹ1 = 0

−∇ · u− µ∆ỹ1 = 0

− di∆c
i − νi∇ ·

(

ci∇φ
)

+
〈

∇ci, u
〉

+
zi

di

ỹ2 = 0 , i = 1, . . . ,m

−∇ ·
(

β∇φ
)

+ 〈∇η, u〉 − ỹ2 = 0

−
∑

i

zic
i − ∆ỹ2 = 0

(11)

Again linearized version of this is elliptic, if β 6= 0. Hence the system should
be well-posed under the same hypothesis as the system (9). Note also that the
system (11) is nicely decoupled in two blocks so that the auxiliary variables
do not interact. Moreover the structure of the block for ci and φ is such that
the principal part also has a block structure so that all variables can be solved
cyclically.

5.2 Time dependent case

Denoting the system (10) by K0y = 0 we get the following compatibility
operator

K1 =







∇· 1 ρ∂t − µ∆ 0 . . . 0 0 0

0 0 0 z1 . . . zm −1 ∂t − a∆







Hence the augmented system K0y +KT
1 ỹ = 0 can be written as

ρut − µ∆u+ ∇p−∇ỹ1 = 0

− ∆p+ ỹ1 = 0

ρỹ1
t −∇ · u− µ∆ỹ1 = 0

cit − di∆c
i − νi∇ ·

(

ci∇φ
)

+
〈

∇ci, u
〉

+ ziỹ
2 = 0 , i = 1, . . . ,m

−∇ ·
(

ψ∇φ
)

−
∑

i

zi(di − a)∆ci − ỹ2 = 0

ỹ2
t − a∆ỹ2 −

∑

i

zic
i = 0

(12)

Note that this is also of elliptic–parabolic type and the auxiliary unknowns ỹ
are parabolic. Again we expect that the system is well-posed if ψ 6= 0. The
parameter a can be freely chosen, but looking at the last equation we see that
it should be positive. Note that dropping the time dependence in (12) gives
an alternative formulation of the stationary problem which is a bit different
from (11).
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The auxiliary variables ỹ1 and ỹ2 satisfy K1K
T
1 ỹ = 0 and writing this out

gives

ρ2ỹ1
tt − 2ρµ∆ỹ1

t + µ2∆2ỹ1 − ∆ỹ1 + ỹ1 = 0

ỹ2
tt − 2a∆ỹ2

t + a2∆2ỹ2 +
(

1 + |z|2
)

ỹ2 = 0

These are 2-parabolic equations [4] (the latter for a > 0).

6 Implementation and examples

6.1 Physical setting

The derivation of completed and augmented systems presented above is valid
in any dimension. Physically the problem is obviously strictly speaking 3 di-
mensional. In a typical application one could consider a horizontal channel of
100µm wide, 100µm deep and several centimeters long. However, the bound-
ary layers along channel walls are only a few nanometers thick which implies
that a 2 dimensional model is relevant and even a 1 dimensional model can be
used [1]. Indeed when one is mainly interested in stacking (see below) already
1 dimensional model gives sufficiently accurate results. However, if one wants
to simulate how the propagating front of some concentration is distorted for
example in curved channels then one must use a 2 dimensional model.

We did some computations both with 2 and 1 dimensional models. The channel
width was chosen as 100µm and the length as 1mm. The computational cost
of 2 dimensional case was about 100 times bigger than in 1 dimensional case.
Such a dramatic difference is due to the fact that the resolution of the flow
of the ambient fluid becomes trivial in 1 dimensional case. Hence we did only
few test runs in 2 dimensional case and most of the computations were done
with 1 dimensional model.

Because we have already analysed the augmented Stokes system in our previ-
ous papers [9,10] we will only discuss below how our formulation improves the
quality of the solutions of concentrations of species ci. This is also justified
by the fact that in this model the main interest and the main computational
difficulty is related to concentrations while the motion of the ambient fluid is
relatively unimportant and in any case considerably easier to compute.
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6.2 Stacking

The aim of stacking is to amplify the local concentrations of species to make
them observable by existing devices. We consider the case of 3 ionic species.
The third species is the sample species of interest whose molar concentration is
low and one would like to increase it through stacking. Typically the sample
species is three or four orders of magnitude smaller than other species and
consequently one needs to stack the sample species by the factor of about 1000
to make it observable. Representative experimental conditions are described
in [1,8,11].

To model a single interface of conductivities, we choose a simple error function
profile for the initial concentration. We consider the following initial conditions
for the species that reproduces well the experimental conditions:

c1init(x) = 1
2
b1

(

γ + 1 − (γ − 1)erf(αx)
)

c3init(x) = b3
(

1 + erf(αx)
)

z2c
2
init(x) = −z1c

1
init(x) − z3c

3
init(x)

(13)

where b1 = 100, b3 = 0.1, α > 0 and γ > 0. Note that α controls the sharpness
in the initial plug and γ indicates the initial concentration ratio between high
and low conductivity regions in the sense that

lim
x→−∞

c1init(x)/b1 = γ, lim
x→∞

c1init(x)/b1 = 1

In fact a more important property of γ, both experimentally and numerically,
is that it also indicates the final stacking ratio of c3. This can be seen as
follows.

Let us consider the 1 dimensional model. Neglecting diffusion and the motion
of the ambient fluid, the species conservation equation for different species
becomes

cit + ∂
∂x

(

ziνic
iφx

)

= 0

A constant current density j is applied in the axial direction defined by the
difference of electric potential at the ends of the channel:

j =
Vleft − Vright

L
σtotal

where L is the length of the channel and

σtotal =
∫ L

0
σ(x, t)dx, σ(x, t) =

∑

i

z2
i νic

i

Let us further suppose that σtotal is independent of time. The electric field is
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then locally defined as:

E = φx =
j

σ
Now in our setting of 3 species the concentration of sample species c3 in-
creases as it migrates from a region of high conductivity to a region of lower
drift velocity. Hence the stacked sample keeps increasing with time and the
concentration progressively approaches a maximum steady value. Now in the
steady state the net flux of the species c3 at the left and right edges balance:

(z3ν3c
3E)|left = (z3ν3c

3E)|right

Then considering the initial conditions (13) we have

σleft =
3

∑

i=1

z2
i νic

i
left ≈ z2

1ν1c
1
left + z2

2ν2c
2
left ≈

(

z2
1ν1 − z1z2ν2)b1γ

As j is constant this implies

c3left
c3right

=
Eright

Eleft

=
σleft

σright

≈ γ

When diffusion and motion of the ambient fluid are present the above argu-
ments can still be used to provide an upper bound for the stacking capacity.
Indeed, both diffusion and the convective motion tend to distort the front
where stacking happens and hence one expects a lower final stacking ratio in
this case.

6.3 Boundary conditions

The boundary condition for the Stokes system is classical except along solid
walls where, to avoid treating the nanometric double-layer region, one assumes
the following slip boundary condition [5,16]:

u = − ζ ∇φ

Here ζ is a positive constant which depends on the material with which chan-
nels are built and also the fluid permittivity and dynamic viscosity. The flow is
therefore parallel to the wall and to the electric field. For the electric potential
we impose a Dirichlet boundary condition at the inlet and the outlet where a
difference of potential is applied and homogeneous Neumann boundary con-
dition is assumed along the wall. Together with the boundary condition for
u along the wall, the former condition enforces the non-penetration boundary
condition for the velocity.

The boundary condition for the concentration is Dirichlet at the inlet bound-
ary, homogeneous Neumann along the walls and at the outlet. Initial and
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boundary conditions for the auxiliary variables ỹ are identically zero as these
are compatible with the requirement that the solution of the initial and com-
pleted systems should match.

6.4 Test cases

We have used the following parameters in our computations, given in SI units.
Recall that mobility in our case is the usual mobility multiplied by Faraday’s
constant.

mobility ν1 = 5 · 10−8 ν2 = 3 · 10−7 ν3 = 3 · 10−8

diffusivity d1 = 2 · 10−10 d2 = 3 · 10−10 d3 = 2 · 10−10

valence number z1 = +1 z2 = −1 z3 = −2

We chose the value α = 4·104 in initial conditions (13) and a = (d1+d2+d3)/3
in (12). We tried also some other values for a, but the results were essentially
the same as long as a was of the same order of magnitude as diffusivity.
This requirement is quite natural, considering that a is the diffusivity for the
auxiliary variable ỹ2.

As we showed above choosing the value of γ in (13) approximately determines
the ultimate stacking ratio. Otherwise choosing different values gave qualita-
tively similar results. The main difference is that reaching a higher stacking
ratio takes longer time and hence a longer channel is needed. For this reason
we will show below results for just one value of γ. We chose a moderate value
which allowed a relatively short channel and hence avoided excessive compu-
tational cost. In fact all computations were done with a standard laptop.

We will show that our formulation (12) gives better results than the standard
approach which we may identify as the model (6). The effort to implement our
method was relatively small because the augmented systems are so designed
that the usual building blocks of numerical codes can quite easily be adapted
to our context. Indeed our method was implemented by modifying the code
which was used to obtain the results described in [1].

Let us make some general remarks of the code which apply as well to the initial
code as to our improved code. The system has a block diagonal structure which
makes it possible to solve different variables cyclically. We use an explicit time
marching fixed point algorithm which produces fully implicit solution of the
system [17]. The advection-diffusion equations of species are solved using a
mixed finite volume Galerkin implementation providing suitable conservation
properties [13]. Finally the equation for φ is solved using a classical central
difference scheme.
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Let us then discuss the results obtained. Figure 1 shows instantaneous iso-
contours of the electric field, velocity field, pressure, total charge density, as
well as charge density of sample species for γ = 50. One can see that the prop-
agating front for sample species where the stacking occurs is a little curved.
Also it is clear that the errors in the total charge density are concentrated
in this same region. To analyse the electroneutrality constraint and stacking
in more detail we could now take slices of the solution in the middle of the
channel, and see how they evolve in time. However, since the curving of the
front does not play critical role here we may as well use 1 dimensional model to
do this. In our test case doing 2 dimensional computations and then taking 1
dimensional slices produced essentially similar results as direct 1 dimensional
simulations.

Figure 2 shows the time histories for c3, ỹ2 and ρe when solving system (6) and
(12) for γ = 50. To make stacking (and also the evolution of other quantities)
easier to visualise we have plotted the solutions in different time instants so
that the convective movement of the ambient fluid is eliminated. One can
clearly see that our method preserves better the electroneutrality constraint.
In addition, and perhaps even more importantly, our method respects the
upper bound for stacking ratio given by γ while in the standard method there
is quite significant overshoot.

We may interprete the results as follows. The solution is most sensitive to
errors in the region where rapid changes occur, i.e. in the front where the
sample species is stacked. Now the biggest errors are rather naturally in the
same region, and because our method reduces significanly the electroneutrality
error in this region, the concentrations are also much better resolved.

Finally recall that the linearised version of (12) is well-posed only if ψ 6= 0.
Figure 2 shows that this is indeed the case in our examples. Note that there are
natural physically relevant situations where this hypothesis is not satisfied. For
example this happens when the background species have valences of opposite
sign and whose mobilities are approximately equal. We hope to consider this
case in a future work.

7 Concluding remarks

We have shown above how our methodology, which was applied in [9,10] to
Stokes problem, can also be used to improve existing solvers of microfluid
systems. The results show that our approach give clearly better results than
the standard approach. It is also remarkable that implementing our method
did not require a very big effort. Indeed starting from an existing code it was
relatively straightforward to modify it for the present purposes. Moreover the

15



Fig. 1. From top-left to bottom-right: instantaneous iso-contours for φx, φy, u1, u2,
p and ρe. Bottom figure shows iso-contours of c3.

computational cost of solving the augmented system was about the same as
the initial system.

In the present paper we did not discuss using the information contained in aux-
iliary variables so it seems the computation of these quantities did not serve
for any useful purpose. However, since the auxiliary variables should be identi-
cally zero in exact solution these could be used as error indicators in adaptive
numerical schemes. In [9] we indicated how this could be implemented, but
we have not explored systematically this aspect.

There are also other physical models with algebraic constraints like the elec-
troneutrality assumption. As an example we may cite the combustion prob-
lems where the conservation of mass leads to an algebraic constraint for mass
fractions [14]. However, it is important to point out that our approach is not
restricted to microfluidic systems or flow problems in general, but can be useful
in the analysis of rather arbitrary overdetermined systems.
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with (6) (resp. with (12)). Bottom picture shows that ψ remains nonzero.

[2] G. Bruin, Recent developments in electrokinetically driven analysis of
microfabricated devices, Electrophoresis 21 (3) (2000) 3931–3951.

[3] P. Dudnikov, S. Samborski, Linear overdetermined systems of partial differential
equations. Initial and initial-boundary value problems, in: M. Shubin (ed.),
Partial Differential Equations VIII, Encyclopaedia of Mathematical Sciences 65,

17



Springer-Verlag, Berlin/Heidelberg, 1996, pp. 1–86.

[4] S. D. Eidelman, Parabolic equations, in: M. A. Shubin (ed.), Partial differential
equations. VI, vol. 63 of Encyclopaedia of Mathematical Sciences, Springer-
Verlag, Berlin, 1994, pp. 201–313.

[5] M. G. El Hak, The MEMS Handbook, vol. 7 of Handbook series for Mechanical
Engineering, CRC Press, 2002.

[6] K. Krupchyk, W. Seiler, J. Tuomela, Overdetermined elliptic systems, Found.
Comp. Math. 6 (3) (2006) 309–351.

[7] K. Krupchyk, J. Tuomela, Shapiro–Lopatinskij condition for elliptic boundary
value problems, LMS J. Comp. Math. 9 (2006) 287–329.

[8] H. Lin, B. Storey, M. Oddy, C.-H. Chen, J. Santiago, Instability of electrokinetic
microchannel flows with conductivity gradients, Physics of Fluids 16 (6) (2004)
1876–1899.

[9] B. Mohammadi, J. Tuomela, Simplifying numerical solution of constrained PDE
systems through involutive completion, M2AN 39 (5) (2005) 909–929.

[10] B. Mohammadi, J. Tuomela, Involutive methods for Navier-Stokes equations,
in: J. Haataja, R. Stenberg, J. Periaux, P. R. back, P. Neittaanmäki (eds.),
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