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This paper presents an analysis of the energy transported by disturbances in gaseous com-

bustion. It extends the previous work of Myers [J. Fluid Mech. 226 (1991) 383–400] and

so includes non-zero mean flow quantities, large amplitude disturbances, varying specific

heats and chemical non-equilibrium. This extended form of Myers’ ‘disturbance energy’

then enables complete identification of the conditions under which the famous Rayleigh

source term can be derived from the equations governing combusting gas motion. These

are: small disturbances in an irrotational, homentropic, non-diffusive (in terms of species,

momentum and energy) and stationary mean flow at chemical equilibrium. Under these

assumptions, the Rayleigh source term becomes the sole source term in a conservation

equation for the classical acoustic energy.

It is also argued that the exact disturbance energy flux should become an acoustic

energy flux in the far-field surrounding a (reacting or non-reacting) jet. In this case,

† Corresponding author: mjbrear@unimelb.edu.au
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the volume integral of the disturbance energy source terms are then directly related to

the area averaged, far-field sound produced by the jet. This is demonstrated by closing

the disturbance energy budget over a set of aeroacoustic, Direct Numerical Simulations

(DNS) of a forced, low Mach number, laminar, premixed flame. These budgets show that

several source terms are significant, including those involving the mean flow and entropy

fields. This demonstrates that the energetics of sound generation in these simulations

cannot be examined by considering the Rayleigh source term alone.

1. Introduction

Combustion generated sound and combustion system stability are closely related prob-

lems. In many combustion systems, instability is initiated by the reflection of combustion

generated sound, which in turn further excites the mechanisms by which the sound was

first generated. Entropy and equivalence ratio disturbances can also play a role. The

resulting ‘thermoacoustic instability’ can lead to very high amplitude sound production

and, in the worst cases, catastrophic mechanical failure of the system.

Research in combustion generated sound and combustion stability has received sus-

tained attention in both the academic and industrial communities over the last fifty years

in particular. During this time, the literature has grown enormously, and now spans nu-

merous applications including rockets, afterburners, gas turbines and industrial burners

(Putnam 1971; Flandro 1985; Bloxsidge et al. 1988; Poinsot & Veynante 2001; Culick

2001; Candel 2002; Dowling & Stow 2003; Schwarz & Janicka 2009). This sustained ef-

fort is in large part due to gas turbine manufacturers still relying heavily on in-situ

testing and tuning of the complete, operating device to avoid instability. In the authors’

view, this continued reliance on testing has several causes, including an incompleteness in



Disturbance energy transport and sound production in gaseous combustion 3

our fundamental understanding of all the mechanisms involved in combustion generated

sound.

The so-called ‘Rayleigh term’ is commonly used to explain the energetics of sound

production by heat addition, e.g. (Putnam 1971). Whilst Lord Rayleigh (1878) first

stated this term in prose form, it is usually expressed mathematically as p′ω′ where p′

and ω′ are harmonic disturbances in the static pressure and heat release rate at a point

in space respectively, and the overbar () denotes the time average over one cycle. This

term states that net sound is produced when the relative phase of the pressure and heat

release disturbances are such that the time average of their product is positive. Despite

the Rayleigh term being identified well over a century ago, Nicoud & Poinsot (2005)

suggested that it is still at the very least unclear under what conditions this criterion can

be derived from the equations governing combusting fluid motion. The earlier works of

Chu (1956, 1965), Bloxsidge et al. (1988) and Dowling (1997) attempted to show precisely

this, using progressively more general definitions of acoustic or disturbance energies that

have appeared over the last fifty or so years.

In combusting flows, any conservation equation that describes the energy contained in

flow disturbances should at least initially consider the effects of a non-zero mean flow.

Ignoring mean flow causes a conceptual issue since any fluctuations in heat release must

be around a zero mean heat release, and so involve cooling of the flow at some instants.

This issue is discussed further later in this paper. The energies defined by Morfey (1971),

Doak (1989) and Myers (1991) include a mean flow, and hence the works by Bloxsidge

et al. (1988) and Dowling (1997), which are based on Morfey (1971), do not suffer from

this conceptual problem.

Morfey (1971) considered a viscous, heat conducting fluid, and first split the distur-

bance velocity field into irrotational and solenoidal components which were defined as
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the acoustic and unsteady vortical motions respectively. He then applied the definitions

of the acoustic energy density and flux proposed by Cantrell & Hart (1964) for invis-

cid, non-heat conducting flows to his acoustic field. Any resulting entropy disturbances

in Morfey’s analysis were then shifted into the source term. However, the definition of

all irrotational velocity disturbances as acoustic can be problematic in reacting flows,

which can, for example, feature irrotational, non-acoustic velocity disturbances due to

heat addition (e.g. Talei et al. (2011, 2012)).

The energy defined by Doak (1989) potentially addresses this issue by splitting the irro-

tational component of the momentum density disturbance (ρu)′ into acoustic and ‘ther-

mal’ components, defined as isentropic and isobaric disturbances respectively. However,

this may once again be problematic in combustion. Irrotational ‘thermal’ disturbances

are not necessarily isobaric, for example during large amplitude thermoacoustic instabil-

ity (e.g. Flandro (1985); Culick (2001); Dowling & Stow (2003)), and irrotational acoustic

disturbances are not in general isentropic in a region of heat addition (e.g. Karimi et al.

(2008, 2010)).

Further, combustion also interacts with the mean and fluctuating vorticity and en-

tropy fields, and in many devices does not occur at low Mach number, inferring that

separation of acoustic and convective scales is difficult. An added problem is that many

disturbances are not small in combusting flows. For example, the heat release, temper-

ature and entropy disturbances at a point in space can have similar amplitude as their

mean values as a flame moves back and forth past that point. As for inhomogeneous

flows more generally (e.g. Goldstein (2005)), the unambiguous separation of radiating

and non-radiating disturbances is therefore a particular challenge in combustion.

In studying the energetics of combusting flows, it may therefore be advantageous to

use an exact energy equation that does not attempt to separate sound from other distur-
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bances and which permits a non-zero mean flow. This appears to be the case only with

the energy defined by Myers (1991). Myers allowed entropy disturbances to remain in

both the energy density and flux terms, and did not split the velocity field in any way.

Myers’ equation was consistent with those developed earlier by Chu (1965) and Pierce

(1981) for zero mean flow. However, because the energy density and flux terms contained

entropy disturbances, the resulting energies are not acoustic and are more properly called

a ‘disturbance energy’ (Chu (1965); Myers (1991)).

Care must therefore always be taken when examining fluid flows with the energy defined

by Myers (1991), since it does not distinguish between energy transport by different types

of disturbance. Further, not all terms in its most general form are positive definite or

second order in the disturbances; undesirable features that it shares with the acoustic

energy of Cantrell & Hart (1964). Thus, Myers’ disturbance energy becomes most useful

when it can be simplified to energies that have a more physical meaning. In the present

study, this is done by time averaging the disturbance energy conservation equation around

a stationary base flow, and applying Gauss’ Law to a precisely defined far-field. This

results in a time averaged disturbance energy balance whose flux can be interpreted as

sound.

This paper first extends the work of Myers (1991) to gaseous combustion by including

the transport of multiple species, chemical non-equilibrium and heat release terms into his

exact disturbance energy corollary. This exact equation is then approximated to second

order, demonstrating the existence of several source terms other than the Rayleigh term.

It is then demonstrated that Myers’ exact disturbance energy flux becomes the acoustic

energy flux in the far-field surrounding a jet by closing the budget of this extended

disturbance energy over a series of Direct Numerical Simulations (DNS) of a forced,

low Mach number, laminar, premixed flame. These budgets show that several source
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terms are significant, demonstrating that the energetics of sound generation cannot be

examined by considering the Rayleigh term alone.

2. Theory

The equations of motion for gaseous combustion are first cast in a form consistent with

that in Myers (1991). These equations ignore body forces.

2.1. Equations of motion

2.1.1. Momentum equation

The momentum equation can be derived from a more common form,

∂uj
∂t

+ ui
∂uj
∂xi

+
1

ρ

∂p

∂xj
=

1

ρ

∂τij
∂xi

, (2.1)

where ui is the component of the velocity vector u in direction xi, ρ is the density, p is

the static pressure and τij is the ijth component of the viscous stress tensor. It is first

noted that the convective acceleration can be written as

ui
∂uj
∂xi

= ∇(
1

2
|u|2) + ξ × u, (2.2)

where ξ = ∇×u is the vorticity. Gibbs’ equation for a reacting mixture of n species can

be written per unit mass as (Williams 1985)

de = Tds− pd(
1

ρ
) +

n
∑

k=1

gkdYk, (2.3)

where e is the internal energy, s is the entropy whilst gk and Yk are the Gibbs free energy

and mass fraction of the kth species. It is noted that gk is equal to the chemical potential

µk of that species Williams (1985). Gibbs’ equation and the definition of the enthalpy

h = e + p/ρ, can be combined to show that

∇p

ρ
= ∇h− T∇s−

n
∑

k=1

gk∇Yk. (2.4)
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Combined with the momentum equation and the vector form of the convective acceler-

ation above, this results in a modified form of Crocco’s theorem for an unsteady, viscous

and combusting gas,

∂u

∂t
+ ζ + ∇H − T∇s = ψ +ψ∗, (2.5)

where ζ = ξ × u, ψ = (1/ρ)∂τij/∂xi and ψ∗ =
∑n

k=1 gk∇Yk. It is relatively straight

forward to show that the enthalpy, entropy and Gibb’s free energy in this equation can

be considered all as either sensible or total chemical quantities.

2.1.2. Energy equation

The energy equation can be written as (e.g. Poinsot & Veynante (2001))

∂

∂t
(ρH − p) + ∇.(mH)−m.ψ = TQ, (2.6)

where m = ρu is the mass flux vector, H is the sensible stagnation enthalpy and T is the

static temperature. The term Q includes the thermal and species diffusion flux vector

q, viscous dissipation φ and combustion heat release ω terms. Assuming Fourier’s law of

conduction with thermal conductivity λ, Q can be written as

Q =
1

T
(∇.q + φ + ω), (2.7)

where

∇.q = −∇.(λ∇T ) + ρ∇.(

n
∑

i=1

hkYkVk), φ = τij
∂uj
∂xi

, ω = −
n

∑

i=1

∆h0
f,kωk, (2.8)

and Vk is the diffusion velocity of the kth species.

2.1.3. Entropy transport equation

The entropy transport equation also starts with Gibbs’ equation, now written with the

substantial derivative,

ρT
Ds

Dt
= ρ

De

Dt
−

p

ρ

Dρ

Dt
− ρ

n
∑

k=1

gk
DYk
Dt

. (2.9)
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Here, the first term on the right hand side is the energy equation in terms of the internal

energy. The second term can be shown to be equal to −p(∇.u). Application of the species

transport equation to the last term then finally yields the sensible entropy transport

equation

D(ρs)

Dt
= Q + Q∗, (2.10)

where Q was defined in equation 2.6 and

Q∗ = −
(

n
∑

k=1

gkωk +

n
∑

k=1

gk∇.(ρVkYk)
)

/T. (2.11)

All the equations required for extending the equations of Myers (1991) to gaseous

combustion are now in an appropriate form.

2.2. Extended form of Myers’ exact energy corollary around a steady base flow

Myers (1991) commenced his derivation of his exact disturbance energy conservation

equation from statements of mass conservation, momentum transport, energy conserva-

tion and entropy transport. Transport of (n− 1) species is added in the present analysis

which, together with mass conservation, guarantees conservation of the nth species. Using

the derivations presented in Section 2.1, the complete equations of motion are

∂ρ

∂t
+ ∇.m = 0, (2.12)

n−1
∑

k=1

[
∂ρYk
∂t

+ ∇.(mYk) = ωk −∇.(ρVkYk)], (2.13)

∂u

∂t
+ ζ + ∇H − T∇s = ψ +ψ∗, (2.14)

∂

∂t
(ρH − p) + ∇.(mH)−m.ψ = TQ, (2.15)

∂ρs

∂t
+ ∇.(ms) = Q + Q∗. (2.16)

Equations 2.12 to 2.16 have steady solution,

∇.m0 = 0, (2.17)
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n−1
∑

k=1

[∇.(m0Yk0) = ωk0 −∇.(ρ0Vk0Yk0)], (2.18)

ζ0 + ∇H0 − T0∇s0 = ψ0 +ψ0
∗, (2.19)

∇.(m0H0)−m0.ψ0 = T0Q0, (2.20)

∇.(m0s0) = Q0 + Q∗0. (2.21)

Following the approach of Myers (1991), equations 2.12, 2.13 and 2.16 can be multiplied

by (H0−T0s0− g0), gk0 and T0 respectively and added to the scalar product of equation

2.14 and m0. This sum is subtracted from equation 2.15 and, after considerable algebra

that mirrors that detailed in Myers (1991) and which utilises equations 2.17 to 2.21,

results in an exact conservation equation for a ‘disturbance energy’ of the form

∂E

∂t
+ ∇.W = D. (2.22)

In equation 2.22, the disturbance energy density E and flux vector W terms are respec-

tively

E = ρ(H ′ − T0s
′)−m0.u′ − p′ − ρ

n−1
∑

k=1

gk0Y
′
k, (2.23)

and

W = m′(H ′ − T0s
′) + m0T ′s′, (2.24)

where ()′ = ()− ()0 is the disturbance and ()0 is the steady value. The exact source term

D is

D = Dζ + Ds + DQ + DQ∗ + Dψ + Dψ∗ + DYk
, (2.25)

where

Dζ = −m′.ζ′, Ds = −m′.(s′∇T0) + s′m0.∇T ′, DQ = T ′Q′,

DQ∗ = T ′Q∗′, Dψ = m′.ψ′, Dψ∗ = m′.ψ∗
′
, DYk

= g′∇.m′ +
n−1
∑

k=1

g′kΩ
′
k,

and Ωk = ωk −∇.(ρVkYk) −∇.(mYk). Neglecting viscous stress, viscous dissipation,
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thermal diffusion and species diffusion terms, several terms in equation 2.25 can also be

simplified to

Q =
ω

T
, Q∗ = −

n−1
∑

k=1

gkωk/T, ψ = 0,

with the other terms defined as above.

2.3. Extended form of Myers’ exact energy corollary around an unsteady base flow

Rather than the steady equations 2.17 to 2.21, the time average of an unsteady flow

can also be chosen as the base flow. The resulting energy corollary contains new terms,

but can be used for post-processing data when the equivalent steady flow is not known,

and simplifies significantly when time averaged. Appendix A contains the extended form

of the exact disturbance energy corollary with an unsteady base flow, and this form of

the corollary is used to analyse numerical simulations of combustion generated sound in

Section 5.

2.4. Second order corollary and chemical equilibrium

A second order corollary may not be accurate since, as discussed in the Introduction,

combusting flows do not usually feature small disturbances. Nonetheless, a second order

disturbance energy corollary must first be found in order to show how the extended form

of the disturbance energy corollary simplifies to other disturbance or acoustic energy

conservation equations.

A derivation of one such second order energy corollary is given in Appendix B, which

can be summarised as

∂E2

∂t
+ ∇.W2 = D2. (2.26)

In the exact analysis of the preceeding sections, g0 and gk0 multiplied by equations 2.12

and 2.13 respectively are additional to the original approach by Myers (1991), and result

in exactly second order flux W and source terms D. Nonetheless, approximating the
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energy density in the exact equation 2.22 to its second order equivalent E2 in equation

2.26 is substantially more complex since there are now (n + 1) independent variables in

which to expand the exact equation.

As required, the disturbance energy density given in equation B 3 reduces to that

proposed by Myers (1991) for a gas containing a single species. Nonetheless, the terms

involving mass fraction disturbances are very complex and are not positive definite in

general fluid flows. It is therefore difficult to see how such an expression can be useful.

Fortunately, further use of the second order corollary in this paper does not involve

analysis of this term.

Previous studies of acoustic or disturbance energy transport in combustion usually

assume chemical equilibrium (e.g. Bloxsidge et al. (1988), Chu (1956), Dowling (1997),

Flandro (1985), Nicoud & Poinsot (2005)). In this case the terms involving the Gibbs free

energy in equations 2.14, 2.16 are zero and equation 2.13 is no longer required, simplifying

equation 2.22 and its second order equivalent, equation 2.26. For a non-diffusive flow, the

following second order energy density E2, flux W2 and source terms D2 then result.

E2 =
p′2

2ρ0c2
0

+
1

2
ρ0u

′2 + ρ′u0.u′ +
ρ0T0s

′2

2cp0
, (2.27)

W2 = (p′ + ρ0u0.u′)

(

u′ +
ρ′

ρ0
u0

)

+ m0T ′s′, (2.28)

and

D2 = m′.ζ ′ − s′m′.(∇T0) + s′m0.(∇T ′) +

(

ω′T ′

T0
−

ω0T
′2

T 2
0

)

. (2.29)

It is noted that the equilibrium results (H ′−T0s
′) = p′/ρ0 +u0.u′ and p′ = c2

0ρ0s
′/cp0 +

c2
0ρ
′ have been used to derive equations 2.27 and 2.28. The terms containing the steady

ω0 and unsteady ω′ heat release in equation 2.29 are additional to Myers (1991) for this

case of a non-diffusive flow at chemical equilibrium.
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3. Discussion of the theoretical results

3.1. Comparison to prior works

As required, equation 2.26 simplifies to existing acoustic energy conservation equations

under the condition of homentropic flow (i.e. ∇s = 0 everywhere). The second order

energy density E2 and flux W2 terms then become those defined by Cantrell & Hart

(1964) for acoustic propagation in a non-stationary medium. In this case only the vortical

source terms remain and represent the acoustic energy generated by unsteady vortical

flow if it is assumed that sound features irrotational velocity disturbances (e.g. Dowling

(1997)).

Nicoud & Poinsot (2005) derived a second order equation for the disturbance energy in

a combusting flow assuming chemical equilibrium. Assuming chemical equilibrium for the

present set of second order equations, as shown in equations 2.27 to 2.29, the differences

in the second order energy density and flux terms arise primarily due to Nicoud and

Poinsot’s assumption of zero mean flow quantities. Another, less significant difference is

in the last term in the energy density, where Nicoud & Poinsot (2005) assumed calorific

perfection. Myers (1991) did not assume this, and so linear disturbances in entropy

properly include the specific heat of the steady state cp0.

Equations 2.25 and 2.29 are source terms for gaseous combustion, with some of the

second order terms present in the source term of Nicoud & Poinsot (2005). It is interesting

to note that the terms containing entropy disturbances may interfere, so care must be

taken in understanding their combined effects. Equation 2.29 also shows a source term

ω0T
′2/T 2

0 . This term is later shown to have significant magnitude, is positive definite,

and can interfere with the term ω′T ′/T0. This term was studied in detail in an earlier

work (Karimi et al. (2008)), and showed that disturbance and acoustic energy can be

created or destroyed in the absence of unsteady heat addition or any form of diffusion.
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Finally, the term D2 in this paper and in Nicoud & Poinsot (2005) both contain a term

ω′T ′/T0, from which the Rayleigh term arises under certain circumstances. This term

only becomes the Rayleigh term ω′p′ for homentropic flows, since then p′ is proportional

to T ′. Of course, combustion is not homentropic.

3.2. Reducing the disturbance energy corollary to an equation with the Rayleigh term

The complete set of conditions under which the equations governing combusting gas

motion reduce exactly to an equation with the Rayleigh term as the sole source term

can now be stated. Such flows must be irrotational, non-diffusive (in terms of species,

momentum and energy), homentropic, without mean flow, at chemical equilibrium and

feature only small disturbances. In this case, equation 2.26 reduces to a statement of

conservation of the classical acoustic energy with a single source term, i.e.

∂

∂t
(

p′2

2ρ0c2
0

+
ρ0u

′2

2
) + ∇.(p′u′) =

(γ0 − 1)

γ0p0
p′ω′, (3.1)

where γ0 is the steady ratio of specific heats.

These conditions render the Rayleigh term conceptually problematic for combusting

flows, particularly because of the mean heat release and entropy gradients in these flows.

The requirement that disturbances in heat addition ω′ must be around a zero mean

ω0 = 0 infers that at some instants combustion is cooling the flow. By permitting non-

zero mean flow quantities, Myers (1991) permits a mean flux, and so can accommodate

a positive mean heat release rate ω0 around which disturbances ω′ can occur without

ever cooling the domain. However, once a mean flow is permitted, unsteady heat addition

also generates entropy disturbances (e.g. Karimi et al. (2008, 2010)), further violating the

conditions required to derive the Rayleigh term. Of course, violation of these conditions

might be tolerated if these effects are small. However, results presented later in this paper

suggest that this is not the case, even for low Mach number combustion.
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3.3. Application to sound generation by jet flows

Following arguments put forward by Doak (1989), the acoustic intensity in the far-field

surrounding a jet can be determined by integrating equation 2.22 over a volume V sur-

rounding the jet, out to an as yet undefined ‘far-field’, and then applying Gauss’ theorem.

For a time stationary flow, it follows that
∫

V
(∂E/∂t)dV = 0 and so

∫

A

W.dA =

∫

V

DdV, (3.2)

where (̄) denotes the time average (and not the steady flow).

As equation B 4 shows, the exact flux term W in equation 3.2 becomes the acoustic

energy flux of Cantrell & Hart (1964) if the far-field is defined as having negligible entropy

and mass fraction disturbances. This, in turn, reduces to the classical acoustic energy

flux p′u′ if mean flow effects are negligible. The absence of significant entropy and mass

fraction disturbances is a reasonable definition of the far-field, since these disturbances

should decay much more quickly than sound due to diffusion. Under this assumption,

the disturbance energy balance in equation 3.2 becomes

∫

A

(p′ + ρ0u0.u′)[u′ + (ρ′/ρ0)u0].dA =

∫

V

DdV, (3.3)

for non-zero mean flow in the far-field and

∫

A

p′u′.dA =

∫

V

DdV, (3.4)

if far-field, mean flow effects are negligible.

Equations 3.3 and 3.4 give the area and time averaged acoustic energy flux in the far-

field. They do not require the quantities to be constant over the area A. However, they

do not show where inside the domain the sound is generated and do not separate the

radiating and non-radiating components of the source terms at a point in space inside the

volume V . Nonetheless, equation 3.3 expresses the contribution of the volume integral of

the exact source terms to the area averaged, far-field sound.
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It is also noted that in many devices with a confined flame, this definition of the far-

field may not be reached since significant entropy and mass fraction disturbances can

exist up to the combustor boundaries. In this case, the disturbance energy flux does not

reduce to an acoustic energy flux within the combustor, and the above approach does

not give insight into the sound generation problem.

4. Numerical methods

The DNS results in this paper use a modified form of the code NTmix which features

a 6th order compact scheme for spatial derivatives, combined with a 3rd order Runge-

Kutta time integrator (Cuenot et al. (1997)). NTmix has been used extensively to study

laminar and turbulent combustion (e.g. Poinsot & Lele 1992; Baum 1994; Bourlioux et al.

2000), as well as non-reactive flows (Corjon & Poinsot 1995, 1997).

A 2D slot flame is modelled in the present problem, with a schematic of the compu-

tational domain shown in Figure 1. The governing equations were discretised into 1021

streamwise nodes from x = 0 to 32L and 251 transverse nodes from y = 0 to 4L, where L

is the half width in the slot flame. A non-uniform grid in both directions was set up such

that the flame structure could be captured without compromising the far-field behaviour.

Extensive grid independence studies were conducted to ensure proper resolution of both

the flame and the acoustics. At least 6 nodes resolved the flame thickness at all times,

and close quantitative agreement with the flame dynamics reported by Poinsot & Lele

(1992) were observed as one of several test cases.

Figure 1 features four boundary conditions. The velocity, temperature and unburnt

mass fraction are imposed at the inlet using tanh profiles, resulting in a reflecting bound-

ary condition. Along this inlet boundary and outside the flame, the velocity, temperature

and unburnt mass fraction were 0, Tb and 0 respectively. A symmetry boundary condi-
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Figure 1. Schematic of computational domain (not to scale)

tion is used on the jet centreline, with a viscous wall boundary condition on the opposing

wall. The outflow boundary is modelled with non-reflecting boundary conditions (Yoo

et al. (2005); Lodato et al. (2008)).

In these simulations, the heat release rate from combustion ω defined in equation 2.6

for a mixture of n species is now treated in a simplified form for single step chemistry,

ω = ΛρucpYu(Tb − Tu)exp
( −β(1−Θ)

1− α(1−Θ)

)

, (4.1)

where

Λ = B0exp(
−β

α
),Θ = (T − Tu)/(Tb − Tu),

The terms ρu, cp and Yu in equation 4.1 are the unburnt mixture density, mixture specific

heat (assumed constant) and unburnt mass fraction respectively, whilst B0 is the pre-

exponential factor, Θ is the reduced temperature, Tu is the unburnt gas temperature and

Tb is the burnt gas temperature. The two parameters α and β determine the flame heat

release and activation temperature respectively (Poinsot & Veynante (2001)).

The following non-dimensional parameters are specified.

Re =

(

cinL

ν

)

= 2000, P r =
(cpµ

k

)

= 0.75, Le =
Sc

Pr
= 1,
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Da =

(

DΛ

S2
L

)

, MSL
= (SL/cin) = 0.01, Mj = (uin/cin) = 0.04,

where Re is the Reynolds number, cin is the jet sonic velocity, L is the reference length

(the jet half width), ν is the kinematic viscosity, Pr is the Prandtl number, µ is the

dynamic viscosity, k is the thermal conductivity, Le is the Lewis number, Da is the

Damkohler number and MSL
and Mj are Mach numbers based on the laminar flame

speed SL and jet mean flow speed uin. The inflow velocity was varied sinusoidally over

a wide range of forcing frequencies at 25% of the mean inflow velocity, with the forcing

frequency represented as a Strouhal number

St = (fL/cin) , (4.2)

where f is the frequency of excitation. In all simulations the burnt to unburnt temperature

ratio was Tb/Tu = 4.

5. Discussion of the numerical results

Figure 2 shows instantaneous images of the temperature field surrounding two sinu-

soidally forced slot flames. The high St case is effectively stationary; there are very small

oscillations in the flame surface during the forcing period. The low St case in Figure 2

shows a strongly wrinkled flame. Experimental studies of forced premixed laminar flames

commonly demonstrate a qualitatively similar dynamic response to flame inlet velocity

forcing (e.g. Schuller et al. (2003); Karimi et al. (2009)). In these cases, flame surface

oscillations tend to zero amplitude as St increases, with St ∼ 0.1 − 0.2 being typical of

the forcing frequencies at which these surface disturbances start to become small.

The wrinkled, low St case in Figure 2 also features so-called ‘flame pinch-off’ and ‘flame

island burn-out’ annihilation events during each forcing period. This behaviour has also

been observed by Schuller et al. (2003) and Karimi et al. (2009) in experimental studies
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Figure 2. Instantaneous field of mass fraction burnt thesholded at 50% for i) St = 1 and ii)

St = 0.02

of forced, premixed laminar flames, and these annihilation events have been examined

by the authors in detail in Talei et al. (2011).

Figure 3 shows the dilatation field ∇.u at instants during one forcing period for a case

where these annihilation events are strong. The dilatation and the pressure are related

by a combination of the momentum and energy equations, such that for ū∞ = 0,

∂p

∂t
+ ρ∞c2

∞∇.u = 0, (5.1)

where the subscript ∞ refers to the variables in the far-field. The dilatation is commonly

used in aero-acoustic studies to identify sound, e.g. Colonius et al. (1997). In the present

study, the dilatation has the added, favorable property that it simultaneously shows the

flame due to its strong density gradients. The St = 0.01 case in Figure 3 provides clear

evidence that the flame pinch-off and flame island burn-out events are significant sources

of sound. The detailed mechanisms by which these events generate sound warrants further

investigation, and is the subject of other works by the group (e.g. Talei et al. (2011)).

The ratio of the acoustic energy fluxes leaving and entering the domain can be defined

as

AoutW 2out

AinW 2in

=

∫

Aout

(p′ + ρ0u0.u′)[u′ + (ρ′/ρ0)u0].dA
∫

Ain

(p′ + ρ0u0.u′)[u′ + (ρ′/ρ0)u0].dA
.

When this ratio is greater then unity, the flame is generating more sound than is incident

from the inlet forcing. Interestingly, Figure 4 shows that is the case only for the simulation
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Figure 3. Instantaneous dilatation field during the forcing period for St = 0.02

Figure 4. Time averaged acoustic energy flux leaving the domain divided by that entering

versus St

performed at St = 0.02, which corresponds to the case shown in Figure 3 featuring

strong annihilation events. Similar annihilation events do not occur at the other forcing

frequencies studied, and plots of the dilation at these frequencies do not reveal acoustic

sources within the domain, in contrast to Figure 3.

The time averaged exact disturbance energy density, flux and source terms defined

relative to an unsteady base flow in Appendix A are now used to examine the flow further.

It was argued in Section 3.3 that the exact disturbance energy flux should become the
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classical acoustic energy flux in some appropriately defined far-field. Figure 5 shows these

two fluxes averaged along streamwise and transverse lines across the entire computational

domain for two forcing frequencies. It can be seen that these two fluxes become equal just

outside the flame, which on average extends in the streamwise and transverse directions

to approximately x/L = 4 and y/L = 1 respectively. This demonstrates that the far-field

defined above is reached well within the computational domain in both cases. The volume

integrated and time averaged source terms can now be interpreted as acoustic sources, as

per equations 3.3 and A 10, with of course the latter equation appropriate for the present

test case.

The time averaged and volume integrated forms of the source terms defined in equation

A 10 are shown in Figure 6 versus St. The source terms D̄s, D̄Q and D̄Q∗ are the largest

terms in this flow, and are of similar magnitude. (The source terms D̄ζ and D̄ψ∗ are

always of order less than unity and are not shown.) Figure 6 therefore shows that several

terms other than the Rayleigh term are important, demonstrating that the energetics of

sound generation in these simulations cannot be examined by considering the Rayleigh

source term alone.

The exact source term D̄Q = T ′Q′ defined in equation A10 contains contributions

from thermal conduction, species diffusion and viscous dissipation in addition to the heat

release by combustion. As such, it can be decomposed into exact and second order source

terms concerning only heat release and thermal conduction effects. Figure 7 shows these

terms versus St, demonstrating that the flame’s heat release is not the only significant

part of this exact source term. Further, mean flow effects are significant, as evidenced

by the volume integral of the term −ω̄T ′2/T̄ 2. Indeed, this term is one that shows that

sound can be created or destroyed in the absence of any unsteady heat addition provided
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Figure 5. Area and time averaged exact disturbance and acoustic energy fluxes for St = 0.02

and St = 1; i)
∫

4L

0
W.dy (solid line) and

∫
4L

0
W2.dy (dashed line) versus x, ii)

∫
32L

0
W.dx

(solid line) and
∫

32L

0
W2.dx (dashed line) versus y. The terms W and W2 are from equation

A 8 and Cantrell & Hart (1964) (equation A 10) respectively.

that there is a mean flow. This is examined in detail in the related works Karimi et al.

(2008); Nicoud & Wieczorek (2009); Karimi et al. (2010).

6. Conclusions

An analysis of the energy transported by the disturbances in gaseous combustion has been

presented. This extended the previous work of Myers [J. Fluid Mech. 226 (1991) 383–
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Figure 6. Volume integrated and time averaged exact source terms normalised by AinW 2in

versus St, D̄s (△), -D̄Q (▽), - ¯DQ∗ (⋄), -D̄ψ (⊲) and D̄Y (◦).

Figure 7. Particular time averaged and volume integrated source terms normalised by AinW 2in

versus St: exact heat release T ′(ω/T )′ (�), exact thermal conduction T ′(−∇.(λ∇T )/T )′ (△),

second order unsteady heat release ω′T ′/T̄ (▽), second order steady heat release −ω̄T ′2/T̄ 2 (◦).

400] by including multiple species and finite rate chemical reaction, and so derived exact

and second order equations describing the transport of disturbance energy in gaseous

combustion.

The so-called ‘Rayleigh source term’ was then derived from these general equations of

combusting gas motion. This term was shown to become the sole acoustic source term

for flows that feature small disturbances that are irrotational, non-diffusive (in terms of
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species, momentum and energy), homentropic, without mean flow and at chemical equi-

librium. In this case the energy density and flux terms attain their classical (zero mean

flow) formulation. Further, for non-diffusive, non-zero mean flows at chemical equilib-

rium, a second order source term proportional to the mean heat release was found. This

term can destructively interfere with the Rayleigh term.

Following the approach of Doak [J. Sound Vib. 131 (1989) 67–90], the extended distur-

bance energy conservation equation was then used to relate the time and area averaged

far-field sound from a jet flow to the volume integral of the time average of the exact

disturbance energy source terms. A reasonable definition of the far-field was then ar-

gued to be one in which entropy and mass fraction disturbances could be neglected. In

this case, the relative contribution of each source term to the averaged far-field sound

could be compared given complete knowledge of the source region. This approach may

be complimentary to more usual analytic approaches in aeroacoustics that use acoustic

analogies.

Closure of the exact and second order energy budgets were then performed on a series

of aeroacoustic Direct Numerical Simulations (DNS) of a forced, low Mach number, lam-

inar, premixed flame. These balances showed that several source terms were significant,

including terms involving mean flow effects and the entropy field. This demonstrates

that the energetics of sound generation cannot be examined by considering the Rayleigh

source term alone.

The financial support from the Australian Research Council, the Centre Européen de

Recherche et de Formation Avancée en Calcul Scientifique (CERFACS), Toulouse and

Stanford University is very gratefully acknowledged, as is CERFACS’ permission to use

the code NTmix.
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Appendix A. Disturbance energy corollary around an unsteady base

flow

Around an unsteady base flow, equations 2.12 to 2.16 have time average solution,

∇.m̄ = 0, (A 1)

n−1
∑

k=1

[∇.(m̄Ȳk) + ∇.(m′Y ′k) = ω̄k −∇.(ρVkYk)], (A 2)

ζ̄ + ∇H̄ − T̄∇s̄− (T ′∇s′) = ψ̄ + ψ̄
∗
, (A 3)

∇.(m̄H̄) + ∇.(m′H ′)− m̄.ψ̄ − (m′.ψ′) = T̄ Q̄ + (T ′Q′), (A 4)

∇.(m̄s̄) + ∇.(m′s′) = Q̄ + Q̄∗. (A 5)

Here, ()′ = ()− (̄) is the disturbance and (̄) is the time averaged value.

Solutions to equations A 1 to A 5 now become the base flow. Undertaking the same

algebra as that detailed in Section 2.2, this results in an exact conservation equation for

the disturbance energy in a slightly different form,

∂E

∂t
+ ∇.W = D. (A 6)

In equation A 6, the disturbance energy density E and flux vector W terms are now

E = ρ(H ′ − T̄ s′)− m̄.u′ − p′ − ρ

n−1
∑

k=1

[gkY
′
k − (g′kY

′
k)], (A 7)

and

W = m′(H ′ − T̄ s′) + m̄T ′s′ + (m′H ′)− T (m′s′) + m(T ′s′). (A 8)

The exact source term D is again

D = Dξ + Ds + DQ + DQ∗ + Dψ + Dψ∗ + DYk
, (A 9)

where now

Dξ = −m′.ζ′ − (m′.ζ′),

Ds = −(m′s′).∇T̄ + m̄.(s′∇T ′)− (m′s′).∇T + m.(s′∇T ′),
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DQ = T ′Q′ + (T ′Q′),

DQ∗ = T ′Q∗′ + (T ′Q∗′),

Dψ = m′.ψ′ + (m′.ψ′),

Dψ∗ = m′.ψ∗
′
+ (m′.ψ∗

′
),

DYk
= g′∇.m′ + (g′∇.m′) +

n−1
∑

k=1

[g′kΩ
′
k + (g′kΩ

′
k)].

As discussed in Section 3.3, application of Gauss’ law to the time average of equation

A 6 and defining the far-field in the same way, results in the following expression for the

time and area averaged, far-field sound.

∫

A

(p′ + ρ0u0.u′)[u′ + (ρ′/ρ0)u0].dA =

∫

V

(Dξ +Ds+DQ+DQ∗ +Dψ +Dψ∗ +DYk
)dV.

(A 10)

where

Dξ = −m′.ζ′, Ds = −(m′s′).∇T̄ + m̄.(s′∇T ′), DQ = T ′Q′, DQ∗ = T ′Q∗′,

Dψ = m′.ψ′, Dψ∗ = m′.ψ∗
′
, DYk

= g′∇.m′ +
n−1
∑

k=1

g′kΩ
′
k.

Equation A 6 has several new terms that did not appear in equation 2.22 due to the

differing choices of base flow. Importantly, when time averaged, all of these new terms

duplicate terms that have already appeared in equation 2.22, giving a relatively simple

form to equation A 10.

Appendix B. Second order energy corollary around a steady base

flow

Equation 2.23 states the exact energy density,

E = ρ[H ′ − T0s
′]−m0.u′ − p′ − ρ

n−1
∑

k=1

gk0Y
′
k, (B 1)
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= ρe +
1

2
ρu.u− ρe0 −

ρ

ρ0
p0 −

1

2
ρu0.u0 − ρT0s

′ −m0.u′ − p0

−ρ

n−1
∑

k=1

gk0Y
′
k,

where e is the sensible internal energy. The term ρe is then expanded as a (n + 1)

dimensional Taylor series in ρ′, s′ and Y ′1 . . . Y ′n−1 to second order,

ρe = ρ0e0 +
(∂ρe

∂ρ

)

0
ρ′ +

(∂ρe

∂s

)

0
s′ +

n−1
∑

k=1

( ∂ρe

∂Yk

)

0
Y ′k (B 2)

+
(∂2ρe

∂ρ2

)

0

ρ′2

2
+

(∂2ρe

∂s2

)

0

s′2

2
+

n−1
∑

k=1

(∂2ρe

∂Y 2
k

)

0

Y ′2k
2

+
( ∂2ρe

∂ρ∂s

)

0
ρ′s′

+

n−1
∑

k=1

[( ∂2ρe

∂ρ∂Yk

)

0
ρ′Y ′k +

( ∂2ρe

∂s∂Yk

)

0
s′Y ′k +

n−1
∑

j=1

( ∂2ρe

∂Yj∂Yk

)

0
Y ′j 6=kY

′
k

]

.

Evaluation of the partial derivatives in B 2 first requires derivation of several exact dif-

ferentials. Those derivatives not involving Yk are presented in Myers (1991) and are true

at chemical equilibrium, whilst derivatives involving Yk require use of non-equilibrium

differentials given in Appendix C. Substitution of equation B 2 into equation B 1 then

yields the second order energy density,

E2 =
p′2

2ρ0c2
0

+
1

2
ρ0u

′2 + ρ′u0.u′ +
ρ0T0s

′2

2cp0
(B 3)

−
p′

ρ0c2
0

(n−1)
∑

k=1

[ρ0RT0

Wk0
+

p0

cv0T0
(gk0 − ek0)

]

Y ′k,

+
1

2ρ0c2
0

(n−1)
∑

j=1

(n−1)
∑

k=1

[ρ0RT0

Wj0
+

p0

cv0T0
(gj0 − ej0)

][ρ0RT0

Wk0
+

p0

cv0T0
(gk0 − ek0)

]

Y ′jY
′
k,

+

(n−1)
∑

j=1

(n−1)
∑

k=1

ρ0

cv0

(

cpj0 − cvj0 +
R

Wj0
− sj0

)[

(gj0 − ej0) +
R

Yj0Wj0

]

Y ′j 6=kY
′
k,

+

(n−1)
∑

k=1

ρ0

2cv0

(

cpk0 − cvk0 +
R

Wk0
− sk0

)[

(gk0 − ek0) +
R

Yk0Wk0

]

Y ′2k ,

+

(n−1)
∑

k=1

[RT0

Wk0
+ (γ0 − 1)(gk0 − ek0)

]

ρ′Y ′k,

+

(n−1)
∑

k=1

ρ0

cv0
(gk0 − ek0)s

′Y ′k.
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The exact flux vector (equation 2.24) is already second order in the disturbances. It

can also be expressed in form which more obviously can reduce to the acoustic energy flux

by making use of Gibbs’ equation in terms of the enthalpy of the mixture (e.g. Williams

(1985)),

dh = Tds +
1

ρ
dp +

n
∑

k=1

gkdYk.

The flux vector is then

W2 = m′(H ′ − T0s
′) + m0T ′s′, (B 4)

=

(

p′ + ρ0

n−1
∑

k=1

gk0Y
′
k + ρ0u0.u′

)(

u′ +
ρ′

ρ0
u0

)

+ m0T ′s′,

where the term containing Y ′k can be considered as a flux of energy associated with mass

fraction disturbances.

Similarly, the exact source term (equation 2.25) is already second order in the distur-

bances. Neglecting the viscous stress, dissipation, heat conduction and species diffusion

terms, it can be further simplified as follows.

D2 = ρ0u0.(ξ′ × u′) + ρ′u′.(ξ0 × u0) (B 5)

− s′m′.(∇T0) + s′m0.(∇T ′)

+

(

ω′T ′

T0
−

ω0T
′2

T 2
0

)

−
T ′

T0

n−1
∑

k=1

(gk0ω
′
k + g′kωk0)

+ m′.[

n−1
∑

k=1

(g′k∇Yk0 + gk0∇Y ′k)]

+ g′∇.m′ +

n−1
∑

k=1

g′k[ω
′
k −∇.(m0Y ′k + m′Yk0)].
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Appendix C. Exact thermodynamic differentials for non-equilibrium

chemistry

Gibbs’ equation states an exact differential for the internal energy e in terms of the

entropy, density and mass fractions,

de = Tds +
p

ρ2
dρ +

n
∑

k=1

gkdYk. (C 1)

Since

e =

∫ T

T0

cvdT −
RT0

W
, (C 2)

where R is the ideal gas constant and W = 1/(Σnk=1Yk/Wk) is the molecular mass, de

can also be written as

de = cvdT +
n

∑

k=1

ekdYk. (C 3)

Equating equations C 1 and C 3 then gives an exact differential for the temperature

dT =
1

cv
[Tds +

p

ρ2
dρ +

n
∑

i=1

(gk − ek)dYk]. (C 4)

Similar working yields exact differentials for the pressure, enthalpy of the mixture and

the Gibb’s free energy of species k,

dp =
p

cv
ds +

γp

ρ
dρ +

n
∑

k=1

[
ρRT

Wk

+
ρR

Wcv
(gk − ek)],

dh = Tds +
γp

ρ2
dρ +

n
∑

k=1

[
RT

Wk

+ γgk − (γ − 1)ek]dYk,

dgk =
(

cpk − cvk +
R

Wk

− sk
) T

cv
ds

+
RT

ρW

[W

cv
(cpk − cvk +

R

Wk

− sk) +
W

Wk

]

dρ

+
1

cv

(

cpk − cvk +
R

Wk

− sk
)

n
∑

k=1

[

(gk − ek) +
R

YkWk

]

dYk.
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