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A uniform asymptotic expansion for

weighted sums of exponentials

J.S.H. van Leeuwaarden ∗ N.M. Temme †

May 23, 2011

Abstract

We consider the random variable Zn,α = Y1 + 2αY2 + . . . + nαYn, with α ∈ R and Y1, Y2, . . .
independent and exponentially distributed random variables with mean one. The distribution
function of Zn,α is in terms of a series with alternating signs, causing great numerical difficulties.
Using an extended version of the saddle point method, we derive a uniform asymptotic expansion
for P(Zn,α < x) that remains valid inside (α ≥ −1/2) and outside (α < −1/2) the domain of
attraction of the central limit theorem. We discuss several special cases, including α = 1, for
which we sharpen some of the results in Kingman and Volkov (2003).

Key words: asymptotic analysis, saddle point approximation, exponential random variables, Gumbel
distribution, Kolmogorov distribution, OK Corral model.

MSC2000 subject classification. 60F05, 33B20, 41A60.

1 Introduction

We consider the random variable

Zn,α = Y1 + 2αY2 + . . . + nαYn, (1)

where α ∈ R and Y1, Y2, . . . are independent and exponentially distributed random variables with
mean one. It is fairly straightforward to derive an explicit expression for the distribution function
P(Zn,α < x) in terms of an alternating series, see (4), but this series gives rise to severe numerical
problems. In this paper we derive an expansion for the distribution function that will provide
arbitrarily sharp approximations, uniformly for all x ≥ 0. We derive the expansion by applying
an extended version of the saddle point method. In order to do so, we first write P(Zn,α < x)
as a contour integral that arises from applying the inversion formula to the Laplace transform
of Zn,α. We then transform the integral and apply the saddle point method, in a way that is
reminiscent of the saddle point approximation developed by Lugannani and Rice (1980) for the
sum of i.i.d. random variables.

Apart from the case α = 0, the sum in (1) consists of random variables having different dis-
tributions. Our primary motivation for undertaking this study is to demonstrate how the saddle
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point method, along with some other asymptotic methods, leads to a tractable uniform expansion
for P(Zn,α < x) that is sharp even for small values of n and x away from the mean. We have three
more motivations for undertaking this effort:

• The random variable Zn,α for the case α = 1 occurs in various contexts, such as linear
combinations of order statistics Holst (1980), Matsunawa (1985), noise in radio receivers
Kac and Siegert (1947), and urn models Kingman (1999), Kingman and Volkov (2003). Build-
ing on the latter paper, Kingman and Volkov (2003) apply the central limit theorem (CLT)
to Zn,1 and derive the order of the error made by approximating a normalized version of Zn,1

by a standard normal random variable. Our uniform expansion leads to arbitrarily sharp
approximations.

• In fact, for all values α ≥ −1
2 , the random variable Zn,α, after appropriate scaling, obeys the

CLT and converges to a standard normal random variable. The resulting normal approxi-
mation to P(Zn,α < x) is useful for large n and x close to the mean of Zn,α. However, for
increasing values of α, or for values of x far from the mean, the CLT kicks in ever more slowly.
Our asymptotic expansion corrects for these effects.

• Our expansion remains valid for α < −1/2. For α = −1 the random variable Zn,α describes
the maximum of n i.i.d. exponentially distributed random variables. This is a classic example
from extreme value theory, for which, as n →∞, Zn,α follows the Gumbel distribution. For
α = −2, Zn,α follows the Kolmogorov distribution, another classical distribution that plays for
instance a role in the study of Brownian excursions in relation to the Riemann zeta function
Biane et al. (2001).

In Section 2 we derive an integral representation for P(Zn,α < x) in terms of a contour integral
in the complex plane. In Section 3, we use this integral representation to derive the asymptotic
expansion for P(Zn,α < x), which holds uniformly for x ≥ 0. In Section 4 we evaluate the coefficients
in the expansion, in Section 5 we discuss several special cases, and in Section 6 we present some
numerical results.

2 Integral representation

The Laplace transform νn,α(s) = E(e−sZn,α) of Zn,α can be represented as

νn,α(s) =
n∏

j=1

1
1 + sjα

=
n∑

j=1

1
Πj,n,α

1
1 + sjα

(2)

with
Πj,n,α =

∏

1≤k≤n,k 6=j

(1− (k/j)α). (3)

Let Fn,α(x) = P(Zn,α > x). We show below that (2) leads to the alternative expression

Fn,α(x) =
n∑

j=1

1
Πj,n,α

e−xj−α
. (4)
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For the case α = 1, we can write the distribution function as

Fn,1(x) =
(−1)n

n!

n∑

j=1

(
n

j

)
(−1)jjne−x/j , (5)

The limiting values at x = 0 and x = ∞ are given by

Fn,1(0) = 1, Fn,1(∞) = 0. (6)

The value Fn,1(∞) follows easily from (5) and Fn,1(0) follows from a relation with the Stirling
numbers of the second kind, viz.

Sm
n =

1
m!

m∑

k=0

(−1)m−k

(
m

k

)
kn (7)

(Temme 1996, p. 21), which has the property S(n)
n = 1.

Evaluating the sum in (5) may cause severe cancellation of leading digits. For example, the
sum for n = 100 and x = 5000 is1

Fn,1(x) = 0.51721318855009723..., (8)

but the terms in the sum (divided by n!) range in magnitude from 10−2327 (for j = 1) to 1027 (for
j = 86), and the alternating signs should provide the proper answer. That is why we now derive
an asymptotic expansion, of which only the first few terms will already give sharp approximations
for Fn,α(x). To obtain the expansion, we first derive an integral representation for Fn,α(x) in terms
of a contour integral in the complex plane. We start with the representation

Fn,α(x) = 1−Gn,α(x), (9)

where Gn,α(x) has the integral representation

Gn,α(x) =
1

2πi

∫

L

exs

s(s + 1)(2αs + 1) · · · (nαs + 1)
ds, (10)

and L is a contour running in the positive (i.e., anti-clockwise) direction around the poles at s = 0
and at s = −j−α, j = 1, 2, . . . , n. Taking into account the behavior of the integrand as s → ±i∞,
we can deform the finite contour into two vertical lines, one with ℜs < −n−α and one with ℜs > 0.
The left line can be shifted to the left as far as we like, and its contribution vanishes as we shift it
to −∞. So we are left with one vertical line L with ℜs > 0, and the integration runs from −i∞ to
+i∞.

By shifting the vertical line L in (10) to the left, across the n + 1 poles, we obtain a sum of
residues. The residue at s = 0 equals 1, and at s = −j−α, j = 1, 2, . . . , n, it equals −e−xj−α

/Πj,n,α.
In this way we obtain the sum in (4). On the other hand, when x = 0 we can shift the vertical line
L in (10) to the right, as far as we like, and its contribution vanishes as we shift it to +∞. This

1George Marsaglia mentioned on June 30, 1999 this case in Article 47714 of the Internet newsgroup sci.math.num-
analysis , “A tough numerical problem”, and wondered if it would be possible to evaluate, to at least 6-digit (single-
precision) accuracy, the sum for the given values of x and n in (5) using IEEE standard double-precision arithmetic.
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shows that Gn,α(0) = 0, which confirms (6).
When α = 0 we have

Gn,0(x) =
1

2πi

∫

L

exs

s(s + 1)n
ds, (11)

and this integral can be written in terms of the incomplete gamma function. We have (see (Temme
1996, pp. 282–283))

Gn,0(x) = P (n, x), Fn,0(x) = Q(n, x), (12)

where the incomplete gamma functions P and Q are defined by

P (a, z) =
1

Γ(a)

∫ z

0
ta−1e−t dt, , Q(a, z) =

1
Γ(a)

∫ ∞

z
ta−1e−t dt. (13)

When α = 1 we can write the integrand of (10) in the form

exs

s(s + 1)(2s + 1) · · · (ns + 1)
=

esx

sn+1

Γ(1 + 1/s)
Γ(n + 1 + 1/s)

. (14)

3 An asymptotic expansion of Fn,α(x)

For obtaining an asymptotic representation we apply the saddle point method (see (Wong 2001,
Ch. 2)). We write

Gn,α(x) =
1

2πi

∫

L
eφ(s) ds

s
, (15)

where
φ(s) = xs− ln ((s + 1)(2αs + 1) · · · (nαs + 1)) . (16)

The saddle point, defined by the s−value for which φ′(s) = 0, is governed by the equation

x =
1

s + 1
+

2α

2αs + 1
+ . . . +

nα

nαs + 1
. (17)

It is not difficult to verify that, if x > 0, this equation has a unique solution s0 in the interval
(−1/nα,∞); see Figure 1. The curve represents the right-hand side of (17), and it cuts the vertical
axis at a point indicated by

µn,α = E(Zn,α) = 1 + 2α + · · · + nα. (18)

If x > µn,α the saddle point is negative, as shown in Figure 1. If x = µn,α the pole at the origin
in (15) coincides with the saddle point. As explained in (Wong 2001, Ch. 7) we can use an error
function to handle this case. We have the approximation

s0 = −x− µn,α

µn,2α
(1 + o(1)) , x → µn,α. (19)

More details on this relation follow from §4.1, in particular by inverting the expansion in (35).
We transform the integral into a standard form for applying Laplace’s method (Wong 2001,

Ch. 2) by substituting
φ(s)− φ(s0) = 1

2
w2 (20)
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x

0

μ
n,α

−n-α

Figure 1: The saddle point s0 is the solution of the equation (17). The curve represents the
right-hand side of (17)

and prescribe that w has the sign of s− s0 for real values of s with s > −n−α.
We obtain from (15)

Gn,α(x) =
eφ(s0)

2πi

∫ i∞

−i∞
e

1
2
w2

f(w)
dw

w − ξ
, (21)

where
f(w) =

w − ξ

s

ds

dw
, (22)

and ξ is the w−value that corresponds with s = 0. That is, since φ(0) = 0,

1
2
ξ2 = φ(0)− φ(s0) = −φ(s0) =⇒ ξ =

√
−2φ(s0), (23)

where ξ has the sign as prescribed in the mapping in (20). Thus, ξ should have the sign of −s0, or
in other words, ξ has the sign of (x− µn,α).

Because φ(0) = 0, and φ(s) → +∞ as s → −n−α and s → +∞, it follows that φ(s0) is
non-positive. Also, f(ξ) = 1, as easily follows from (22) by applying l’Hôpital’s rule.

We see that, when s0 > 0 and we take the vertical line through s0, the pole at s = 0 is at the
left side of L. We obtain the same situation in (21): if s0 > 0, that is, ξ < 0, then the pole at
w = ξ is at the left of the saddle point at w = 0. To handle the integral in (21) for small values of
ξ (when x ∼ µn,α) we regularize the integrand by splitting off the pole at w = ξ writing

f(w)
w − ξ

= g(w) +
1

w − ξ
, g(w) =

f(w)− 1
w − ξ

. (24)

This gives

Gn,α(x) =
eφ(s0)

2πi

∫ i∞

−i∞
e

1
2
w2 dw

w − ξ
+

eφ(s0)

2πi

∫ i∞

−i∞
e

1
2
w2

g(w)
dw

w − ξ
. (25)
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The first integral can be written as (by substituting w = it)

eφ(s0)

2πi

∫ i∞

−i∞
e

1
2
w2 dw

w − ξ
=

eφ(s0)

2πi

∫ ∞

−∞
e−

1
2
t2 dt

t + iξ
. (26)

When ξ < 0 this integral can be written as a complementary error function and a w−function; see
Temme (2010)2. In this way, by using also (23),

eφ(s0)

2πi

∫ ∞

−∞
e−

1
2
t2 dt

t + iξ
= 1

2
eφ(s0)w

(
−iξ/

√
2
)

= 1
2
erfc

(
−ξ/

√
2
)

. (27)

The right-hand side is an entire function of ξ, and we will use this relation for all real ξ, although
the starting point for evaluating the integral in (27) was ξ < 0.

The function g is analytic in the same domain as where f is analytic. We expand

g(w) =
∞∑

k=0

ckw
k. (28)

This gives the asymptotic expansion

Gn,α(x) ∼ 1
2
erfc(−ξ/

√
2) +

eφ(s0)

√
2π

∞∑

k=0

Ck, Ck = (−1)k 2k (1
2
)k c2k. (29)

For the function Fn,α(x) we obtain, using (9) and 1− 1
2erfc z = 1

2erfc(−z), our main result:

Fn,α(x) ∼ 1
2
erfc(ξ/

√
2)− eφ(s0)

√
2π

∞∑

k=0

Ck. (30)

There is no large parameter showing in the asymptotic series, but the coefficients contain the
asymptotic information. The expansion holds for large values of n, uniformly with respect to x ≥ δ,
where δ is a fixed positive number. For further information on this point we refer to §4.2.

4 Evaluating the coefficients

For evaluating the coefficients Ck in (30) we need the coefficients bk in the expansion

s =
∞∑

k=0

bkw
k, b0 = s0, (31)

which follow from the inversion of (20). Let

φ(s) =
∞∑

k=0

ak

k!
(s − s0)k, ak = φ(k)(s0), (32)

2http://dlmf.nist.gov/7.7.i, http://dlmf.nist.gov/7.7.E2
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with a1 = φ′(s0) = 0. Then the first coefficients bk are given by

b0 = s0, b1 =
1√
a2

, b2 =
−a3

6a2
2

, b3 =
5a2

3 − 3a2a4

72a7/2
2

,

b4 =
45a2a3a4 − 40a3

3 − 9a2
2a5

1080a5
2

.

(33)

By using (22) and (23) we find the coefficients c2k of g(w) in (28). We have for the coefficients C0

and C1:

C0 =
s0
√

a2 + ξ

s0
√

a2 ξ
,

C1 = −12a3a
3
2s0ξ

3 + 24a4
2ξ

3 + 5s2
0ξ

3a2
2a

2
3 − 3ξ3s2

0a
3
2a4 + 24s3

0a
11/2
2

24s3
0ξ

3a
11/2
2

.

(34)

4.1 Expansions of the coefficients near the mean

For small values of s0 (or ξ) we need expansions in terms of one of these small parameters. First
we need the expansion of x in powers of s0 (which is the solution of (17)). We can expand

x = µn,α − µn,2αs0 + µn,3αs2
0 − . . . =

∞∑

k=0

(−1)kµn,(k+1)αsk
0. (35)

Furthermore, we have

φ′(s) = x−
n∑

j=1

jα

jαs + 1
, φ(k)(s) = (−1)k(k − 1)!

n∑

j=1

jαk

(jαs + 1)k
, k ≥ 2, (36)

and
φ(s) = (x− µn,α) s + 1

2
µn,2αs2 − 1

3
µn,3αs3 + . . . . (37)

Using (35) we obtain

φ(s0) = −1
2
µn,2αs2

0 + 2
3
µn,3αs3

0 − 3
4
µn,4αs4

0 + . . . . (38)

We obtain, using (37),

ak = φ(k)(s0) = (−1)k
∞∑

m=0

(m + k − 1)!
m!

(−s0)mµn,(k+m)α, (39)

and, using (23) and (38),

ξ2 = 2
∞∑

m=2

m− 1
m

µn,mα(−s0)m. (40)
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This gives (recall that ξ has the sign of −s0, cf. the definition of ξ in (23))

ξ = −√µn,2α s0

(
1− 2µn,3α

3µn,2α
s0 +

27µn,4αµn,2α − 8µ2
n,3α

36µ2
n,2α

s2
0 + . . .

)
. (41)

By using (39) and (41) we can obtain expansions for the quantities Ck of (30). For example,

C0 =
1
3

µn,3α

µ
3/2
n,2α

− 1
12

9µn,2αµn,4α − 10µ2
n,3α

µ
5/2
n,2α

s0 + O
(
s2
0

)
, (42)

and

C1 =
1

540
675µn,2αµn,3αµn,4α − 350µ3

n,3α − 324µ2
n,2αµn,5α

µ
9/2
n,2α

+ O (s0) . (43)

4.2 On the order of growth of the coefficients at the mean

The coefficients Ck of (30) constitute an asymptotic scale for large n. This means Ck+1 = o (Ck)
as n → ∞. We verify this property at the mean, that is, when x = µn,α, or s0 = 0. Exact values
of C0 and C1 are given in (42) and (43) with s0 = 0.

To estimate these coefficients for large n we observe that for α > −1 we have µn,α = O
(
nα+1

)
.

It follows that for α ≥ 0
C0 = O(n−1/2), C1 = O(n−3/2). (44)

Considering Ck with higher k we see the same pattern as in C0 and C1: the numerator of Ck contains
a sum of products µp

n,2αµq
n,3α · · · and all these terms are of the same order O

(
n3(2k+1)α+2k+1

)
. The

denominator is of order O
(
n3(2k+1)α+3k+3/2

)
, which gives

Ck = O(n−k−1/2), k = 0, 1, 2, . . . . (45)

This has been derived at the mean for α ≥ 0. When −1
2 < α < 0, µn,2α is still growing and the

verification that Ck constitutes an asymptotic scale can be slightly modified, although other µn,jα

may have order O(1).

5 Special cases

We shall now discuss some special cases related to specific values of α.

5.1 Central limit theorem (α ≥ −1
2
)

We first consider those values of α for which Zn,α falls within the domain of attraction of the CLT.

Let d−→ denote convergence in distribution, and let N(0, 1) be a standard normal random variable.
Then, for α ≥ −1

2 ,
Zn,α − µn,α

σn,α

d−→ N(0, 1), (46)

as n → ∞, where µn,α = 1 + 2α + · · · + nα and σ2
n,α = 1 + 22α + · · · + n2α. This follows from

the CLT with Lyapunov conditions (see (Chung 2001, p. 211)). Indeed, for Sn =
∑n

j=1 Xn, sn =

8



(
∑n

j=1 Var(Xj))3/2, it is known that if

n∑

j=1

E(|Xj |3)/sn −→ 0, (47)

then Sn/sn
d−→ N(0, 1). With Xj = j(Yj − 1), (47) is equivalent with

Tn,α :=

∑n
j=1 j3α

(
∑n

j=1 j2α)3/2
−→ 0. (48)

The latter is only true for α ≥ −1
2 , which gives (46).

An alternative proof of (46) can be obtained from expanding the Laplace transform. That is,

n∏

j=1

exp(sµn,α/σn,α)
1 + sjα/σn,α

= exp(sµn,α/σn,α) exp


−

n∑

j=1

(
s

jα

σn,α
− s2 j2α

2σ2
n,α

+ s3 j3α

3σ3
n,α

− . . .

)


= exp
(

1
2
s2 − Tn,αs3 + . . .

)
. (49)

The CLT thus applies, and gives

Fn,α(x) ≈ 1− Φ
(

x− µn,α

σn,α

)
, (50)

where Φ(x) is the normal distribution function

Φ(x) =
1√
2π

∫ x

−∞
e−t2/2 dt = 1

2
erfc(−x/

√
2). (51)

The approximation (50) is in particular useful for large values of n, with x close to µn,α. Observe
that from (19) and (41) we can derive

ξ ∼ x− µn,α

σn,α
, as x ∼ µn,α, (52)

which shows that the term with the complementary error function in (30) corresponds with the
approximation in (50), when x ∼ µn,α.

We shall now compare (50) with our uniform expansion (30), for which we consider α = 1,
n = 100, x = 5000 and compare the approximations in (50) and (30) with the value given in (8).
Then (see (18)) µ = µn,1 = 5050 and σn,1 = 581.6786 . . .. This gives for (50) the CLT approximation

Fn,1(x) ≈ 0.53425. (53)

Next we consider (30). We have s0 = 0.0001494392 . . . and ξ = −0.08627917 . . ., which gives
(by taking only the error function)

Fn,1(x) ≈ 0.53438. (54)
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Taking into account the first term of the expansion we have C0 = 0.0432412 . . ., which gives

Fn,1(x) ≈ 0.51719. (55)

Comparing this with (8) we observe a relative error 0.42 × 10−4. Including the contribution from
C1 = −0.5616593 × 10−4, we obtain

Fn,1(x) ≈ 0.51721340, (56)

with relative error 0.42× 10−6.
More numerical details will be given in Section 6.

5.2 Erlang distribution (α = 0)

Remember that for α = 0 the random variable Zn,α is in fact an i.i.d. sum of exponentials, and
the distribution function is in fact the Erlang distribution, which can be expressed in terms of the
incomplete gamma function, see (12). For α = 0, we have

s0 =
1
λ
− 1, φ(s0) = n(1− λ + ln λ), λ =

x

n
, (57)

and
ξ =

√
2n(−1 + λ− ln λ), a2 = nλ2, (58)

where ξ has the sign of λ − 1. This gives the same coefficients Ck (up to scaling) as derived in
Temme (1979) for the incomplete gamma functions. The first term in the expansion (30) agrees
with the first term in the Lugannani and Rice formula for the sums of i.i.d. random variables.

5.3 Gumbel distribution (α = −1)

For α = −1 we have that

Gn,−1(x) = 1 +
n∑

j=1

(
n

j

)
(−1)je−xj = (1− e−x)n, (59)

and in fact, Zn,−1 is equal in distribution to max{Y1, Y2, . . . , Yn}, with Y1, Y2, . . . the i.i.d. unit
mean exponentials, as before. From extreme value theory we know that the distribution of Zn,−1

then converges to a double exponential or Gumbel distribution. That is, as n →∞,

Zn,−1 − log n
d−→ W, (60)

with P(W < x) = exp(−e−x), x ∈ R. For the Laplace transform we find that

lim
n→∞

νn,−1(s)es
∑n

j=1 j−1

= lim
n→∞

n∏

j=1

es/j

1 + s/j
= eγsΓ(s + 1), (61)

with γ = limn→∞(
∑n

j=1 j−1 − log n).
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Table 1: Values of Fn,α for n = 10 and x = 0.99µn,α, CLT is obtained from (50), erfc from (30)
(without terms) and δ0, δ2 are the relative errors by taking the terms C0 and C0, C1 in the expansion.

α x Fn,α CLT erfc δ0 δ2

-2.0 1.5342701 0.38907739 0.50594346 0.50597034 0.91e-2 0.60e-2
-1.5 1.9753831 0.40553885 0.50727377 0.50730961 0.13e-1 0.42e-2
-1.0 2.8996786 0.43228537 0.50938537 0.50943135 0.12e-1 0.53e-3
-0.5 4.9707880 0.46046846 0.51170255 0.51174833 0.35e-2 0.82e-3
0.0 9.9000000 0.47050158 0.51261356 0.51265584 0.37e-4 0.11e-4
0.5 22.243595 0.46580821 0.51208461 0.51212754 0.54e-3 0.22e-4
1.0 54.450000 0.45853324 0.51118113 0.51122320 0.13e-2 0.99e-4
1.5 141.24559 0.45179788 0.51034755 0.51038785 0.22e-2 0.21e-3
2.0 381.15000 0.44578999 0.50964906 0.50968747 0.31e-2 0.36e-3

5.4 Kolmogorov distribution (α = −2)

For α = −2 we obtain

Πj,∞,−2 =
∞∏

k=1,k 6=j

(1− (j/k)2) = −cos πj

2
(62)

and hence

G∞,−2(x) = 1− 2
∞∑

j=1

(−1)j+1e−xj2
=

∞∑

j=−∞
(−1)je−xj2

, (63)

which is known as Kolmogorov’s distribution. Using the Jacobi identity, (63) can be represented
as an infinite product (see Chung (1982)):

G∞,−2(x) =
∞∏

j=1

1− e−jx

1 + e−jx
. (64)

The corresponding Laplace transform reads

lim
n→∞

νn,−2(s) =
∞∏

j=1

1
1 + s/j2

=
π
√

s

sinhπ
√

s
, (65)

where the last equality follows from

sinh z = z
∞∏

j=1

(1 +
z2

j2π2
). (66)

See also Kac and Siegert (1947) and Biane et al. (2001) for more applications of the case α = −2.
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Table 2: Similar values as in Table 1, now for n = 100 and again x = 0.99µn,α.

α x Fn,α CLT erfc δ0 δ2

-2.0 1.6186341 0.38945105 0.50626942 0.50629932 0.91e-2 0.60e-2
-1.5 2.3887454 0.40771270 0.50877921 0.50883121 0.13e-1 0.41e-2
-1.0 5.1355037 0.44575400 0.51618014 0.51630710 0.12e-1 0.81e-3
-0.5 18.403708 0.50696945 0.53252552 0.53270653 0.19e-2 0.39e-3
0.0 99.000000 0.52669567 0.53982784 0.53996093 0.13e-5 0.31e-7
0.5 664.74825 0.52281707 0.53763922 0.53777378 0.17e-4 0.84e-7
1.0 4999.5000 0.51755849 0.53459179 0.53472196 0.43e-4 0.42e-6
1.5 40096.212 0.51287625 0.53196106 0.53208556 0.74e-4 0.10e-5
2.0 334966.50 0.50881793 0.52978242 0.52990111 0.11e-3 0.20e-5

Table 3: Similar values as in Table 1, now for n = 100, x = 0.50µn,α, Gn,α and the corresponding
CLT and expansion (29).

α x Gn,α CLT erfc δ0 δ2

-2.0 0.8174920 0.1975542e-0 0.2159960e-0 0.1352230e-0 0.24e-1 0.66e-3
-1.5 1.2064370 0.6433725e-1 0.1355787e-0 0.4486680e-1 0.21e-1 0.43e-2
-1.0 2.5936888 0.4228630e-3 0.2125793e-1 0.3132675e-3 0.74e-2 0.85e-3
-0.5 9.2948020 0.1518863e-7 0.2242152e-4 0.1198045e-7 0.85e-3 0.35e-4
0.0 50.000000 0.3200065e-9 0.2866516e-6 0.2562014e-9 0.84e-5 0.31e-6
0.5 335.73144 0.1657144e-8 0.1154000e-5 0.1318627e-8 0.10e-3 0.17e-6
1.0 2525.0000 0.1908872e-7 0.7095496e-5 0.1508219e-7 0.21e-3 0.98e-6
1.5 20250.612 0.1545196e-6 0.3035652e-4 0.1214514e-6 0.31e-3 0.22e-5
2.0 169175.00 0.8285763e-6 0.9343075e-4 0.6486733e-6 0.41e-3 0.38e-5
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6 Numerical experiments

In Table 1 we give numerical details of the asymptotic approximations. We take n = 10 for all
cases and x = 0.99µn,α, these values being close to the mean. Fn,α is the value obtained from
multi-precision arithmetic, CLT denotes the value obtained from (50) (also for values of α < −1

2 ,
where the CLT approach is no longer valid). The column with erfc gives the values obtained from
(30) taking only the complementary error function, and δ0, δ2 are the relative errors taking also the
terms C0 and C0, C1 in the expansion.

In Table 2 we use n = 100 and again x = 0.99µn,α. In Table 3 we use n = 100 and x = 0.50µn,α,
which is outside the mean values, but now for Gn,α and the corresponding CLT and asymptotic
expansion (29) (because Fn,α is almost equal to unity in some cases).

We observe that in Table 1 and Table 2 the values of the columns CLT and erfc are quite close,
because x and n are close to the mean. In all cases the results become sharper when we add the
terms C0 and C1 in the asymptotic expansion (30). The computations are done in Maple with
30-digits arithmetic, except for the computation of Fn,α(x), where for n = 100 we took 300 digits.
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