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A connection between boundedness in probability and laws of large numbers is established for ϕ-mixing strictly stationary sequences.

Introduction and results

Let {X k } k∈Z , Z = {. . . , -1, 0, 1, 2, . . .}, be a strictly stationary sequence defined on a probability space (Ω, F, P ) taking values on the real line R, and F k j be the σ-field generated by X j , X j+1 , . . . , X k , j, k ∈ Z, j ≤ k. Set S n = n k=1 X k , n ∈ N = {1, 2, . . .} and define ϕ n = sup{|P (B|A) -P (B)|; P (A) > 0, A ∈ F 0 -∞ , B ∈ F ∞ n }. If lim n→∞ ϕ n = 0, then {X k } is said to be uniformly strong mixing or ϕ-mixing.

The main purpose of this note is to shed some light on the connection between boundedness in probability and laws of large numbers for dependent random variables. Recall that a sequence {Y n } is bounded in probability (b.i.p.) or stochastically bounded, if for each ǫ > 0 one can find M > 0 with sup n P [|Y n | > M ] < ǫ. Our first result states the Marcinkiewicz-Zygmund law in terms of b.i.p. (cf. Marcinkiewicz and Zygmund, 1937, Théorème 9).

Theorem 1 Suppose r ∈ (1, 2) is a real number and {X k } is a strictly station- ary ϕ-mixing sequence. Then n -1 r S n → 0 almost surely iff {n -1 r S n } is b.i.p. and E[|X 1 | r ] < ∞.
If moments do not exist, our next theorem gives a similar characterization (see also [START_REF] Szewczak | Marcinkiewicz laws with infinite moments[END_REF], Theorem 1, Theorem 2 and Remark 14). Define

c n = c n (r) = sup{x > 0 ; x -r E[|X 1 | r I [|X 1 |≤x] ] ≥ 1 n }. Since x -r E[|X 1 | r I [|X 1 |≤x] ] → 0 as x → ∞, thus c n is finite and by Lemma 7 in Szewczak (2010) nE[|X 1 | r I [|X 1 |≤cn] ] ∼ c r n .
Theorem 2 Suppose {X k } is a strictly stationary ϕ-mixing sequence and Remark 1 andLemma 2). In the case of sums of dependent random variables a tool for verifying b.i.p. is von Bahr-Esseen's inequality (cf. Bahr and Esseen, 1965, Theorem 2)

E[|X 1 | r ] = ∞ for some real r ∈ (1, 2). If {c -1 n S n } is b.i.p. and E[|X 1 | r I [|X 1 |≤x] ] is slowly varying in the sense of Karamata, then c -1 n S n → 0 in probability. Con- versely, if c -1 n S n → 0 in probability and ϕ 1 < 1, then E[|X 1 | r I [|X 1 |≤x] ] is slowly varying and E[X 1 ] = 0. For {X k } independent and identically distributed (i.i.d.) with E[|X 1 | r I [|X 1 |≤x] ] slowly varying, r ∈ (1, 2], {c -1 n S n } is b.i.p. iff E[X 1 ] = 0 (see
. Namely, if {X k } is (not necessarily stationary) random sequence such that E[|X k | r ] < ∞, k = 1, . . . , n, and E[X m+1 | S m ] = 0 a.s., m ∈ N, 1 ≤ m ≤ n -1, 1 ≤ r ≤ 2, then E[| n k=1 X k | r ] ≤ 2 n k=1 E[|X k | r ]
. Note that the case r = 2, related to the Central Limit Theorem (CLT), is also included here. Another approach is the use of the truncation method together with the convergence rate of ϕ n coefficients (cf. Szewczak, 2011, Corollary 1). Yet another inequality of interest is stated in Lemma 8.22 on p. 268 in Bradley, 2007, vol. I (see Remark 1). Unfortunately in our setting it is unknown if Bradley, 2007, vol. III, P2 Question, p. 457). This situation corresponds to the still unsolved Ibragimov's conjecture (cf. Bradley, 2007, vol. III, P1 Ibragimov's Conjecture, p. 457) and Iosifescu-Peligrad's conjecture (cf. Bradley, 2007, vol. III, P3 Iosifescu's Conjecture, p. 457;Peligrad, 1990, Conjecture 1.3) related to the CLT and its invariance principle, respectively. Therefore it is natural to state the following conjecture, this time related to Marcinkiewicz laws of large numbers (see Lemma 2).

{c -1 n S n } is b.i.p. or n -1 sup n E[|S n -E[S n ]| r ] < ∞, r ∈ (1, 2], (cf.
Conjecture 1 Suppose {X k } is a stationary random sequence which is ϕ-

mixing and E[|X 1 | r I [|X 1 |≤x] ], r ∈ (1, 2], varies slowly. If E[X 1 ] = 0 then, {c -1 n S n } is b.i.p.
Remark 1 It is worth noting that under condition lim n q * n < 1 Conjecture 1 holds. Recall the definition of coefficient q * n (cf. Bradley, 2007, vol. I, p. 249)

q * n = sup E[( j∈Q X j )( k∈S X k )] ( j∈Q X j ) 2 • ( k∈S X k ) 2 ,
where this sup is taken over all pairs of nonempty, disjoint, finite sets Q, S ⊂ Z such that inf j∈Q,k∈S |j -k| ≥ n and

• 2 is L 2 norm. Since E[|X 1 | r I [|X 1 |≤x] ]
varies slowly, [START_REF] Feller | An Introduction to Probability Theory and Its Applications[END_REF], Theorem 2, p. 283) therefore

x r-1 E[|X 1 |I [|X 1 |>x] ] E[|X 1 | r I [|X 1 |≤x] ] → 0 as x → ∞ (cf.
lim n nc -1 n E[|X 1 |I [|X 1 |>cn] ] = lim n nc -1 n E[|X 1 |I [|X 1 |>cn] ] n c r n E[|X 1 | r I [|X 1 |≤cn] ] = 0.
On the other hand by Lemma 8.22 on p. 268 in [START_REF] Bradley | Introduction to Strong Mixing Conditions[END_REF], vol. I

c -2 n E[( n k=1 X k I [|X k |≤cn] -E[X k I [|X k |≤cn] ]) 2 ] ≤ 4m 1 + q * m 1 -q * m n c 2 n E[X 2 1 I [|X 1 |≤cn] ] ≤ 4m 1 + q * m 1 -q * m n c r n E[|X 1 | r I [|X 1 |≤cn] ],
for m such that q * m < 1 and n > m.

Since n c r n E[|X 1 | r I [|X 1 |≤cn]
] is bounded therefore {c -1 n S n } is b.i.p. by the Chebyshev inequality and the truncation argument. Thus if Bradley's conjecture (cf. Bradley, 2007, vol. III, P10 Conjecture, p. 461) turns out to be true, then Conjecture 1 would follow.

The note is organized in such a way that in Section 2 there are some auxiliary inequalities required for the proofs in Section 3.

Auxiliary inequalities

Let {X k } be a (not necessarily strictly stationary) random sequence and n > m, i ∈ N, p, s, t, u > 0. Recall the following extension of the Hoffmann-Jørgensen inequality from [START_REF] Szewczak | Marcinkiewicz laws with infinite moments[END_REF].

P [ max 1≤k≤n |S k | > s + 2t + u; m • max 1≤i≤n |X i | ≤ u]
(2.1)

≤ (ϕ m + P [ max m≤k≤n |S k | > s]) • P [ max 1≤k≤n-m |S k | > t],
where

ϕ m = sup k∈Z {|P (B|A) -P (B)|; A ∈ F k -∞ , B ∈ F ∞ k+m }.
Similarly, in [START_REF] Szewczak | Marcinkiewicz laws with infinite moments[END_REF] we gave a dependent version of Lévy's inequality (cf. Marcinkiewicz, 1939, Théorème 3), if the laws of reversed sums

L(S n -S k ) are symmetric for n > k ≥ 1 ( 1 2 -ϕ m ) • P [ max 1≤k≤n-m+1 |S n | > t] ≤ P [|S n | + (m -1) • max 1≤i≤n |X i | > t]. (2.2)
The following moment inequality can be derived from (2.1)(cf. [START_REF] Szewczak | Marcinkiewicz laws with infinite moments[END_REF])

E[ max 1≤k≤n |S k | p ] ≤ 4 p 1 -τ • (m p E[ max 1≤i≤n |X i | p ] + t p τ ), (2.3) 
where Peligrad, 1990, p. 298). Recall also von Bahr-Esseen's symmetrization inequality (cf. Bahr and Esseen, 1965, Lemma 4) 1 2

t τ = inf{t > 0; ϕ m + P [ max m≤k≤n |S k | > t] ≤ τ 4 p }, τ ∈ (0, 1
(X 1 ) = L(X * 1 ) ): (1-ϕ m )•P [M * ⌊ n m ⌋ > t] ≤ P [M n > t] ≤ m•(1+ϕ m )•P [M * ⌊ n m ⌋+1 > t], t ≥ 0, n ≥ 1, (2.4) where M * n = max 1≤i≤n |X * i | (cf.
E[| X| r ] ≤ E[|X -E[X]| r ] ≤ E[| X| r ], r ∈ [1, 2],
(2.5)

where X = X -X and X is an independent copy of X. Thus the only possibility is E[X 1 ] = 0 and Lemma 2 follows.

  Since nE[|X 1 | r I [|X 1 |≤cn] ] ∼ c r n , thus (3.8) yields c -1 n nE[|X 1 |I [|X 1 |>cn] ] → 0 as n → ∞. Therefore {c -1 n n|E[X 1 ]|} is a bounded sequence. On the other hand the slow variation of E[|X 1 | r I [|X 1 |≤x] ] entails c r n n -r ∼ n 1-r E[|X 1 | r I [|X 1 |≤cn] ] → 0as n → ∞.

  ). ) include the term M n = max 1≤i≤n |X i | the following inequality for strictly stationary sequence {X k } is useful because it allows replacing dependent maxima satisfying Doeblin's condition (i.e. ϕ m < 1) by the maxima of its associated sequence {X * k } (i.e. the i.i.d. sequence with L

	Since inequalities (2.1), (2.2) and (2.3
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Proofs

Theorems 1 and 2 are implied respectively by Theorem 1 in [START_REF] Szewczak | On Marcinkiewicz-Zygmund laws[END_REF], as well as Theorem 1 and 2 in [START_REF] Szewczak | Marcinkiewicz laws with infinite moments[END_REF] and the following two lemmas (cf. Szewczak, 2010, Remark 14). Feller, 1971, Theorem 2, p. 283). Hence

where Bradley, 2007, vol. I, Theorem 6.6, p.199). Now (2.2) and (3.7) yield that

Therefore by (2.3) we get

for some C < ∞ and every n ∈ N. Consequently, condition (3.6) follows from (2.5). This completes the proof.

It is interesting that the converse of Conjecture 1 holds.

Lemma 2 Suppose {X k } is a strictly stationary ϕ-mixing sequence, r ∈ (1, 2]

and

Proof of Lemma 2 Since r > 1, and

By the proof of Lemma 1 we see that {c -1 n S ′ n } is b.i.p. Moreover, by the Markov inequality and (3.6), the sequence {c

} is b.i.p. too. Furthermore, by a variant of Karamata's theorem (cf. Feller, 1971, Theorem 2, p. 283

→ 0 as n → ∞.

(3.8)