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Abstract

In this paper the residual Kullback-Leibler discrimination information mea-

sure is extended to conditionally specified models. The extension is used to

characterize some bivariate distributions. These distributions are also char-

acterized in terms of proportional hazard rate models and weighted distribu-

tions. Moreover, we also obtain some bounds for this dynamic discrimination

function by using the likelihood ratio order and some preceding results.
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1. Introduction

Let X and Y be two absolutely continuous random variables with the

common support S = (l,∞) for l ≥ 0. Denote by f , F and F , the probability
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density function (PDF), the cumulative distribution function (CDF) and the

survival (or reliability) function (SF) of X, respectively, and by g, G and G,

the corresponding functions of Y . As an information distance between X and

Y , Kullback and Leibler (1951) proposed a directed divergence (also known as

information divergence, information gain, relative entropy or discrimination

measure) given by

IX,Y =

∫ ∞

l

f(x) log
f(x)

g(x)
dx.

This function is a measure of the similarity (closeness) between the two dis-

tributions and it plays an important role in information theory, reliability

and other related fields. Further, note that if f = g (a.e.), then IX,Y = 0.

Length of time during a study period has been considered as a prime

variable of interest in many fields such as reliability, survival analysis, eco-

nomics, business, etc. In particular, consider an item under study, then the

information about the residual (or past) lifetime is an important task in

many applications. In such cases, the information measures are functions of

time, and thus they are dynamic. Based on this idea, Ebrahimi and Kirmani

(1996) defined the Kullback-Leibler discrimination information measure of

X and Y at time t by

IX,Y (t) =

∫ ∞

t

f(x)

F (t)
log

f(x)G(t)

g(x)F (t)
dx.

Note that IX,Y (t) = IXt,Yt , where Xt = (X − t|X > t) and Yt = (Y − t|Y >

t) are the residual lifetimes associated to X and Y . A similar function is

obtained in terms of the inactivity times (t − X|X < t) and (t − Y |Y < t)

in Di Crescenzo and Longobardi (2004) (see also Maya and Sunoj, 2008).

Interesting extensions to the multivariate case are obtained in Ebrahimi et
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al. (2007). For additional information on these measures see Ebrahimi et al.

(2010) and the references therein.

The concept of weighted distributions is usually considered in connection

with modeling statistical data, where the usual practice of employing stan-

dard distributions is not found appropriate in some cases. In recent years,

this concept has been applied in many areas of statistics, such as analysis

of family size, human heredity, wildlife population study, renewal theory,

biomedical, statistical ecology, reliability modeling, etc. Associated to a ran-

dom variable X with PDF f and to a nonnegative real function w, we can

define the weighted random variable Xw with density function

fw(x) =
w(x)f(x)

E(w(X))
,

where we assume 0 < E(w(X)) < ∞. When w(x) = x, Xw is called the

length (or size) biased random variable and it is denoted by X∗. For recent

works on weighted distributions, we refer the reader to Bartoszewicz and

Skolimowska (2006); Navarro et al. (2006); Blazej (2008); Maya and Sunoj

(2008); Bartoszewicz (2009); Navarro and Sarabia (2010); Sunoj and Linu

(2011).

The obtention of the joint distribution of (X, Y ) when conditional dis-

tributions of (X|Y = y) and (Y |X = x) are known has been an important

problem dealt with by many researchers in the past. This approach of iden-

tifying a bivariate density using the conditionals is called the conditional

specification of the joint distribution (see Arnold et al., 1999). These con-

ditional models are often useful in many two component reliability systems

when the operational status of one component is known.

In the present paper, the Kullback-Leibler discrimination information
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measure IX,Y (t) proposed by Ebrahimi and Kirmani (1996) is extended to

conditionally specified models. This extension is used to characterize some

bivariate distributions. These distributions are also characterized in terms of

proportional hazard rate models and weighted distributions. These results

are given in Section 2. Moreover, in Section 3, we obtain bounds for this dy-

namic discrimination function by using the likelihood ratio order and some

preceding results. The proof of the main result is given in Section 4.

2. Main results

Let (X1, X2) and (Y1, Y2) be two bivariate random vectors with joint PDF

f and g, joint CDF F and G and joint SF F and G, respectively. Let us

assume that the common support is S = (l,∞) × (l,∞) for l ≥ 0. Also

let fi(s|t) and gi(s|t), F i(s|t) and Gi(s|t) denote the PDF and the SF of

(Xi|X3−i = t) and (Yi|Y3−i = t), respectively, for i = 1, 2. Then we define the

conditional Kullback-Leibler discrimination (CKLD) information functions

as

IXi,Yi
(s|t) =

∫ ∞

s

fi(x|t)
F i(s|t)

log
fi(x|t)Gi(s|t)
gi(x|t)F i(s|t)

dx

for i = 1, 2 and s, t ≥ l. Note that

IXi,Yi
(s|t) = I(Xi|X3−i=t),(Yi|Y3−i=t)(s) (1)

for i = 1, 2 and s, t ≥ l. Hence IXi,Yi
(s|t) is the dynamic Kullback-Leibler

discrimination information measure at time s defined by Ebrahimi and Kir-

mani (1996) but applied to the conditional random variables (Xi|X3−i = t)

and (Yi|Y3−i = t) for i = 1, 2. As in the univariate case these functions
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measure the information distance between the residual lifetimes of the con-

ditional distributions of the two random vectors. Of course, in the bivariate

case there are other interesting options (see, e.g., Ebrahimi et al., 2007).

In survival studies, the most widely used semi-parametric model is the

proportional hazard rate (PHR) Cox model. Let X and Y be two random

variables with the same support S and with hazard rate functions hX = f/F

and hY = g/G, respectively. Then X and Y satisfy the PHR model when

hY (t) = θhX(t),

for all t ∈ S. This relationship is also equivalent to

G(t) = (F (t))θ,

for all t (see Cox, 1959). Ebrahimi and Kirmani (1996) obtained the following

result.

Theorem 1 (Ebrahimi and Kirmani (1996)). The function IX,Y (t) is con-

stant if and only if X and Y satisfy the PHR model.

In a similar way the random vectors (X1, X2) and (Y1, Y2) satisfy the con-

ditional proportional hazard rate (CPHR) model (see Sankaran and Sreeja,

2007) when their respective conditional hazard rate functions satisfy

h(Yi|Y3−i)(s|t) = θi(t)h(Xi|X3−i)(s|t) (2)

for i = 1, 2, where θi(t) is a nonnegative function of t. Then we can state the

result as follows.

Theorem 2. For i = 1, 2, the function IXi,Yi
(s|t) only depends on t if and

only if (Yi|Y3−i = t) and (Xi|X3−i = t) satisfy the CPHR model (2).
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The proof is obtained from Theorem 1 and (1).

Next let us consider the random vector (Xw
1 , Xw

2 ) which has the bivariate

weighted distribution associated to (X1, X2) and to two nonnegative real

functions w1 and w2, that is, its joint PDF is

fw(x1, x2) =
w1(x1)w2(x2)f(x1, x2)

E(w1(X1)w2(X2))
. (3)

It is easy to see that the marginal random variable Xw
i has the (univariate)

weighted distribution associated to Xi and Xi for i = 1, 2. In particular,

the length biased bivariate random vector, denoted by (X∗
1 , X

∗
2 ), is obtained

when w1(x) = w2(x) = x. There are other options in defining the bivariate

weighted distribution which can be found in Navarro et al. (2006).

Now we can state the main result of the paper as follows.

Theorem 3. Let (Xw
1 , Xw

2 ) be a random vector which has the bivariate

weighted distribution associated to (X1, X2) and to two nonnegative and dif-

ferentiable functions w1 and w2. Let us assume that the support of (X1, X2)

is S = (l,∞)×(l,∞) for l ≥ 0. Then the following conditions are equivalent:

(a) (Xw
1 , Xw

2 ) and (X1, X2) satisfy the CPHR model (2) for i = 1, 2.

(b) IXi,Xw
i
(s|t) only depends on t for i = 1, 2.

(c) The conditional reliability functions of (X1, X2) satisfy

log F i(s|t) =
log(wi(s)/wi(l))

θ1(t)− 1

for i = 1, 2.

(d) (X1, X2) has the following joint PDF

f(x1, x2) = ca1a2
w′

1(x1)w
′
2(x2)

wa1+1
1 (x1)w

a2+1
2 (x2)

exp

(
−φa1a2

(
log

w1(x1)

w1(l)

)(
log

w2(x2)

w2(l)

))

for x1, x2 ≥ l, where c > 0, φ ≥ 0 and ai > 1 or ai < 0 for i = 1, 2.
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The proof is given in Section 4. Note that the conditions given in The-

orem 3, (c), imply that either log(wi(s)/wi(l)) or − log(wi(s)/wi(l)) should

be cumulative hazard rate functions, that is, they should be nonnegative,

increasing and they should go to ∞ when s goes to ∞. In the first case, wi

should be increasing in [l,∞) with wi(l) > 0 and wi(∞) = ∞. In the second

case, wi should be decreasing, with wi(s) > 0 for s ∈ [l,∞) and wi(∞) = 0.

These conditions can also be written as

hi(s|t) =
w′

i(s)/wi(s)

1− θi(t)

for i = 1, 2, that is, (X1|X2 = t) and (X2|X1 = t) satisfy the conditional

proportional hazard rate model considered by Arnold and Strauss (1988).

The reliability properties of this semiparametric model can be seen in Navarro

and Sarabia (2011). Actually, the model in (d) is just a truncated version

of Arnold and Strauss model in the support S = (l,∞) × (l,∞) and when

l = 0 both models coincide. Again we have two options, in the first one,

λi(s) = w′
i(s)/wi(s) is a proper hazard rate function and, in the second one,

λi(s) = −w′
i(s)/wi(s) is a proper hazard rate function. In the first option,

we need ai > 1 and in the second one ai < 0, for i = 1, 2. The model

in (d) contains several parametric models. In particular, when l = 1 and

w1(x) = w2(x) = x for x > 1, from Theorem 3, we can characterize the

bivariate Pareto model with the following joint PDF

f(x1, x2) =
ca1a2

xa1+1
1 xa2+1

2

exp(−φa1a2(log x1)(log x2))

for x1, x2 ≥ 1, where c > 0, a1, a2 > 1 and φ ≥ 0.
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3. Bounds

In this section we obtain bounds for the CKLD functions by using the like-

lihood ratio (LR) order. The results are similar to that given in Di Crescenzo

and Longobardi (2004). First we need the definition of the LR order. If X

and Y have PDF f and g, respectively, then X is said to be less than Y in

the likelihood ratio order (denoted by X ≤LR Y ) if g/f is increasing in the

union of their supports. Then we have the following results.

Theorem 4. For i = 1, 2, if (Xi|X3−i = t) ≤LR (Yi|Y3−i = t), then

IXi,Yi
(s|t) ≤ log

hXi|X3−i
(s|t)

hYi|Y3−i
(s|t) .

Theorem 5. For i = 1, 2, if wi is increasing, then

IXi,Xw
i
(s|t) ≤ log

E(wi(Xi)|Xi > s, X3−i = t)

wi(s)
.

Theorem 6. For i = 1, 2, if (Yi|Y3−i = t) ≤LR (Zi|Z3−i = t), then

IXi,Yi
(s|t) ≥ IX1,Z1(s|t) +

hZi|Z3−i
(s|t)

hY1|Y2(s|t)
.

4. Proof of Theorem 3

The equivalence between (a) and (b) is a consequence of Theorem 2.

Let us prove that (a) implies (c). So let us assume that (Xw
1 , Xw

2 ) and

(X1, X2) satisfy the CPHR model (2) for i = 1, 2. From the expression

of the PDF of (Xw
1 , Xw

2 ) given in (3), it is easy to prove that the PDF of

(Xw
i |Xw

3−i = t) is given by

fw
i (s|t) =

wi(s)fi(s|t)
E(wi(Xi)|X3−i = t)

8



for i = 1, 2, where fi(s|t) is the PDF of (Xi|X3−i = t). Then, for i = 1, 2,

the hazard rate hw
i (s|t) of (Xw

i |Xw
3−i = t) is given by

hw
i (s|t) =

wi(s)fi(s|t)∫∞
s

wi(x)fi(x|t)dx
. (4)

Moreover, from (2), we have

hw
i (s|t) = θi(t)hi(s|t)

and hence
wi(s)fi(s|t)∫∞

s
wi(x)fi(x|t)dx

= θi(t)
fi(s|t)
F i(s|t)

.

Therefore,
1

F i(s|t)

∫ ∞

s

wi(x)fi(x|t)dx =
1

θi(t)
wi(s).

Then, differentiating both sides with respect to s, we obtain

−wi(s)fi(s|t) =
1

θi(t)

(
w′

i(s)F i(s|t)− wi(s)fi(s|t)
)
,

that is,

hi(s|t) =
w′

i(s)

(1− θi(t))wi(s)
.

Hence

log F i(s|t) = −
∫ s

l

hi(x|t)dx =
1

(θi(t)− 1)
log

wi(s)

wi(l)

for i = 1, 2 and (c) holds.

Let us prove that (c) is equivalent to (d). The expressions given in (c)

are equivalent to

hi(s|t) =
w′

i(s)/wi(s)

1− θi(t)
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for i = 1, 2, that is, (X1|X2 = t) and (X2|X1 = t) satisfy the conditional

proportional hazard rate model considered by Arnold and Strauss (1988)

which is equivalent to (d).

Finally, let us prove that (d) implies (a). From the expression of the

joint PDF given in (d) it is easy to prove that the conditional hazard rate

functions are given by

hi(s|t) = ai

(
1− φa3−i log

w3−i(t)

wi(l)

)
w′

i(s)

wi(s)

for i = 1, 2. Moreover, the weighted version associated to w1 and w2 has the

following joint PDF

fw(x1, x2) = c
w′

1(x1)w
′
2(x2)

wa1
1 (x1)w

a2
2 (x2)

exp

(
−φa1a2

(
log

w1(x1)

w1(l)

)(
log

w2(x2)

w2(l)

))

which is also a model included in the type of the PDF given in (d) with

parameters a1 − 1 and a2 − 1. Therefore, its hazard rate functions are

hw
i (s|t) = (ai − 1)

(
1− φ′(a3−i − 1) log

w3−i(t)

w3−i(l)

)
w′

i(s)

wi(s)

for i = 1, 2. Hence (a) holds.
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