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Abstract: Given a sample from a multivariate normal with mean µ, a method is given for
obtaining estimates with low bias for a function of the parameters. When the function is a
product of positive powers of the parameters an unbiased estimate is available. Estimates of
ratios like µ1/µ2 are given with bias ∼ n−5, where n is the sample size. Simulation studies
show superior performance of these estimates versus traditional ones.
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1 Introduction and summary

Many authors have given unbiased estimates (UEs) for functions t(θ) say of θ = (µ,Σ) in
terms of independent

µ̃ ∼ Np (µ,Σ/n) , νΣ̃ ∼ Wp (Σ, ν) ,

the multivariate normal and Wishart distributions. When ν = n − 1 these correspond of
course to the usual UEs of θ given a sample of size n from Np(µ,Σ), while other ν occur
for regression with normal errors.

For example, Ghurye and Olkin (1969), and Eaton and Morris (1970) give an UE φ̂Σ(x−
µ) say of the density of X ∼ Np(µ,Σ). So, for f : Rp → R suitably smooth, an UE of
E[f(X)] is

∫
f(x)φ̂Σ(x − µ)dx. They do not give examples, where this can be evaluated

in closed form. For recent references, see Hutson (2002), Wan and Zou (2004), Misra et al.
(2005), Sun and Sun (2005, 2006) and Yanagihara (2006).

Here, we consider obtaining UEs and estimates of low bias for functions of the form

t(θ) = µIf (Σ) , (1.1)

where

µI =
p∏

i=1

µIi
i
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and I is an integer in Rp. The class given (1.1) contains a wide range of parameters of
practical interest. For example,

1. ratios of the form µ1/µ2. Such ratios arise most often in biological sciences and related
areas, for example, with respect to safety assessment of a substance such as a new
pharmaceutical compound or a pesticide relative to a vehicle or negative control. Bose
(1942), Roy and Potthoff (1958), and Hannig (2006) consider ratios of means from a
bivariate normal.

2. the multivariate coefficient of variation defined by Σi,j/(µiµj), a useful measure of
variability (Bennett, 1977).

3. the correlation coefficient defined by Σi,j/
√

Σi,iΣj,j and others of its kind, for example,
the partial correlation coefficient, the multiple correlation coefficient, the coefficient
of determination and the canonical correlations (Mardia et al., 1980).

4. the measure of generalized variance, |Σ|, and the measure of total variation, trace Σ
(Mardia et al., 1980).

5. µ
′
Σ−1, µ

′
Σ−1µ and other quadratic forms involving µ, Σ−1 or both. Parameters

of this form are common place in every area of multivariate analysis (Mardia et al.,
1980). The elements of these parameters are particular cases of (1.1).

6. conditional moments of X ∼ Np(µ,Σ), i.e if X = (X
′
1,X

′
2)

′
, where X1 is q × 1, and

if µ and Σ are partitioned similarly then E(X2 | X1 = x1) = µ2 + Σ2,1Σ−1
1,1(x1 − µ1)

(Mardia et al., 1980).

7. central moments, skewness, kurtosis and cumulants of X ∼ Np(µ,Σ) (Mardia, 1970;
Mardia et al., 1980; Holmquist, 1988).

8. moments, central moments and cumulants of the central and non-central Wishart
distributions and their variants (Kollo and von Rosen, 1995; Kang and Kim, 1996;
Sultan and Tracy, 1996a; Mukhopadhyay, 2009).

9. moments, central moments and cumulants of complex normal distributions and their
variants (Sultan and Tracy, 1996b).

10. moments, central moments and cumulants of the central and non-central complex
Wishart distributions and their variants (Sultan and Tracy, 1999; Withers and Nadara-
jah, 2010b).

11. the entropy, a measure of uncertainty, of X ∼ Np(µ,Σ) given by
√

(2πe)p|Σ| and its
variants (Zografos and Nadarajah, 2005).

12. the characteristic function of X ∼ Np(0,Σ) given by exp{−(1/2)t
′
Σt} (Mardia et al.,

1980), the empirical version of which can be used, for example, for estimation.

One could mention many more examples. To the best of our knowledge, we are not aware
of a class of parameters wider than (1.1) for which UEs have been sought.

We give a method for obtaining an UE of t(θ) when I ≥ 0 (componentwise). For
0 ≤ s ≤ [I·/2], an UE f̃s is available for fs, where

f0 = f (Σ) , fs = fi1,...,i2s = Σi1,i2 · · ·Σi2s−1,i2sf (Σ) (1.2)
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for s = 1, 2, 3, . . ., I· =
∑p

i=1 Ii and [x] is the integral part of x. Specific formulas are given
for I· ≤ 8.

Also for I not necessarily non-negative, for example µI = µ1/µ2, we provide a method
for obtaining an estimate of t(θ) with bias O(n−k), where k ≥ 1. Specific formulas are
provided for k ≤ 5. When I ≥ 0 it has form

t̃n,k =
k−1∑

i=0

n−it̃i (µ̃) (1.3)

for k ≥ 1, where t̃i(·) is linear in f̃i and we now assume

ν/n is bounded as n →∞ (1.4)

and for {fs} of (1.2), for 0 ≤ s ≤ k,

f̃s = fs + O
(
ν−(k−s)

)
(1.5)

as ν → ∞. This is based on the general series method of bias reduction given in Withers
(1987) which can also be used to obtain {f̃s} as in (1.5) for smooth f .

For general I our estimate of t(θ) with bias O(n−k) has the form

t̃n,kLn,

where

Ln =
p∏

i=1

Ln,i,

where

Ln,i =
{

I (µo,i < |µ̃i|) , if Ii < 0,
1, if Ii ≥ 0,

and

I(A) =
{

1, if A is true,
0, if A is false,

where, for Ii < 0, we assume

µo,i is known such that 0 < µo,i <| µi | . (1.6)

An adaptation like this is necessary since E[µ̃I] does not exist unless I ≥ 0.

Our main results are given in Section 2. Section 3 gives a method of obtaining UEs of fs

for f(Σ) = 1. They are given explicitly for s ≤ 3. Applied to Section 2, they provide UEs
for µI if I· ≤ 6, for µIΣi,j if I· ≤ 4, and for µIΣi,jΣk,l if I· ≤ 2, where I ≥ 0. For general I
they provide estimates for µI of bias ∼ n−5, and estimates for µIΣi1,i2 · · ·Σi25−1,i25 of bias
∼ n−(5−s), 1 ≤ s ≤ 4. Section 4 applies the methods of Sections 2 and 3 to obtain estimates
for four of the parameters discussed above. A simulation study is performed to show that
these estimates outperform traditional ones in terms of both bias and mean square error.
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Throughout this note, we set

(j)k = j(j − 1) · · · (j − k + 1), Ii,j,...,a,b,... = (Ii)a (Ij)b · · ·

and ei is the ith unit vector in Rp. For example, Ii,2 = (Ii)2 = Ii(Ii−1), Ii,j,1,1 = (Ii)1(Ij)1 =
IiIj , Ii,j,k,2,1,1 = (Ii)2(Ij)1(Ik)1 = Ii(Ii−1)IjIk, Ii,j,k,l,1,1,1,1 = (Ii)1(Ij)1(Ik)1(Il)1 = IiIjIkIl,
and so on. We also write t to mean t = t(θ) of (1.1). We also assume throughout that (1.4),
(1.5) and (1.6) or the relevant ones of these hold.

2 The method

Theorem 2.1 gives the method for obtaining estimates with low bias for t(θ) of θ = (µ,Σ).

Theorem 2.1 With the notations as above, suppose that (1.1) holds. Then

t̃n,k = µ̃I

(
f̃0 −

k−1∑

s=1

n−3c̃Is

)
(2.1)

satisfies

E
[
t̃n,kLn

]
= t + O

(
n−k

)
, (2.2)

where

c̃Ir/2 =
∑

i1,i2,...,ir

wI
i1,...,irF (i1, . . . , ir) , F (i1, . . . , ir) = f̃i1,...,ir (µ̃i1 · · · µ̃ir)

−1 , (2.3)

and wI
i1,...,ir is a constant determined by the proof.

Proof: By Withers and Nadarajah (2010a), E[I(µo,i ≥ |µ̃i|)] ∼ exp(−λin) as n →∞, where
λi > 0. So, 1 − E[Ln] ∼ exp(−λn), where λ > 0. As shown in Withers and Nadarajah
(2010a) this implies for t̃ = µ̃If̃0 with E[f̃0] = f0 that

E
[
t̃Ln

]
≈ E

[
t̃
]

= tE




p∏

j=1

(
1 + n−1/2Xj

)Ij


 = t

∞∑

i=0

n−ibIi =
∞∑

i=0

n−igI
i

say, where

bIi = bIi(V) =
∑

j·=2i

(
I
j

)
E
[
Xj
]
,

j ∈ Np, j· =
p∑

i=1

ji, N = {0, 1, 2, . . .} , X ∼ Np (0,V) ,

(
I
j

)
=

p∏

i=1

(
Ii

ji

)
,

Vi,j = (µiµj)−1 Σi,j.
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Here, An ≈
∑∞

i=0 n−igi means An =
∑k−1

i=0 n−igi + O(n−k) for k ≥ 1. For I ≥ 0,

the expansion is exact and finite with bIi = 0 for i > I·/2, (2.4)

but otherwise it diverges. Expressions for E[Xj] = E[
∏p

i=1 Xji
i ] are given in Appendix A.

Then

bI0 = 1, bI1 =
∑

i

Ii,2Vi,i/2 +
∑

i<j

Ii,j,1,1Vi,j =
∑

i,j

wI
i,jVi,j

say, and

bI2 =
∑

i

Ii,4V
2
i,i/8 +

∑

i 6=j

Ii,j,3,1Vi,iVi,j/2 +
∑

i<j

Ii,j,2,2

(
Vi,iVj,j + 2V 2

i,j

)
/4

+
∑

j<k, i 6=j or k

Ii,j,k,2,1,1 (Vi,iVj,k + 2Vi,jVi,k) /2

+
∑

i<j<k<l

Ii,j,k,l,1,1,1,1 (Vi,jVk,l + Vi,kVj,l + Vi,lVj,k) .

So, E[t̃] = t + O(n−1). Set f̃i1,...,i2s = f̃s for s ≥ 1. Given µ,

g̃I
1(µ) = µI

∑

i,j

wI
i,j f̃i,jµ

−1
i µ−1

j =
∑

i,j

wI
i,j f̃i,jµ

I−ei−ej (2.5)

is an UE of gI
1. Also

E
[
g̃I
1 (µ̃)Ln

]
≈ E

[
g̃I
1 (µ̃)

]
=
∑

i,j

wI
i,jfi,jµ

I−ei−ej

∞∑

r=0

n−rb
I−ei−ej
r =

∞∑

r=0

n−rgI
1·r

say. Set

t̃n,2 = t̃− n−1g̃I
1 (µ̃) . (2.6)

Then t̃n,2Ln estimates t with bias n−2GI
2 + O(n−3), where

GI
2 = gI

2 − gI
1·1, gI

1·1 = tHI
2, HI

2 =
∑

i,j,k,l

wI
i,jw

I−ei−ej

k,l Vi,jVk,l.

Writing t
∑

i,j,k,l w
I
i,j,k,lVi,jVk,l = GI

2, an UE for it (given µ) is

G̃I
2(µ) =

∑

i,j,k,l

wI
i,j,k,lf̃i,j,k,lµ

I−ei−···−el .

Set

t̃n,3 = t̃n,2 − n−2G̃I
2 (µ̃) .

Then t̃n,3Ln estimates t with bias n−3GI
3 + O(n−4), where

GI
3 = gI

3 − gI
1·2 −GI

2·1
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and GI
2·1 is given by

E
[
G̃I

2 (µ̃)Ln

]
≈ E

[
G̃I

2 (µ̃)
]

= t
∑

i,j,k,l

wI
i,j,k,lVi,jVk,l

∞∑

r=0

n−rbI−ei−···−el
r =

∞∑

r=0

n−rGI
2·r.

Writing t
∑

i1,i2,...,i6
wI

i1,...,i6
Vi1,i2Vi3,i4Vi5,i6 = GI

3, an UE for it (given µ) is

G̃I
3(µ) =

∑

i1,i2,...,i6

wI
i1,...,i6 f̃i1,...,i6µ

I−ei1
−···−ei6 .

Set

t̃n,4 = t̃n,3 − n−3G̃I
3 (µ̃) .

Then t̃n,4Ln estimates t with bias n−4gI
4 + O(n−5), where

gI
4 = gI

4(θ) = gI
4 − gI

1·3 −GI
2·2 −GI

3·1,

GI
3·1 = t

∑

i1,i2,...,i6

wI
i1,...,i6Vi1,i2Vi3,i4Vi5,i6b

I−ei1
−···−ei6

1 . (2.7)

This process can be repeated to obtain the result of the theorem. �
From (2.4) it follows that E[t̃n,k] ≡ t if I ≥ 0 and k − 1 ≥ I·/2.

Corollary 2.1 If (1.1) is weakened to (1.2) then (1.3) holds with ν replaced by n and (2.2)
still holds. In particular, if (1.1) holds and {f̃s, 0 ≤ s ≤ 3} are UEs and

E
[
f4

(
Σ̃
)]

= f4 + O
(
ν−1

)

as ν →∞ then
(
t̃n,4 − n−4gI

4

(
θ̃
))

Ln (2.8)

has bias ∼ n−5.

Corollary 2.2 Suppose p = 2. Set
∑2 Q1,2 = Q1,2 +Q2,1 and Ia,b = (I1)a(I2)b for one and

two arguments of I or F (·), where F (· · · ) is as defined by (2.3). For example,
∑2 Ia,b =

Ia,b + Ib,a. Then

c̃I1 =
2∑{

I2,0F
(
12
)

+ I1,1F (1, 2)
}

/2, (2.9)

c̃I2 = −
2∑{

I4,0F
(
14
)

+ 4I3,1F
(
13, 2

)
+ I2,2

[
3F
(
12, 22

)
+ 2F (1, 2, 1, 2)

] }
/8,(2.10)

c̃I3 =
2∑{

− I6,0F
(
16
)
− 6I5,1F

(
15, 2

)
+ 3I4,2

[
5F
(
14, 22

)
+ F

(
13, 22, 1

)]

+I3,3

[
15F

(
13, 23

)
+ 2F (1, 2, 1, 2, 1, 2)

] }
/48, (2.11)

c̃I4 = −
2∑{

I8,0F
(
18
)

+ 8I7,1F
(
12, 2

)
+ 4I6,2

[
7F
(
16, 22

)
− 3F

(
15, 22, 1

)]

+12I5,3

[
9F
(
15, 23

)
− 2F

(
13, 2, 1, 2, 1, 2

)]

+12I4,4

[
2F
(
14, 24

)
+ F

(
13, 2, 1, 23

)
+ 2F (1, 2, 1, 2, 1, 2, 1, 2)

] }
/384. (2.12)
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For simplicity, we have abbreviated F (1, 1) as F (12), F (1, 1, 1, 1) as F (14), F (1, 1, 1, 2) as
F (13, 2), F (1, 1, 2, 2) as F (12, 22), F (1, 1, 1, 1, 1, 1) as F (16), F (1, 1, 1, 1, 1, 2) as F (15, 2),
F (1, 1, 1, 1, 2, 2) as F (14, 22), F (1, 1, 1, 2, 2, 1) as F (13, 22, 1), F (1, 1, 1, 2, 2, 2) as F (13, 23),
and so on.

Proof: See Appendix B. �

3 UEs for functions of Σ

Given a function f(Σ), set f̃0 = f(Σ̃), set f∗ denote an UE of f if one exists. We shall deal
mainly with obtaining f∗ for f(Σ) a polynomial. Some other cases such as f∗ for Σ−1 and
| Σ |λ are dealt with at the end of this section.

Finding f∗ for f(Σ) a polynomial reduces to finding f∗ for

f (Σ) = Σ1,2Σ3,4 · · ·Σ2r−1,2r = Pr

say, where without loss of generality we can take p ≥ 2r. For, the suffixes 1, 2, . . . , 2r can
be replaced by any other suffixes from 1, . . . , p with repetitions allowed.

We begin with a method to obtain

µ1,...,2r = E [S1,2S3,4 · · ·S2r−1,2r] ,

where S = νΣ̃. Obtaining this from the characteristic function for S is prohibitively labo-
rious for r > 2. We apply the following identity for V = V(S) a p× p matrix (see equation
(2.4) of Haff (1980)):

E
[
trace Σ−1V

]
= E


∑

i≤j

∂ (Vi,j + Vj,i) /∂Si,j


+ (ν − p− 1)E

[
trace S−1V

]
. (3.1)

Set V = {∏r
i=1 SAi}Σ, where (Ai)2i,2i+1 = 1 for 1 ≤ i ≤ r, (Ar)2r,1 = 1 and the other

elements of {Ai} ⊂ Rp×p are zero. Then (3.1) becomes

µ1,...,2r = E

[(
r∏

i=2

S2i−1,2i

){
νΣ1,2 +

r∑

k=2

S−1
2k−1,2k (Σ1,2k−1S2,2k + Σ1,2kS2,2k−1)

}]
. (3.2)

Putting r = 1, 2, 3 this gives

µ1,2 = νΣ1,2, µ1,2,3,4 = ν2Σ1,2Σ3,4 + νA2,0, (3.3)
µ1,2,3,4,5,6 = ν3Σ1,2Σ3,4Σ5,6 + ν2A3,1 + νA3,0, (3.4)

where Ar,i is defined as follows. Let us call the product of r ‘pairs’ (i, j) = Σi,j taken without
replacement from 1, 2, . . . , 2r an r-product. For example, Pr = (1, 2)(3, 4) · · · (2r − 1, 2r).
Then Ar,i is the sum of the distinct r-products having exactly i pairs in common with Pr.
So, Ar,r = Pr, Ar,r−1 = 0 and A2,0 = (1, 3)(2, 4) + (1, 4)(2, 3).

We also need ar,i, the number of terms in Ar,i. We have ar,r = 1, ar,r−1 = 0, a2,0 = 2,
ar,0 = (2r− 2)(ar−1,0 + ar−2,0), and ar,i =

(r
i

)
ar−i,0 for r− i ≥ 1. As a check

∑r
i=0 Ar,i, the

sum of all distinct r-products, has ar = 1 · 3 · 5 · · · (2r − 1) terms so that
∑r

i=0 ar,i = ar.
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Given an r-product we can link 1 with 2, 3 with 4, and so forth; if this links all pairs,
we call the r-products inseparable, and otherwise separable. So, 13.24.57.68 is separable but
not 13.25.47.68.

Let A4,0·1 denote the sum of the 12 separable terms in A4,0 and A4,0·2 the sum of the 48
inseparable terms. Then r = 4 in (3.2) yields µ1,...,8 = ν4A4,4 + ν3A4,2 + ν2(A4,1 + A4,0·1) +
νA4,0·2, and a4,2 = 12, a4,1 = 32. Higher order µ1,...,2r can be expressed similarly.

Another check is provided by replacing 1, . . . , 2r by 1, . . . , 1 giving E[Sr
1,1] = Σr

1,1 E[χ2r
ν ]

= Σr
1,1ν(ν + 2) · · · (ν + 2r − 2).

We now show how to obtain an UE for Pr for r = 2, 3. Higher cases can be handled
similarly but with greater labor.

Theorem 3.1 With the notation as above, θ∗ = D−1
2 θ̃ is an UE of θ

′
= (P2, A2,0), where

D2 =
[

1 ν−1

2ν−1 1 + ν−1

]
.

Also θ∗ = D−1
3 θ̃ is an UE of θ

′
= (P3, A3,1, A3,0), where

D3 =




1 α α2

6α 1 + α + 4α2 3α + 3α2

8α2 4α + 4α2 1 + 3α + 4α2




and α = ν−1.

Proof: Write (3.3), (3.4) as

E
[
P̃2

]
= P2 + ν−1A2,0, (3.5)

E
[
P̃3

]
= P3 + ν−1A3,1 + ν−2A3,0. (3.6)

Let Cr,i be any of the ar,i terms in Ar,i. Then (3.5) implies E[C̃2,0] = C2,0 + ν−1(P2+ one
term from A2,0). Summing over C2,0 gives

E
[
Ã2,0

]
= A2,0 + ν−1 (2P2 + A2,0) . (3.7)

Writing (3.5), (3.7) as E[θ̃] = D2θ proves the first statement of the theorem.

Similarly, (3.6) implies

E
[
C̃3,1

]
= C3,1 + ν−1 (P3 + one term from A3,1 + four from A3,0)

+ν−2 ( four from A3,1 + four from A3,0) ,

E
[
C̃3,0

]
= C3,0 + ν−1 ( three from A3,1 + three from A3,0)

+ν−2 (P3 + three from A3,1 + four from A3,0) .

Summing these and using a3,0 = 8, a3,1 = 6, we obtain

E
[
Ã3,1

]
= A3,1 + ν−1 (6P3 + A3,1 + 3A3,0) + ν−2 (4A3,1 + 3A3,0) ,

E
[
Ã3,0

]
= A3,0 + ν−1 (4A3,1 + 3A3,0) + ν−2 (8P3 + 4A3,1 + 4A3,0) .
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So, the second statement follows and the proof is complete. �
Replacing 1, . . . , 2r by 1, . . . , 1 reduces P ∗

r to Σr
1,1ν

r/{ν(ν+2)(ν+4) · · · (ν+2r−2)}. So,
(ν − 1)(ν + 2) must be a factor of | D2 | and (ν − 1)(ν + 2)(ν + 4) must be a factor of | D3 |
and so on. One finds | D2 |= (1−α)(1 + 2α) and | D3 |= (1−α)2(1− 2α)(1 + 2α)2(1 + 4α)
so P ∗

2 = {(1 + α)P̃2 − αÃ2,0}/ | D2 | and P ∗
3 = {(1 − α)(1 + 2α)(1 + 3α − 2α2)P̃3 + (1 −

α)α(1 + 2α)2Ã3,1 − 12α4Ã3,0}/ | D3 |.
The identity (3.1) can also be used to obtain other UEs, for example

f∗ = (ν − p− 1)ν−1Σ−1

for f = Σ−1 as given by equation (19), page 164 of Johnson and Kotz (1972). Note that i
on the right hand side of their equation (18.2) should be −2i.

Theorem 3.2 derives UEs for functions of Σ. One of the functions considered is the power
of the determinant of Σ. Other possible functions could include the trace of Σ, correlation
coefficient, partial correlation coefficient, multiple correlation coefficient, coefficient of de-
termination, canonical correlations, entropy of multivariate normal, and the characteristic
function of multivariate normal with zero means.

Theorem 3.2 Consider the notation above. If ν + 2λ > p− 3 then νpλf(Σ̃)/aν,p is an UE
of f(Σ) =| Σ |λ, where

aν,p = 2λp
p∏

i=1

{Γ (bν−i,λ) /Γ (bν−i,0)}

and bν,λ = (ν+1)/2+λ. More generally, if g(B) = f(Σ1/2BΣ1/2)/f(Σ) does not depend on
Σ for B symmetric and positive semi-definite then νpλf(Σ̃)/aν,p is an UE of f(Σ), where

aν,p = bν,p(g)/cν,p, cν,p = 2νp/2π(p2−p)/4
p∏

i=1

Γ (bν−i,0)

and

bν,p(g) =
∫

B>0
| B |(ν−p−1)/2 g(B) exp (−trace B/2) dB

when bν,p(g) exists and ν > p− 3 (so that cν,p exists).

Proof: This follows from page 154 and the lemma on page 156 of Anderson (1958). �

4 A simulation study

Here, we perform simulations to compare the estimates proposed in Theorem 2.1 and
Theorem 3.2 with traditional ones. We consider four of the twelve parameters discussed
in Section 1. Throughout, we assume (X1,X2) is a random vector having the bivariate
normal distribution with means, (µ1, µ2), variances, (Σ1,1,Σ2,2) and correlation coefficient
Σ1,2/

√
Σ1,1Σ2,2 = ρ. Let {(x1,i, x2,i), i = 1, 2, . . . , n} denote a random sample from that
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distribution for µ1 = µ2 = 1 and Σ1,1 = Σ2,2 = 1. Let x1 and x2 denote the sample means,
and let S denote the sample covariance matrix.

First, consider the ratio, µ1/µ2, the first example discussed in Section 1. An estimate
of bias O(1/n2) can be obtained from (2.1) by setting k = 2:

(x1/x2)
(
1− n−3c̃I1

)
, (4.1)

where I = (1,−1) and c̃I1 is given by Corollary 2.2. A traditional estimate for µ1/µ2 is

x1/x2. (4.2)

Next, consider the multivariate coefficient of variation defined by Σ1,2/(µ1µ2), the second
example discussed in Section 1. An estimate of bias O(1/n2) from (2.1) is:

(x1x2)−1 (S1,2 − n−3c̃I1
)
, (4.3)

where I = (−1,−1) and c̃I1 is given by Corollary 2.2. A traditional estimate for Σ1,2/(µ1µ2)
is

(x1x2)−1 S1,2. (4.4)

Next, consider the conditional moment, E(X2 | X1 = 0) = µ2 − Σ2,1Σ−1
1,1µ1, the sixth

example discussed in Section 1. An estimate of bias O(1/n2) obtained from (2.1) by noting
that x2 is an unbiased estimate of µ2 is:

x2 − x1

(
S2,1S

−1
1,1 − n−3c̃I1

)
, (4.5)

where I = (1, 0) and c̃I1 is given by Corollary 2.2. A traditional estimate for E(X2 | X1 = 0)
is

x2 − S2,1S
−1
1,1x1. (4.6)

Finally, consider the entropy given by (2πe)
√
|Σ|, the eleventh example discussed in Section

1. By Theorem 3.2, an unbiased estimate is:

2πe(n − 1) |S|1/2 /(n− 2). (4.7)

A traditional estimate for (2πe)
√
|Σ| is

2πe |S|1/2 . (4.8)

We now compare the performances of (4.1) versus (4.2), (4.3) versus (4.4), (4.5) versus
(4.6), and (4.7) versus (4.8) by simulation. We use two criteria for comparing the two
estimates: bias and mean squared error. These criteria for each of (4.1)-(4.8) and for each
of ρ = 0.2, 0.4, 0.6, 0.8 and n = 2, 3, . . . , 1000 are computed by simulating 10000 replications
of {(x1,i, x2,i), i = 1, 2, . . . , n}.

The plots of the mean squared error and the bias versus n for ρ = 0.2, 0.4, 0.6, 0.8 and
for the eight estimates are shown in Figures 4.1 to 4.8. The x axes are plotted on log scale.
In Figures 4.7 and 4.8, n ranges from 3 to 1000 because (4.7) is not defined for n = 2. In
Figures 4.1, 4.3, 4.5 and 4.7, the line of zero bias is drawn in green.
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The proposed estimates appear better with respect to both bias and mean squared
error for all values of ρ and n. The reduction in bias and mean squared error appears
significant for small to moderate values of n. For all sufficiently large n, the proposed and
the traditional estimates appear indistinguishable. The biases and mean squared errors for
both estimates approach zero as n increases, but those for the proposed estimate approach
zero at a faster rate. The biases for the proposed estimates appear to be almost zero for
all n ≥ 50. The biases for both estimates for the conditional moment and entropy appear
negative most of the time.

Because of lack of space, we have only considered four of the twelve examples discussed
in Section 1. But simulations not reported here show that the results are similar for each of
the twelve examples. For each example, the proposed estimates reduce both bias and mean
squared error for all values of ρ and n.

Although the results in Sections 2 and 3 are tailored for the multivariate normal dis-
tribution, they can be applied for non-normal distributions too provided n is sufficiently
large. We performed a simulation study as above for a range of non-normal distributions,
including the bivariate log-normal, bivariate t, bivariate exponential and bivariate gamma
distributions. We observed significant reductions in both bias and mean squared error for
n sufficiently large. The results are not presented here again because of lack of space.

Appendix A

For X ∼ Np(0,V) and j a non-negative integer in Rp we give expressions for E[Xj], where
Xj =

∏p
i=1 Xji

i .

Set j· =
∑p

i=1 ji, λi = E[N1(0, 1)2i] = 1 · 3 · 5 · · · (2i − 1), ∂i = ∂/∂ti, ∂j =
∏p

i=1 ∂ji
i and

v = t
′
Vt for t in Rp. Then E[Xj] = ∂jE [exp (t

′
X) |t=0] = (−1)jHej(0,−V) as noted in

Withers (1985), where Hej(t,V) = exp (v/2)(−∂)j exp (−v/2), the multivariate Hermite
polynomial. More simply Xj = ∂j(t

′
X)k/k! for k = j· so that E[Xj] = ai∂

jvi for j· = 2i,
where ai = λi/(2i)! = 2−i/i!.

The dimension can be reduced by one by noting that ∂j(t
′
X)k = (k)j·Xj(t

′
X)k−j·, where

(k)i = k!/(k − i)! and setting t = ep, the pth unit vector. This gives

E
[
XjX2i−j·

p

]
= ∂jvi

∣∣∣
t=ep

ai,j·, (A.1)

where ai,k = λi/(2i)k = (2i − k)!ai. For example,

E
[
Xj1

1 X2i−j1
2

]
= ∂j1

1 vi
∣∣∣
t=ep

ai,j1 . (A.2)

From Withers (1984) it follows that

∂α1 · · · ∂αrv
i =

∑

l+2m=r

2l+m(i)l+mvi−l−m
M∑

ta1 · · · tal
Vb1,b2 · · · Vb2m−1,b2m , (A.3)

where l ≥ 0, m ≥ 0 and
∑M sums over all M = r!/(l!m!2m) partitions of (α1, . . . , αr)

giving distinct terms allowing for the symmetry of V. For example,

∂r
1vi = r!

∑

l+2m=r

2l(i)l+mvi−l−mtl1V
m
1,1/ (l!m!) . (A.4)
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Note that (A.3) can now be used to obtain the left hand side of (A.1). For example,
(A.2), (A.4) imply for j1 + j2 = 2i

E
[
Xj1

1 Xj2
2

]
= 2−ij1!j2!

∑

k

V k1
1,1 (2V1,2)

k V k2
2,2/ (k1!k!k2!) ,

where ki = (ji − k)/2 and
∑

k sums over 0 ≤ k ≤ min(j1, j2) with k odd or even according
as (j1, j2) are odd or even. In particular, for i ≥ 0

E
[
X2i

1

]
= 2−i(2i)!V i

1,1/i! = λ1V
i
1,1, (A.5)

E
[
X2i−1

1 X2

]
= 21−i(2i− 1)!V i−1

1,1 V1,2/(i− 1)! = λiV
i−1
1,1 V1,2, (A.6)

E
[
X2i−2

1 X2
2

]
= 21−i(2i− 2)!V i−2

1,1

{
V1,1V2,2 + 2(i− 1)V 2

1,2

}
/(i − 1)!, (A.7)

E
[
X2i−3

1 X3
2

]
= 22−i(2i− 3)!V i−3

1,1 V1,2

{
3V1,1V2,2 + 4(i − 2)V 2

1,2

}
/(i− 2)!, (A.8)

E
[
(X1X2)

4 /(4!)2
]

= V 2
1,1V

2
2,2/32 + V1,1V

2
1,2V2,2/8 + V 4

1,2/4!. (A.9)

The noncentral moments of Y ∼ Np(µ,V) are now obtainable from

E
[
Yj
]

= E
[
(µ + X)j

]
=

j∑

l=0

(
j
l

)
µj−lE

[
Xl
]
. (A.10)

From Withers (1985), E[Yj] = (−1)j·Hej(V−1µ,−Σ), so (A.10) gives an expression for the
general multivariate Hermite polynomial.

Appendix B

Here, we give gI
4 = gI

4(θ) needed for (2.8) and details of the proof of (2.9)-(2.12). If we drop
the superscript I then (2.5) implies (2.9). Note also that (2.6) implies

(g2, g1·1, G2) = t
2∑{(

I4,0V
2
1,1 + 4I3,1V1,1V1,2

)
(1, 2,−1)

+I2,2

[
V1,1V2,2(1, 4,−3) + 2V 2

1,2(1, 2,−1)
]}

/8,

which implies (2.10). Note also that (A.5)-(A.8) and (2.1) imply

(g3, g1·2, G2·1, G3) = t

2∑{(
I6,0V

3
1,1 + 6I5,1V

2
1,1V1,2

)
(1, 3,−3,−1)

+3I4,2

[
V 2

1,1V2,2(1, 3,−7, 5) + V1,1V
2
1,2(4, 13,−10, 1)

]

+I3,3

[
3V1,1V1,2V2,2(2, 4,−7, 5) + 2V 3

1,2(4, 6,−3, 1)
]}

/48,
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which implies (2.11). Note also that (A.5)-(A.9) and (2.7) imply

(g4, g1·3, G2·2, G3·1, g4)

= t

2∑{(
I8,0V

4
1,1 + 8I7,1V

3
1,1V1,2

)
(1, 2,−6, 4,−1)

+4I6,2

[
V 3

1,1V2,2(1, 4,−12, 16,−7) + 3V 2
1,1V1,2(2, 8,−12, 5, 1)

]

+4I5,3

[
3V 2

1,1V1,2V2,2(1, 8,−20, 22,−9) + 2V1,1V
3
1,2(4, 20,−24, 5, 3)

]

+2I4,4

[
3V 2

1,1V
2
2,2(1, 2,−7, 10,−4) + 6V1,1V

2
1,2V2,2(2, 8,−16, 11,−1)

+4V 4
1,2(1, 8,−6, 2,−3)

]}
/384,

which implies (2.12).
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Figure 4.1 Biases of the estimates given by (4.1) (in red) and (4.2) (in black) for µ1 =
µ2 = 1, Σ1,1 = Σ2,2 = 1 and ρ = 0.2, 0.4, 0.6, 0.8.
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Figure 4.2 Mean squared errors of the estimates given by (4.1) (in red) and (4.2) (in
black) for µ1 = µ2 = 1, Σ1,1 = Σ2,2 = 1 and ρ = 0.2, 0.4, 0.6, 0.8.
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Figure 4.3 Biases of the estimates given by (4.3) (in red) and (4.4) (in black) for µ1 =
µ2 = 1, Σ1,1 = Σ2,2 = 1 and ρ = 0.2, 0.4, 0.6, 0.8.
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Figure 4.4 Mean squared errors of the estimates given by (4.3) (in red) and (4.4) (in
black) for µ1 = µ2 = 1, Σ1,1 = Σ2,2 = 1 and ρ = 0.2, 0.4, 0.6, 0.8.
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Figure 4.5 Biases of the estimates given by (4.5) (in red) and (4.6) (in black) for µ1 =
µ2 = 1, Σ1,1 = Σ2,2 = 1 and ρ = 0.2, 0.4, 0.6, 0.8.
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Figure 4.6 Mean squared errors of the estimates given by (4.5) (in red) and (4.6) (in
black) for µ1 = µ2 = 1, Σ1,1 = Σ2,2 = 1 and ρ = 0.2, 0.4, 0.6, 0.8.
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Figure 4.7 Biases of the estimates given by (4.7) (in red) and (4.8) (in black) for µ1 =
µ2 = 1, Σ1,1 = Σ2,2 = 1 and ρ = 0.2, 0.4, 0.6, 0.8.
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Figure 4.8 Mean squared errors of the estimates given by (4.7) (in red) and (4.8) (in
black) for µ1 = µ2 = 1, Σ1,1 = Σ2,2 = 1 and ρ = 0.2, 0.4, 0.6, 0.8.
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