Problem Title Description. Problem Name: Escape from the Mines Au-
thor’s Name: Rectangles Hierarchy Problem Code: RNEST Alphabet: J

Problem: Given a set of nested rectangles, find for each rectangle, which
one encloses it.

Solution: Very often, in order to get an intuition of what you have to do
in two dimensions, it helps if you first visualize the equivalent problem in 1
dimension. In this case, the 1d version would ask you given a set of intervals
(nested), find which one is nested in which. And indeed, for this a simple
solution would be to just scan the intervals from left to right, and whenever
you encounter a new interval, its " parent” is just the previously encountered
interval. This can be easily done using a stack. (on encounter, mark parent
as top and push on stack; on removal, pop from stack).

In 2 dimensions, how would this generalize? Well, lets still scan rectangles
from left to right. Now, when we encounter a new rectangle, lets say we have
the set of rectangles that have not been ”popped” from our set. We now
need to decide which of these is actually the current rectangle’s parent.

In essence, we are doing a line-sweep of the plane. Imagine a vertical
cross-section of the rectangles at any point of time. Unless you're at the
vertical edge of some rectangle, this cross-section will consist of points where
the (active) rectangles’ top/bottom edges meet this line.

Now, given a rectangle whose vertical endpoints are (y1, y2), what should
we do? We ask what is the area of the plane which is about this (y1, y2)
segment. For this, pick one end-point (say y1), and find which y-value from
the active set is just below it. Let that be y0. We need to know, the area
between y0 and yl belongs to which rectangle, given that y0 belongs to
rectangle R’.

The answer to this is also simple. Note that if y0 is the lower side of R’,
then between y0 and y1 would belong to the area of R’ itself. If y0 is the
upper edge of R’, then since there is no y-value between y0 and y1, this area
would be in fact the area in the parent of R’.

If we compute parents of rectangles on encountering them, then we al-
ready know the parent of R’ when we are computing the current rectangle’s,
and hence this part is O(1) once we have found R.

Algorithm:

Sort the rectangles by x-coordinate, and traverse in this sorted order.
Maintain sorted set (say, STL set) of intersection-points with vertical cross-
section sweep-line, and corresponding rectangles.

When you encounter a rectangle R, (i.e. sweep-line’s x = R’s x1, and y-

values are y1, y2)
Find y-value ’y0’ just below y1, and hence rectangle R’ (Include a ”dummy”

1



rectangle that stretches from -inf, -inf to inf, inf for this to be always defined).
If y0 == R’.y1, then R.parent = R’; else R.parent = R’.parent;
Insert y1 and y2 associated with rectangle R into your cross-section set.

When you reach the end of a rectangle R, (i.e. sweep-line’s x = R’s x2,
and y-values are y1, y2)

Remove y1 and y2 from the cross-section set.

Time complexity: O(N log N).



