
Problem Title Description. Problem Name: The Loyalty of the Orcs
Author’s Name: File System Sync Problem Code: FSSYNC Alphabet: K

Problem: You are given a tree of N vertices, some of which correspond
to ”dead” orcs. Fix a permutation of the vertices: the order in which you
perform a roll-call. You ”save” a roll-call for a particular orc, if it occurs
after the roll-call of any of its dead ancestors. What is the expected number
of roll-calls that you save?

Solution: This problem asks for the expectation of some quantity. There
are various approaches used to solve such problems. One might think of
expectation as E[X] =

∑
x x ∗ P [x]. Here, counting the number of saved

roll-calls (”x”) and finding the probability of this number is not so easy.
Instead, we solve this using an approach termed Linearity of Expecta-

tion.

E[
∑
i

Xi] =
∑
i

E[Xi]

The next useful concept we would like to use, is that of Indicator Vari-
ables. An indicator variable is associated with an event A, and takes value
1 if the event A occurs, else it takes value 0.

A standard example of where we use these two is to find the expected
number of heads when tossing a coin n times, which has the probability of
turning up heads with probability p.
Let indicator variable Xi be associated with the event that the i’th coin toss
is a head. Let X be the random variable that counts the number of heads.
X =

∑n
i=1Xi.

E[X] = E[
∑n

i=1 Xi] =
∑n

i=1 E[Xi]. Note that, E[Xi] = 1 ∗ (p) + 0 ∗ (1 − p)
(from the definition of expectation). Thus, E[X] = np (a well-know result:
The expectation of a binomial distribution B(n, p)).

In this problem, let Xv denote the event that the vertex v’s roll-call is
saved. Let X =

∑
v Xv. We are interested in finding E[X]. Using linearity

of expectation, E[X] =
∑

v E[Xv].
We now ask ourselves, given a vertex v, with what probability will the

event Xv occur? (i.e. with what probability does it occur after all its dead
ancestors?).

Let d(v) = the number of dead ancestors of node v. Now,
Prob[v occurs after all its dead ancestors]
= 1 − Prob[v occurs before all its dead ancestors ]
= 1 − Prob[v occurs before d(v) particular nodes ]

= 1 − d(v)!
(d(v)+1)!

= 1 − 1
d(v)+1

= d(v)
d(v)+1

There are various ways to convince yourself of the above probability being
d(v)!

(d(v)+1)!
. One way is given as follows: count the number of such permutations

1



(and then divide by N !). The number of such permutations = First fix d(v)+1
positions in which to place these d(v) dead nodes as well as the node v. Now,
since v comes before all the others, its position is fixed, while the others can
be varied anyhow: in d(v)! ways. Also, among the remaining positions, you
can permute the remaining numbers as you wish, hence giving you another
(N − (d(v) + 1))! options. So, the total number of such good permutations

are:
(

N
d(v)+1

)
d(v)!(N − d(v) − 1)!

This simplifies to just N ! d(v)!
(d(v)+1)!

, which gives the required probability
when dividing by N !.

Finally, note that d(v) = d(v.parent)+ 1 or 0 depending on whether
v.parent is dead or not. This means that the d values can be computed in
O(N) time. Hence, overall time complexity = O(N).

2


