Problem Title Description. Problem Name: Denethor’s Decryption of De-
queue Permutations Author’s Name: Dequeue Permutations Problem Code:
DQPERMS Alphabet: F

Problem: The problem statement itself (https://www.spoj.com/problems/AMRI12F /),
despite being long, gives a clear understanding of the problem description
(having examples etc.). For completeness, we reiterate the problem descrip-
tion here:

Define a dequeue permutaiton of N as follows. Begin with a double-ended
queue ("dequeue”) having the numbers 1, 2, 3, ..., N, in this order. Now,
start emptying the dequeue, either from the front or the back. Any such
resulting sequence is a "dequeue permutation of N”. Examples: 1-2-3-...-N.
N-1-2-3-...N-1. etc. are some examples.

Also, we consider the lexicographic ordering of these dequeue permuta-
tions. Lexicographic ordering is given 2 dequeue permutations A and B, A
i B iff at the first position (pos) where they differ, A[pos] j B[pos]. So you
have: (1-2-3-...-N) < (1-2-3-...-N-N — 1) < ... < (N-1-2-.-N —-1) < ... <
(N-N — 1-...-3-2-1).

The question now is, given a (possible) partial dequeue permutation, de-
termine the least and largest possible (0-based) index of the partial dequeue
permutation in the lexicographic ordering of all possible such permutations.
Also, this partial information only comes in the first half of the permutation
(and you will see why this is important). Also, this information is given
incrementally, and you must determine your answer at each point of time.

(Recommended) Thought Process: The first thing to do when looking
at this problem, is trying to gather some understanding of the structure of
a dequeue permutation of N, as well as the lexicographic ordering. Try
some of these intuitive questions: 1. How many dequeue permutations of N
are there? 2. By choosing a larger number than a smaller one, how many
dequeue permutations am I skipping in the lexicographic ordering? 3. What
information am I getting about the permutation when I say ” The i-th position
has value j”7

Note that the 2nd and 3rd question described above are truly intuitive
and indeed necessary to solving the problem (since this is what the problem
is asking). The 1st question helps you answer question 2, by noticing that it
asks "how many dequeue permutations are there having the smaller number
chosen at this point” and that the remaining numbers can be cast into the
range (1 to X), where X is the number of numbers remaining after making
this ”choice”.

Now, lets proceed to answer the questions one by one.

Q. How many Dequeue Permutations of N are there? Apart from
the formal calculation/proof described later, you could try to fill in dequeue

1



permutations for small N, say N upto 4. This is what you get: N =1: (1) N
= 2: (1-2) and (2-1) N = 3 (eg. from statement): (1-2-3), (1-3-2), (3-1-2),
(3-2-1) N = 4: (1-2-3-4), (1-2-4-3), (1-4-2-3), (1-4-3-2), (4-1-2-3), (4-1-3-2),
(4-3-1-2), (4-3-2-1). Note that the above have been given in lexicographic
ordering as well. So the number you get, as function of N, is as follows: N
=1:1N=2:.2N=3:4N =4: 8 and so on.

At this point, you could probably guess that the answer to the question
required is 2! This is indeed the answer, and while it is possible to guess
this by enumeration, proving it would give you much idea of how to count
dequeue permutations lexicographically.

Proof: Note that, at each point of time, as long as the dequeue has more
than one element, choosing to pop_front() would give a different permutation
as choosing to pop_back(). At the end, when you have just one element,
pop_front() and pop_back() does not give you anything different. So, for
each sequence of first N — 1 choices of pop_front()/pop_back(), you get a
different dequeue permutation, hence the total number = 2V-1.

A useful thing at this point, would be to establish a bijection between
Front/Back pops’ sequences of length N — 1 to dequeue permutations of N.
ie. 1-2-3-...-N maps to FFFF...F, 1-2-3-...-N-N — 1 maps to FFFF...FBF.
N-1-2-3-...-N — 1 maps to BFFF...F. N-N — 1-...3-2-1 maps to BBB...B.

Q. By choosing a larger number than a smaller one, how many
dequeue permutations am I skipping in the lexicographic ordering?
This question basically says, suppose I have done some 'k’ operations, (i.e.,
my F/B-string looks like some k length F/B string followed by N — 1 — k
777s), now how many dequeue permutations am I skipping by choosing the
larger number instead of the smaller number? After seeing the proof of the
earlier fact, we easily see that : After putting an F instead of a B, I will
still have an (N — 1 — k — 1)-length string to be filled in. So the answer is
2N=F=2_ Further, it is clear that putting a "B” in the string is worse than
putting an "F” in it, and it leads to the following interesting bijection. Map
a pop_back() to a ’1’ bit and a pop_front() to a ’0° bit. Now the N — 1-length
bit sequence you get, when looked at an N —1 bit number, is in fact the index
in the 0-based lexicographic ordering of the given dequeue permutation!!!

Just imagine: Had the question not brought in the nitty-gritties of ”par-
tial information”, and had instead been ”Given a permutation of 1 to N, de-
termine if it is a dequeue permutation; and if it is, output the index at which
it would occur among all possible dequeue permutations of N7, we would have
been more or less done!

And this brings us to the 3rd question: What information am I get-
ting about the permutation when I say ” The i-th position has value
j77?7 For example, if I said : ”The second position had value 2”7, you would

2



know that the first position has to have value 1. If I said : "The second
position had value 1”7, you would know that the first position had value N.

Lets look at it in terms of our N — 1-bit numbers. ”2nd position has value
2”7 means: by the 2nd choice, the number 2 was at one end (was exposed), and
that that end was then chosen. Here, for large N, we know 2 was popped
from the front, hence the 2nd bit is 0. But it was also exposed, which
means, the first (2-1) bits had exactly one 0-bit. Since this is saying
that the first 1 bit had exactly one 0, we get that the bit-sequence is 00777
which is as expected : " The first element is 1, and the second element is 2”.

In general, when "value at i-th position is j”, we know that (a) by the
time we reached the i-th position, j was exposed from either right or left (b)
it was then popped using that exposed side.

Here, it is that we need that it is in the beginning half of the permutation
(i.e. i j= floor(N/2). This means that just depending on whether j ; N/2
or not, we can determine whether j was popped from the front or from the
back.

Qualitatively, the proof goes as follows. Claim: if j j= N/2, then j was
popped from the front. Because if it were popped from the back, that means
that N, N-1, ..., [N/2] + 1 were all popped from the back too, and this is
already floor(N/2) elements!! Hence j had to have been popped from the
front. The exact same reasoning works with j ; N/2.

Quantitatively, the proof is as follows. If j was popped from the front,
that means: in the first ¢ bits, there were 5 Os; and ¢ — 5 1s. If j was popped
from the back, that means: in the first ¢ bits, there were N — j + 1 1s, and
i—(N—741) 0s. When i < N/2, the above two cannot both simultaneously
hold (either i — j goes negative, or i — (N — j + 1) goes negative).

In short, the information we get from the above is: In the first ¢ — 1
bits, how many 0Os and 1s are present, as well as what is the bit-
value of the i-th bit. With this information, we need to ask, What is
the minimum possible and maximum possible N — 1 bit numbers
satisfying constraints as given till now.

Let us now try to understand how our minimum-possible (m) and maximum-
possible (M) are affected by these changes. For this, let us take an example:
N = 100, and our knowledge is got in the following (i, j) pairs: (3, 2), (11,
5), (5, 3), (9, 4), ...

Also, we shall keep our knowledge about number of 1s/0s till here, current
bit-value in the form of a table (STL map for example). Initially, the table

would look like this:
I #0s seen #l1sseen bit value

0 0 0 -




Currently, m = (000000000000...00); M = (111111111111...11)5 where I
have specified the first 12 bits, and the others are 0s/1s depending on whether
you're considering m or M.

Now, we see the pair (3, 2). This means, there are 2 0s and 1 1 upto bit3,

with the 3rd bit = 0. Our table is modified now to
I #O0sseen #1sseen bit value

0 0 0 -
3 2 1 0

So here, the third bit of both m and M is fixed to 0. Also, in the
first 2 bits, there’s 1 0 and 1 1, so it is ideal for m to be of the form 01
while M is of the form 10 Thus, we now have m = (010 000000000...00),
M = (100 111111111...11),

Next, comes the pair (11, 5). This means that: In the first 11 bits, there
are 5 0s 6 1s, with the 11th bit being a 0. Our table now becomes:

I #0s seen +#1sseen bit value

0 0 0 -
3 2 1 0
11 ) 6 0

So here, after the first 3 bits of m and M are set to 010 and 100 re-
spectively, we have to add 5 more 1s and 3 more Os (one of which is at the
11th position). For m, it would be best arranged as ...00111110, whereas
for M, it would be best arranged as ...11111000... Thus, we now have
m = (010 00111110 0...00)y M = (100 11111000 1...11)s

Next, we see (5, 3). This means that: In the first 5 bits, there are 3 0Os
and 2 1s, with the 5th bit being a 0. Our table now becomes

I #0sseen #lsseen bit value

0 0 0 -
3 2 1 0
) 3 2 0
11 ) 6 0

Since we have inserted the row 5-3-2-0 between the rows consisting of i=3
and i=11, we need to reorder things between the 4th and the 10th bit with
this new information. Our information now becomes that, we have 4th-5th
bit having one 0 and one 1, with a 0 at the 5th posn (hence it is 10 for
both m and M) and in the 6th-11th bits, we have two Os and four 1s, (with
a 0 at 11th bit) where m would rather arrange it as 011110 and M would
rather arrange it as 111100. Thus, we now have m = (010 10 011110 0...0)
M = (100 10 111100 1...1),



Finally, after seeing (9, 4), our table should become

I #0s seen +#1sseen bit value

0 0 0 -

3 2 1 0

) 3 2 0 And after making relevant changes to
9 4 5 0

11 5 6 0

bits 6-11, you would get m = (010 10 1110 10 0...0); M = (100 10 1110 10 1...1)5
Also note that these tables can help detect for infeasibility also! Suppose
instead of (9, 4) you instead had (9, 6). Your table would look like
I #0s seen +#1sseen bit value

0 0 0 -
3 2 1 0
) 3 2 0 showing you that there need to be ”-
9 6 3 0
11 5 6 0

1”7 0s (and one of which is at bit 11!!) and 3 1s among the 10th and 11th
bits!!!!

Finally, note that the values of m and M need only be updated within
the range of bits from ¢; to 75 where i, and iy are the elements just below and
just above element ¢ that is being inserted into the table. Further, m will
always look like Os followed by 1s, and M will always look like 1s followed by
Os.

Which brings us to our algorithm.

Algorithm:

Initialize table with 0-0-0—

(can be either an underlysing STL set plus an array, or just STL maps)
Also mark Feasible
for each (i, j) pair, do the following

if(!Feasible) output -1 and continue;

if (j > N/2)

bitval =1;

ones = N-j+1;

zeros = 1 - (N-j+1);
else

bitval = 0;

Zeros = j;

ones = i-j;



Find the position where i is inserted: [il, i2]
Consider 2 cases:
Case 1: i2 is the end of the set/map
reset bits of M to 0’ from il+1 to i
check for feasibility: are there non-negative #0s and #1s
between i1+1 and i-1 positions.
if infeasible, mark Feasible = false, output -1 and continue;
else set appropriate bits of m and M to 1, output and continue.
Case 2: i2 is not the end
reset bits of both m and M to ’0” from (il1+1) to (i2-1)
check for feasibility: are there non-negative #0s and #1s
between i1+1 and i-1 positions and between i+1
and i2-1 positions.
if infeasible, mark Feasible = false, output -1 ad continue;
else set appropriate bits of m and M to 1, output and continue.

Finally, the above does not specify how to ”set” and "reset” bits, but (for
example) assuming you know m modulo 1E9+7 and which bits you want to
reset (bits x to y), and if you had precomputed all powers of 2 modulo 1E9+7
beforehand, then you need to just "subtract” from m, the value pow2((N-
1)-y)* (pow2(y-x)-1): since pow2(y-x)-1 gives you y — x 1s, and multiplying
it by pow2((N-1)-y) is equivalent to left-shifting these 1’s to the appropriate
position (i.e. y).

The above is modified for setting bits to 1 also.

Thus the overall time complexity is O(NlogN) using STL set/map.



