Problem Title Description. Problem Name: Wormtongue’s Mind Au-
thor’s Name: Min-Max Expression Problem Code: MINMAX Alphabet: H

Problem: Given an expression consisting of min and max operations over
‘N’ independent U[0, 1] random variables xq,xs,...,zn, find its expected
value.

Solution: It turns out that this problem, though it looks hard, can be
solved by figuring out the probability distribution of the expression.

Lets try to find the CDF (Cumulative Distribution Function) of expres-
sions recursively. Note that we consider z € [0, 1] only.

For an expression of the form ”x” (i.e. just a uniform random variable
X), Fx(x):= Prob{X <=z} ==z

For an expression of the form "max(exprl, expr2)” (i.e. something that
looks like X = max(Xy, X3) where X; and X, are expressions),

Fx(x) := Prob{X <=z}

= Prob{maz (X1, Xs) <= x}

= Prob{X; <=z and X, <= z}.

Now, since X; and X5 consist of independent random variables, we get that
Prob{X, <=z and Xy <=z}

= Prob{X; <=z} *x Prob{ X, <=z}

= FXl(x) * FXz(x)

Similarly for an expression of the form "min(exprl, expr2)”. Let X =
min(Xy, Xa). Now, Fx(z) = Prob{min(X;, Xy) <= z} = Prob{X; <=z
OR X, <= z}. In terms of sets, this becomes Prob({X; <= z} U{X2 <=
x}). Finally, using Prob(A B) = Prob(A)+ Prob(B) — Prob(AN B), along
with (as in the case of max) the fact that the random variables are indepen-
dent> we get Fx(l’) = FXl(x) + FXQ(:U) - FXl ($) * FXz(x)'

Thus, we notice that in all cases, the distribution turns out to be some
polynomial in x. From here, finding the expected value can be got by inte-
gration.

Recall that [2" = n%rlx’”l (ignoring constants of integration etc).

Also, E[X] = [y xfx(x)dx, where fx(zx) is the probability density function
of X, and is dFx /dz. Thus, if Fx = % ;2 then, zfx = SF | ic;a’, and
hence the integral (with limits from 0 to 1) would be 3-F Zﬁclml

Alternately, once you have the CDFs, then you can also use E[X] =
Jo° Prob(X >= z)dz, which holds whenever X is a non-negative random
variable. In this case, this is
E[X] = [1(1 = Fx(z))dz

Note on Implementation: You are given the input in the form of a pre-
order traversal of the expression tree. It would be good to actually build a

tree out of this, and store ”cdfs” related to each node (which corresponds to
an ”expression”)

Also, there is heavy use of Polynomials. Hence, it is also advised to use a
Polynomial class imbued with operations of ”+", ”-” and ”*”. Finally, with
the given constraints (N <= |[S|/2 where S is the input string length), we
get that degree of polynomial is linear in number of random variables, and
hence O(N?) per polynomial multiplication is good enough. Polynomials can
be stored using an array of 64-bit integers that store the coefficients.

Finally, due to precision requirements, using a double (even for the fi-
nal calculation) is not good enough (atleast by this approach of calculating
polynomials etc.). Hence it was specified to use long double and long long
datatypes. In Java, BigDecimal solution passes.

