Problem Title Description. Problem Name: Entmoot Author’s Name:
Enclosing Circles Problem Code: BALL Alphabet: C

Problem: You have N points in the plane (z;,¥;), and with each you
associate a speed s;. The question then asks, what is the earliest point in
time ¢ in which all these points can travel to a common ”"meeting” point.
Output this t.

Solution: There are two approaches that can be used.

Approach 1: Convexity (of functions).

In this approach, we need to understand the concept of convex functions.
A convex function is one in which any line segment joining two points on
the function, lies above (not necessarily strictly) the value of the function.
Mathematically, this is described as: f(tx + (1 —t)y) < tf(x) + (1 —t)f(y)
V,y and t € [0, 1]

Some properties of convex functions are: 1) Local optima <=> global
optima. 2) Second derivative is always ”positive”

Given a convex function f, if I were to ask you for the minimum value it
achieves (or where it achieves it), a standard approach used is ternary search.
Ternary search basically looks something like this:

Initialize low, high;
while(high - low > EPS)
midl = (2*low + high)/3;
mid2 = (low + 2*high)/3;
if(f(mid1) >= f(mid2))
low = mid1;
else
high = mid2;
return low; //or high, or (low+high)/2: basically they’re all within EPS

While the above discussion seems to be for functions of one variable, the
same holds for even functions of multiple variables, where you let z and y be
2-dimensional points (or point-vectors that allow for addition and scaling).
Or in fact for any higher dimension as well: just the co-domain is in Reals.

In multidimensional space, (say 2 dimensions), ternary search would ac-
tually look like nested ternary search. This is because, for fixed x, f will be
convex in the one-dimensional y. And further, optimum values you get from
x, will also be convex in x.

Nested ternary search would work as follows:

//Let usmakea functiong(x) which returns optimum value f(x, y)
when varied over y



(%)
Initialize lowy, highy;
while(highy - lowy > EPS)
midl = (2*lowy + highy)/3;
mid2 = (lowy + 2*highy)/3;
if(f(x, midl) >= f(x, mid2))
lowy = midl;
else
highy = mid2;
return f(x, lowy);

optimum():
Initialize lowx, highx;
while(highx - lowx > EPS)
midl = (2*lowx + highx)/3;
mid2 = (lowx + 2*highx)/3;
if(g(midl) ;= g(mid2))
lowx = mid1;
else
highy = mid2;
return g(lowx); //or lowx etc, as you see fit

With this background of ternary search and convex functions (which do
turn up a lot in the course of computational geometry), let us go ahead
applying this theory and solving this problem.

Firstly, let fi(z,y) = square of time taken for the ith point to reach (x,y).
This is in fact, just

(z —x:)* + (y — v)°
s

fi(%y) =

Now, to actually get the (square of) time at which the meeting will begin
at this point, we just take the max of these f; values. Let

f(z,y) = max fi(z,y)

Minimizing f, i.e. minimizing the square of the time taken is equivalent
to minimizing the time taken itself.

Finally, it is easy to see that all the f; are convex. Is f also convex?
Indeed it is!



Proof: Let x and y be two arbitrary points in the plane
tf(z) + (1 —1)f(y)
> tfi(x) + (1= 1) f;(y) Vi, j and t € [0,1]
> tfi(z) + (1 —t)fi(y) (above holds for i = j in particular)
> filtz + (1 —t)y)

Which shows that

tf(x) + (1 —t)f(y) > filtx + (1 —t)y) Vi

and hence
tf(x) + (1 =1)f(y) = max fi(te + (1 = t)y) = f(tz + (1 = )y)

and hence, f is also convex. Using nested ternary search on f now, we
will be able to find the minimum possible time as required.

Approach 2: Event points.

The technique used here is a very widely used technique in solving ge-
ometry problems. It helps take a continuous search space and converts into
a a discrete space, usually through a series of "without loss of generality”
arguments.

Here, let us as a function of time ¢, draw circles centered at each given
point (z;,;) of radius ¢t x s;. Now, it is possible for every point to meet
in time t iff these circles’ intersection is non-empty. Indeed, any point that
belongs to any particular circle can be reached in time ¢ from that circle’s
center; and hence, an intersection point corresponds to all points being able
to meet.

Now, ”without loss of generality”, the optimal meeting point does not lie
in the interior of all the circles. If it did, then it would have been possible
shrink all of the circles by reducing the time ¢ by a small amount ét. Hence,
the supposed point would still be in the intersection of all the circles, but
now it can be reached in a shorter time!

Further, ”without loss of generality”, the optimal meeting point does not
lie on the boundary of only one circle. If it did, again by the shrinking
process, here we would now also move our ”"optimal point” inwards in this
circle, but we would still have it in the intersection of all circles even after
decreasing t by ot

Now, we have that the optimal point lies on the boundary of atleast two
circles. Lets see where our shrinking argument takes us if it is exactly two
circles. Consider two circles, and lets say they intersect at two distinct points.
Now, by shrinking it further by a small amount, and moving your supposed
point along the boundary of the circles’ intersection, you would still have it
as being in the intersection of all the circles, since for all other circles our



initial supposed point was actually in the interior. Hence this case does not
give us our optimal point.

What if the two circles’ boundaries just touch? Then further shrinking
would cause these two circles to not intersect any more. Hence this is a
possible optimal point.

The other case is for optimal points on atleast three circles’ boundaries.

Now, how do we find these candidate points? For the two circles’ case it
is easy. Given (center) points O; and O with speeds s; and sq, the candidate
point is that unique point P on the line segment 0,0, dividing it in the ratio
S1 . So.

Now, how do we find the intersection of three circles? Let us ask ourselves,
what is the locus of the point P such that it lies on the boundary of circles
centered at O; and O, for two such points. i.e. We want to find the locus of
the point P such that PO, : POy = s1 : ss.

For s; = s9, the locus is merely the perpendicular bisector of O;05. With
a little bit of coordinate geometry (or if you remember your high school
geometry), then you will get that for s; # s,, the locus of P is actually a
circle itself. And we know two diametrically opposite points of this circle
: they are the two points P on the line joining O;0, satisfying the given
speeds’ ratio.

Finally, we need to put together all these circle-circle / line-line / circle-
line intersection algorithms to give us a list of candidate/event points for our
answer. Once we have these points, and the corresponding times, then we
can just calculate which among them is feasible and at the minimum time
point, which gives us our answer.

Time Complexity: O(N?) for finding candidate points, and O(N) for
evaluating times for each point, giving overall complexity of O(N?).



