
Problem Title Description. Problem Name: Dyslexic Gollum Author’s
Name: Palindromic Strings Problem Code: PSTRINGS Alphabet: E

Problem: Given N and K, find how many binary strings of length N
have no palindromic string of length >= K.

Solution: The constraints K <= 10 suggests that the solution is pretty
lax in terms of bounds on K. If a string has a substring palindrome of length
x, then by removing the first and last letter, we get that the string also has
a substring of length x − 2. This means, if we were to just ensure that our
supposed string does not have a palindrome of length K or K + 1, then we
would be sure that it didn’t have a palindrome of any length >= K.

So lets solve this problem by dynamic programming. Ask yourself the
question, ”Ok, I’m filling in bits from left to right. At the current position
I have a choice to either put a 0 or a 1... What information do I need to
ensure that I avoid all palindromes of length K or K + 1?”

Well, you would need to know all the previous K bits of the string. Indeed,
if you knew all the previous K bits, then you could decide if you needed to
avoid one of 0 or 1, or whether you could carry on.

Which begs the question, ”If I knew that the previous K bits were stored
in the bitmask bm, and I am at the current position i, how many good strings
of length N are possible by filling in bits from i to the end?” Answering this
question, would give you your answer.

Let f(i, bm) be as described above. f(i, bm) = f(i+ 1, bm0) [if bm with 0
appended to the end does not cause a palindrome] +f(i+1, bm1) [if bm with
1 appended to the end does not cause a palindrome]. Here bm0 = (bm <<
1)&((1 << K) − 1), and bm1 = ((bm << 1) + 1)&((1 << K) − 1). The
base cases are f(N, bm) = 1 for all valid bm, and the answer required is∑

bm f(K, bm) over all non-palindromic K-bit bm.
Time Complexity: There are O(N ∗ 2K) states. It takes O(K) time to

check for palindromes. Hence, solution has O(NK ∗2K) time complexity per
test-case.

1


