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Abstract In mathematical morphology, circular structur-
ing elements (SE) are used whenever one needs angular
isotropy. The circles – difficult to implement efficiently –
are often approximated by convex, symmetric polygons that
decompose under the Minkowski addition to 1-D inclined
segments.

In this paper, we show how to perform this decompo-
sition efficiently, in stream with almost optimal latency to
compute gray-scale erosion and dilation by flat regular poly-
gons. We further increase its performance by introducing
a spatial parallelism while maintaining sequential access to
data.

We implement these principles in a dedicated hardware
block. Several of these blocks can be concatenated to effi-
ciently compute sequential filters, or granulometries in one
scan. With a configurable image size and programmable SE
size, this architecture is usable in high-end, real-time indus-
trial applications. We show on an example that it conforms
to real-time requirements of the 100Hz 1080p FullHD TV
standard, even for serial morphological filters using large
hexagons or octagons.
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1 Introduction

Since its first introduction in the late 1960’s, mathematical
morphology has becom in the field of image processing a
useful tool for analysis of the shape or the form of spatial
structures [17,23,24]. Over time it has found its application
as a widely-used image processing technique [9,18].

Thanks to the recent technological development of sen-
sors, the resolution of images increased to tens of megapix-
els. Certain morphological operations, e.g., top-hat trans-
formation, ultimate openings, granulometry, alternating se-
quential filters (ASF) [25], etc., on such large images require
a large structuring element (SE), since its size should be pro-
portional to the size of the image and its contents.

Existing hardware implementations either support rect-
angles using SE decomposition (fast computation, but an-
gular anisotropic), or support arbitrarily-shaped SEs at the
cost of significant performance decrease. Our work supports
polygonal SEs at the performance rate of the rectangular
SEs.

The paper is organized as follows: Section 2 makes a
short survey of existing morphological algorithms and ar-
chitectures. Section 3 outlines the basic aspects of morpho-
logical dilation and erosion, and show how to decompose
the polygons into a set of lines. Section 4 describes the algo-
rithm, and its use to decompose polygons while preserving
the sequential access to data, minimal memory consumption
and latency. Section 5 gives the functional implementation
of the algorithm. The principal result, a parallel version us-
ing two levels of parallelism (temporal and spatial) is pre-
sented in Section 6. Finally, Section 7 presents experimental
results obtained on an FPGA.

2 State of the art

First algorithms of morphological dilation were based on
the definition (see Sec. 3), efficient for small structuring
elements. The high computational complexity of large or
arbitrarily-shaped SE motivated the search of decomposi-
tions, either by i) separation into lower dimensions, or ii) by



2

decomposition into atomic shapes, using the Minkowski ad-
dition. This section reviews the literature on the most known
algorithmic decompositions and most efficient implementa-
tions.

i) The separation into lower dimensions allows the de-
composition of n-dimensional rectangular SE into 1-D seg-
ments. The simplest method to compute 1-D dilation is an
exhaustive search for maximum in the scope of SEB ac-
cording to the definition (Eq. 1). Clearly, this naive solution
tends to need a large number of comparisons. The number
of comparisons is considered as a metric of algorithm com-
plexity, so the naive algorithm has complexityO(l) as it has
to carry outl − 1 comparisons forl pixel long SE. Such
complexity suggests that naive algorithm is inefficient for
any large SEs. Pecht [20] proposed a method to decrease
complexity based on logarithmic SE decomposition, thereby
achievingO(⌈log2(l)⌉) complexity.

The first 1-D algorithm that reduced complexity to the
constant is often referred to as HGW (it was published si-
multaneously in two papers: van Herk [28], and Gil and Wer-
man [12]). The computation complexity is constant, i.e., of
O(1), which means the upper bound of computation time
is independent of the SE size. The HGW algorithm uses two
buffers, which are filled by the forward, and backward, prop-
agation of local maxima, respectively. Both buffers are then
merged into the result. The major drawback of this algorithm
is the requirement of two data scans: forward and reverse
(so-called causal and anti-causal), which need temporary in-
put data storing.

Lemonnier and Klein [16] propose anotherO(1) algo-
rithm that also identifies local extrema and propagates their
values. Again, the limiting forward and reverse scans are
needed for every non-causal SE. Lemire [15] proposes a fast
stream-processing algorithmO(1) for causal line SEs. It re-
places the line buffers of the previous algorithms by more
dedicated memory structure—double-ended FIFO (queue).
The author proposed that only locally monotonous signal
is necessary for a given operation. The double-ended queue
serves well for such a purpose; however, the algorithm works
with causal SEs only.

This downside was solved later in Dokládal and
Dokládalov́a [11] who proposed another queue-based algo-
rithm (see Section 4 for further description of his algorithm).
The advantages of these queue-based algorithms are low
memory requirements, zero latency, and strictly sequential
access to data, the paper presents also a comparative study
of these features (Table 1).

ii) the decomposition into atomic shapes allows decom-
position of large SE into a sequence of small SE, see Sec. 3.1
for more information on SE composition. Xu [30] claims
that any 8-convex polygon (convex on 8-connectivity grid,
hence 8-convex) is decomposable into a class of 13 non-
trivial indecomposable convex polygonal SEsQ1 − Q13

shown in Fig. 1 (a). Normand [19] reduces the class of
shapes to only four 2-pixel SEs, see Fig. 1 (b), by allow-
ing the union operator to take place in SE decomposition.

Table 1 Comparison of fast 1-D dilation algorithms.

Algorithm SE type Compar. Alg. Data Working
per pixel lat. mem. mem.

Naive 1-D User l − 1 0 N 0
HGW Sym 3− 4/l l N 2l
Lemire Causal 3 0 0 2l
Lemmonier Sym NC (O(1)) N N N
Dokladal User 3 0 0 2l

Sym = symmetric SE; User = User-defined SE;l = length of a 1-D SE;
N = line size;G = number of gray levels; NC = not communicated.
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Fig. 1 Classes of elementary SEs. Any 8-convex polygon SE is de-
composable into either: (a) Xu class, or (b) Normand class while using
union along with⊕.

For instance,Q12 by Xu is obtained as(E3 ⊕ E3) ∪ E4 by
Normand.

The drawback of this approach is that large SEs need a
long sequence of atomic operations, and may need iterate
several times over the image.

For large, rotation-symmetric polygons, the problem has
been solved in Soilleet al. [26], who propose an approxi-
mation of polygons by a set of line SEs rotated by differ-
ent angles. The complete dilation by a polygon still requires
several iterations over the image. However, the number of it-
erations does not depend any longer on the size but rather on
the shape. It needs three iterations for a hexagon, and four
for an octogon. Each diagonal line is computed by the fast
1-D HGW algorithm oriented by the desired angle. The ori-
entation of the SE is achieved through image partition into
discrete lines (parallel, with no overlap), along which the
image is processed.

More complex SEs can also be computed directly by
dedicated algorithms, see Van Droogenbroeck and Buck-
ley [27].

2.1 Hardware implementations

The hardware implementations of mathematical morphol-
ogy are often called dataflow architectures in literature as
they process an image in stream. They can be classified into
three groups: (i)3× 3 neighborhood processors, (ii) partial-
result reuse (PRR), and (iii) implementing efficient 1-D al-
gorithm withO(1).

One of the first3×3 neighborhood architectures was the
texture analyzer [14]. It was optimized for linear and rect-
angular SE by decomposition into line segments. In [13] the
authors devised PIMM1 (Processeur Intégŕe de Morphologie
Mathématique) ASIC that contains one numerical unit for
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gray-scale images and 8 binary units. However, the mech-
anism of computation was not communicated. Ruetz and
Brodersen [22] proposed another ASIC chip that separates
the supported3×3 SE into line segments as well. Then only
4 diadic comparisons are necessary to compute the3×3 SE.

More recently, Velten and Kummert [29] propose an-
other delay-line based architecture for binary images sup-
porting arbitrarily shaped3 × 3 SEs. The computation of
dilation is realized by OR gates (topology was not commu-
nicated, probably a tree of diadic OR gates) achieving good
performance, which was further improved by spatial paral-
lelism.

Clienti et al. [6] proposes a highly parallel morphologi-
cal System-on-Chip. It is a set of neighborhood processors
PoC optimized for arbitrarily shaped 3×3 SE interconnected
in a partially configurable pipeline. The dilation itself is car-
ried out by a tree of diadicmax operators, which is pipelined
for better performance.

All previous architectures use the naive method to com-
pute the morphological operations. In order to decrease a
number of comparisons for large SEs, the PRR method
(name proposed in [5]) takes a partial result of a morpholog-
ical operation by some neighborhoodB1 in an early stage,
delays it, and reuses it later in computation by some other
neighborhoodB2 obtaining thus even other, largerB3.

One of the first PRR architectures for 1-D dilation was
proposed in Pitas [21] and improved in Coltuc and Pitas [8].
The principle is based on so-called logarithmic SE decom-
position. Even though it reduces a number of comparisons
from naivel− 1 to ⌈log2(l)⌉, it restricts a family of possible
SE shapes to rectangles only.

The family of SE shapes has been enriched by Chien [5].
The authors presented more general concept of PRR that
builds the desired SE by a set of distinct Xu elementary
neighborhoods, see Fig. 1 (a). The decomposition process is
computed by a dedicated algorithm. As a result, it supports
arbitrary 8-convex polygon at the cost of additional compar-
isons. In [5] the PRR method was implemented as an ASIC
chip supporting 5-diameter disk SE. Despite decent perfor-
mance, the chip lacks possibility to control the shape of the
SE.

A similar approach has been published by Déforgeset
al. [10]. Based on Normand SE decomposition [19] (a SE is
decomposed into a number of causal 2-pixel SEs, which are
applied in sequence or in parallel, see Fig. 1 (b)) and com-
bined with a stream implementation, the authors propose a
methodology for pipeline architecture design supporting ar-
bitrary 8-convex SEs. The practical limitation comes from
the need to create a long pipeline of atomic modules for
large SE. Even thought it is not specified in the paper, such
pipeline seems to be dedicated to the given SE shape and
size.

Regarding the third group, implementations based on ef-
ficient algorithms, there are only two proposals in literature.
Clienti et al. [7] implemented 1-D HGW and Lemonnier al-
gorithms. In order to avoid a hardware-expensive reverse
scan, they devised a ping-pong mirroring buffers that pro-

vide reverse-scanned data with minimal latency and memory
requirements. The major drawback of the two implementa-
tions is incapability of supporting vertical, or 2-D, SE along
with horizontal scan data reading.

Prior to this paper, Bartovskyet al. [2] reported an ef-
ficient parallel design based on the 1-D dilation algorithm
[11]. However, it supports rectangular SEs only.

From the paragraphs above we can see that there are few
hardware architectures capable of supporting polygonal SEs,
and none of them is optimized for polygons. These architec-
tures are usually suitable for small SEs but lose hardware
resources efficiency for large SEs. In this paper we propose
an architecture primarily dedicated to large polygonal SEs
using an efficient algorithm.

2.2 Novelty

Most previous implementations can efficiently compute a
single dilation or erosion with large or even arbitrarily-
shaped SE using the decomposition into simpler, atomic op-
erations. Provided the atomic operations concatenate, the
computation can be efficiently implemented in a pipe. Ob-
viously, more complex or larger shapes will require longer
pipes. If the size is a priory unknown (e.g. function of a pa-
rameter) the complete pipe cannot be instantiated and one
will need to iterate several times over the image, and store
intermediate results in the memory.

Moreover, the morphological dilation is never (or rarely)
used alone, but rather as a basic brick in filters. Also in a typ-
ical application consisting of several stages – for example: i)
denoising, ii) object detection, and iii) measures – the dila-
tion can even be used tens of times, with various SEs, from
small (denoising) to large ones (object detection). Lastly, in
geodesic operations (e.g. morphological reconstruction) the
dilation can be used a variable number of times. Even though
the resources of a long pipe are not excessive, such a real-
ization lacks polyvalence and flexibility. It will only fit the
targeted operator or application.

In this proposition, the atomic operation is the dilation
by a large polygon (similarly to [2] with rectangles). Such
atomic operation situates at a higher level of abstraction
which allowing simpler decompositions, and consequently
shorter pipes.

This operator has been embedded in a programmable
block (dilation/erosion and the SE size and shape). It also
retains all beneficial features of the inherent algorithm [11],
e.g. the sequential access to data, zero latency and low mem-
ory requirements. These advantages are especially beneficial
in more challenging applications, such as ASF filters, that
can be computed in one or a few image scans.

3 Basic Notions

Let δB, εB : Z2 → R be a dilation and an erosion on gray-
scale images, parameterized by a structuring elementB, as-
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sumed to be flat (i.e.,B⊂Z2) and translation-invariant, de-
fined as

δB(f) =
∨

b∈B

fb ; εB(f) =
∧

b∈B̂

fb (1)

The hat̂ denotes the transposition of the SE, equal to the set
reflectionB̂ = {x | −x ∈ B}, andfb denotes the translation
of the functionf by some scalarb. The SEB is equipped
with an originx ∈ B.

The basic concatenation of the dilation and erosion
forms other morphological operators. The closing and open-
ing on gray-scale images,ϕB, γB: Z2 → R, parameterized
by a structuring elementB, are defined as

ϕB(f) = εB [δB(f)] ; γB(f) = δB [εB(f)] (2)

Furthermore, the concatenation of the closing and opening
forms sequential filters, e.g., ASF. Theλ-order ASF (re-
ferred to as ASFλ) is composed of the sequence ofλ closings
andλ openings with a progressively increasing SE. It starts
with either the closing or opening

ASFλ = ϕλγλϕλ−1γλ−1 . . . ϕ1γ1 (3)

ASFλ = γλϕλγλ−1ϕλ−1 . . . γ1ϕ1 (4)

Then i.e. the ASFλ starting by closing, can be written as

ASFλ = δBλ
εBλ

εBλ
δBλ

δBλ−1
εBλ−1

. . . εB1
δB1

. (5)

The initial number of morphological operators4λ can be re-
duced using associativity of dilations and erosions. Hence,
every two consecutive dilations or erosions may be merged
into one to obtain only2λ+ 1 operators, such as

ASFλ = δBλ
εBλ⊕Bλ

δBλ⊕Bλ−1
. . . εB1⊕B1

δB1
. (6)

3.1 SE Decomposition

The separability of n-D morphological dilation into lower
dimensions is a well-known property. The decomposed dila-
tions are then applied in a sequence according to the follow-
ing equation

δR(f) = δH⊕V (f) = δH(δV (f)) (7)

whereR denotes a rectangle,H andV horizontal and verti-
cal line segments, respectively. This decomposition applies,
in general, to convex shapes.

In order to suppress the angular anisotropy of rectan-
gles (note the difference between a side length and a diago-
nal length), one prefers using circles. Regarding the imple-
mentation aspects, circles are often approximated by regular
polygons (all sides have the same length) that are easily de-
composable, originally described in [1,30].

A 2n-top (n ∈ N) regular polygon SEP2n can be de-
composed into a set ofn line SEsLαi

P2n = Lα1
⊕ · · · ⊕ Lαn︸ ︷︷ ︸
n times

(8)

oriented at angleαi, such as

αi = (i− 1)
180◦

n
[◦] ; i ∈ N, i ≤ n (9)

The length of allLαi
is equal to the side of the desired poly-

gon and can be computed from the circumcircle radiusR
as

‖Lαi
‖ = 2R sin

(
180◦

2n

)
(10)

For example, a hexagon can be obtained by threeLαi
ori-

ented inαi = { 0
◦, 60◦, 120◦} on a 6-connected grid, and

an octagon by fourLαi
, αi = { 0

◦, 45◦, 90◦, 135◦} using an
8-connected grid, see Fig. 2.

=>

1α 2α

3α

1α 2α

=>

3α1α 2α

(a) Hexagon,αi = { 0◦, 60◦, 120◦}

=>

=>

=>

4α 4α

1α 2α 1α 2α

3α1α 2α

3α 3α1α 2α

(b) Octagon,αi = { 0◦, 45◦, 135◦, 90◦ }

Fig. 2 Polygon SE composition of line SEs. (a) hexagon is composed
of 3 segments, (b) octagon is composed of 4 segments.⊕ operator
stands for the Minkowski addition;αi stands for Lαi

.

Hence, from (7) and (8) a 2-D dilation by a2n-top poly-
gonδP2n

of some functionf : R2 → R can be obtained by
n consecutive 1-D dilationsδLαi

by line segments oriented
by αi

δP2n
(f) = δLα1

( . . . δLαn︸ ︷︷ ︸
n times

(f)). (11)

The aforementioned decomposition holds true for the
unbounded supportZ2. However, when using real images
with a bounded supportD ⊂ Z

2, D = [1..M ] × [1..N ], de-
composition boundary effects appear if at least oneLαi

6=
{0◦, 90◦} is used. The cause is that the Minkowski addition
of all decomposed line segments in (8), which are cropped
by image boundaries after everyLαi

of that concatenation,
does not necessarily correspond toP2n cropped by image
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boundaries just once as desired. It is expressed by the fol-
lowing expression whereD∩ represents intersection with
the image supportD

D ∩ (Lα1
⊕ . . .⊕ Lαn

) 6= D ∩ (Lαn
⊕ . . .

. . .⊕D ∩ (Lα2
⊕D ∩ (Lα1

))).
(12)

The illustrative example of such boundary effects with
a hexagonal SE is depicted in Fig. 3. We can see that the
compositionα1 ⊕ α2 is incomplete compared to the desired
one in Fig. 2; a small part of the SE is missing. It holds true
even for the entire hexagon, the compositionα1 ⊕ α2 ⊕ α3

is also incomplete. It is caused by the right boundary crop-
ping not only the finalP2n, but also all intermediate results.
The cropped values are later missing to form an appropriate
polygon section.

00
0

NN

M

0

M

missing

part

missing

part

(a)α1 ⊕ α2 incomplete (b)α1 ⊕ α2 ⊕ α3 incomplete

Fig. 3 Polygon SE composition without padding. The desired SEs pre-
sented in Fig. 2 are incomplete, a small triangle is missing.

This issue is solved by adding a padding to the image.
The section ofP2n contained inside the image support is
then complete, the missing part ofP2n is located in the
padded area. The added padding contains recessive values,
i.e., values that do not affect the computation of a particu-
lar morphological operator (forf :D → V , ∧V for dilation,
∨V for erosion). The thickness of the padding is different in
the horizontal and vertical direction and is determined by the
size of oblique segments, particularly by the half of vertical
and horizontal projection

BH = ‖Lαi
‖ cos (α2) /2 [pixels] (13)

BV = ‖Lαi
‖ sin (α2) /2 [pixels]. (14)

4 Algorithm Description

This section explains the algorithmic principles involved in
this paper. First, we expose the 1-D algorithm used for the
dilation by line segments with arbitrary orientation. Next,
we show how to combine these 1-D computations in order
to obtain polygons running in stream. The issue of boundary
handling is addressed afterwards.

4.1 1-D Dilation Algorithm

The implementation of (1) consists of searching the ex-
tremum off within the scope of SEB

[δB(f)](x) = max
b∈B

[f(x− b)] (15)

[εB(f)](x) = min
b∈B

[f(x+ b)] (16)

The algorithm used below is based on property [11] that
for someB(x) (which contains its origin) the computation of
the dilationδBf(x) needs only those values off(xi) that can
“be seen” fromx when looking over the topographic profile
of f , see Fig. 4. The values shadowed by the mountains -
that cannot be maxima - are immediately excluded from the
computation.

f

x
Fig. 4 Computing the dilationδBf(x): Values in valleys shadowed
by mountains when looking fromx over the topographic relief off
are useless.

From the implementation point of view, assuming a se-
quential access to the input dataf , the dilationδBf(x) de-
pends on points read afterx. We say thatB is non causal.
One can transform a non causal SE to a causal one by utiliz-
ing the property that dilation commutes with translation

δB+tf(x) = δBf(x− t), ∀t ∈ D (17)

These two principles are used by Alg. 1. For each pixel
of some input signalf : Z → R, the algorithm reads one
pixel F = f(rp) at the so-calledreading position rp and
writes back one result pixeldF = δBf(wp) at the current
writing position wp, such asrp > wp. Thewp coordinate
coincides with the origin of the SE,rp conforms to the most
recent input pixel ofB. Indeed, the reading positionrp is its
right-hand side end, which conforms to the intuitive neces-
sity of having read all the samples covered by the SE before
computing the dilation.

Alg. 1 is to be called from an outer loop iterating over the
writing position inδBf , such aswhile wp<N. The writing
positionwp is to be incremented whenever Alg. 1 outputs
a valid value. We give below the pseudocode, for detailed
description see [2].

4.2 Stream-Preserving Decomposition of Polygons

Alg. 1 can be used to compute the dilation byLαi
segments

in a stream. Its properties make it suitable for composing
concatenated operators, namely the sequential access to in-
put and output data, and minimal latency. Therefore, when



6

Algorithm 1: dF← 1D DIL (rp, wp, F, SE1, SE2, N)
Input : F - input signal samplef(rp); rp, wp - reading/writing

position;SE1, SE2 - SE size towards left and right;N -
length of the signal

Result: dF - dilated signal sampleδBf(wp)
Data: Q - Queue (first in, first out)

1 while Q.back()[1]≤ F do
2 Q.dequeue() ; // Dequeue useless valuess

3 Q.push({F , rp}) ; // Enqueue the current sample
4 if wp − SE1 > Q.front()[2] then
5 Q.pop() ; // Delete too old value

6 if rp = min (N , wp + SE2) then
7 return (Q.front()[1] ) ; // Return valid value
8 else
9 return ({}) ; // Return empty

the input image is read in a horizontal raster scan mode, i.e.,
line by line, and every line from the left to the right, the out-
put of Alg. 1 instance conforms to the very same scan order,
delayed by some latency defined by the distance between
readingrp and writingwp positions. It allows a direct con-
nection of several Alg. 1 instances in a sequence without any
need of coupling elements. The resulting 2-D SE is then ob-
tained with minimal latency, that is as soon as all necessary
data have been read.

The example of decomposition of a hexagon into three
Lαi

is depicted in Fig. 5. The image is sequentially read by
horizontalL0◦ at the reading position of the polygon (a). The
result of the horizontal segment is immediately provided as
an input to the first obliqueL60◦ at (b) so that the reading po-
sition ofL60◦ coincides with the writing position ofL0◦ . By
the very same rule, the result of theL60◦ is brought as input
data to the second obliqueL120◦ at (c), the writing position
of which is the writing position of the complete polygon (d).
The total latency is then defined by distance between the
reading (a) and the writing position (d) of the polygon.

1 j n N
1

(d)

(a) � rpP = rp0°

(b) � wp0° =rp60°
i

m

M
(a)(b)

(c)

( ) ( ) p0 p60

(c) � wp60° =rp120°

(d) � wp120° = wpP

M
( )( )

Fig. 5 Stream concatenation of threeLαi
into hexagonal SEP ; rp/wp

- reading/writing position.

The computational complexity of (11) remains almost
constant w.r.t. the SE size (except the padding)

O((N + 2BH)(M + 2BV)) (18)

for anN ×M image, andBH, BV padding sizes. Provided
that ofBH ≪ N andBV ≪M , it reaches the complexity of
rectanglesO(NM), see [2].

4.3 Discretely Inclined 1-D Segments

The oblique segments included in a hexagon and an octagon,
i.e.,Lαi

, αi = 45, 60, 120, 135◦, need appropriate address-
ing to determine the pixels to process. Note that all inclina-
tions verifyαi ≥ 45◦, and the coefficientski verify ki =
tanαi ≥ 1. If we use 8-connectivity fork45◦,135◦ = ±1,
and 6-connectivity fork60◦,120◦ = ±2, we can very easily
generate the pixel adressing - for every inclination - by only
modifying the original column indexcol by an additive con-
stantline/ki such as

colshift = (col + line/ki)mod (N + 2BH), (19)

where the inclination deviation from the vertical direction
line/ki is calledoffset and changes only with a new image
line.

5 Hardware Implementation

In this section, we present hardware implementation (called
line unit LU) of Alg. 1 for dilation byLαi

with emphasis on
the inclined segment computation. Then, we chain several
elementary LU units into a pipeline to form the polygonal
processing unit PU. Finally we propose the parallel polygo-
nal unit PPU.

5.1 1-D Algorithm Implementation

Alg. 1 along with thecolshift addressing feature is seen as a
simple Mealy finite state machine (FSM). This FSM controls
all algorithm operations over the queue,rp andwp pointers
etc. The state diagram (in Fig. 6) of the algorithm behavior
consists especially of 2 main states{S1,S2} and one auxil-
iary stateEOL. The basic operation of the direct algorithm
implementation can be found in [3,4].S1 state manages the
dequeuing loop and pushing of a new value, code lines 1–
3; theS2 state handles the deletion of outdated values and
returns the result, code lines 4–9.

S1

S2 EOL

Start

Q.push({F, rp});
Q.pop();

return (Q.front()[1] );

return (Q.front()[1] );

Q.dequeue();

Q.back()[1] > F

End of data

not End of data/line

Q.back()[1] ≤ F
output:

output:

output:

End of line

Update offset;

output:
output:

Q.pop();

return (Q.front()[1] );

output:

End

Fig. 6 State diagram of Alg. 1. Conditions of state transitions aretyped
in bold, output actions are located in gray rectangles.
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The auxiliary stateEOL is entered only at the end of ev-
ery image line. Its main purpose is to update the offset value,
to determine the shifted column addressing. The generation
of the necessary inclination is extremely easy since it re-
quires only elementary operations like incrementing, decre-
menting or stalling.

5.2 1-D Line Unit Architecture

The architecture of the LU unit capable of dilation by differ-
ent line segments is shown in Fig. 7. The basic description
of the preceding version supporting only horizontal and ver-
tical orientation can be found in [4]. Several modifications
have been applied to the former version to allow inclined
Lαi

. We have mainly added the Slope control unit that is
highlighted in Fig. 7.

The LU comprises two parts: an FSM part and a memory
part containing a collection of double-ended queues. FSM
manages the whole computing procedure and temporarily
stores values in the memory part. The memory instantiates
one queue in the case of horizontal segment,N queues in
the vertical case (N is the image width), orN +2BH queues
in the oblique case. Input and output ports are multiplexed;
hence a multiplexor select signal can easily address one
queue to work with. The shifted column address (colshift) is
used as the select signal.

The processing of one pixel proceeds as follows: In the
beginning ofS1, the last queued pixel is invoked by the
Back() operation from the queue and fetched to Compara-
tor 1 where it is compared with the current sample, and de-
queued if necessary (code lines 1–2). The current pixel is
simply extended with the value of position counter 1 and
enqueued (line 3).

The S2 invokes the oldest queued pair{F, rp} by the
Front() operation. This read pixel is a correct result if the set
of output conditions (code line 6) is fulfilled. The deleting
of an outdated value is managed by comparing the stored
position value with the current one in Comparator 2.

The purpose of Slope control is to select the correspond-
ing queue memory which is currently used by Alg. 1. The

queues are addressed by theColshift counter, which is incre-
mented with every pixel of the input image and reset at the
end of the image line. The initial reset value of thecolshift
counter isoffset (see Section 4.3). Theoffset is updated at
the end of every image line (stateEOL); its value is incre-
mented or decremented either every line or every other line
according toki.

5.3 Polygon Unit Architecture

The LU units described above can be arranged in a sequence
to form a 2-D Polygon Unit (PU). The overall architecture
of the PU unit (see Fig. 8) is composed of three different-
purpose parts: computation part, controller, and padding
part.

The computation part mainly contains four LUs for dis-
tinct Lαi

orientations. There are the horizontal unit (α1 =
0◦), the first inclined unit (α2 = 45◦ or 60◦), the second
inclined unit (α3 = 135◦ or 120◦), and the vertical unit
(α4 = 90◦) connected in a simple pipeline; the output of
each unit is read by the successive unit which processes the
image by furtherLαi

. The computation part is able to oper-
ate either with a hexagon or octagon SE. In the case of the
hexagon SE, the vertical unit is bypassed.

Note that the output of every computation unit is an inter-
mediate result image, which can be brought out for another
purpose, e.g., a multi-scale analysis descriptor. Then the di-
lation by line, rectangle, and octagon SEs (all centered) can
be obtained during a single image scan (considering units re-
ordering). Only the Remove padding block is to be copied
several times for each output data stream.

According to the boundary effects mentioned in Sec-
tion 4, the inclined units need padding to extend the original
image before the processing. The padding is removed after
the last 1-D unit. It is carried out by a pair of dual padding
blocks at the beginning and the end of the computation part.

The controller ensures the correct global system behav-
ior. It accepts the SE diameter and the shape select signal,
then it determines the particular SE sizes for every LU and
padding from them, and initiates the computation. The en-
tire set of parameters, i.e., the image width and height, all
SE features (size and shape), and the morphological func-
tion select, is run-time programmable at the beginning of the
frame.These parameters are run-time programmable within
the upper bound specified during the synthesis.

For instance, consider the SE size upper bound a
91×91 bounding box, and octagon-capable architecture.
This means, the architecture has four LU; each LU support-
ing at mostl=31 pixels segments. During the operation – at
the beginning of a frame – the SE can programmed to either
of the following: a line up to 31 pixel long, a rectangle up to
31× 31 pixels, or an octagon up to91× 91.

To enable processing a uniform input stream, one needs
to handle unequal processing rates of LUs. It is caused by
variable algorithm latency to compute a dilation for one
pixel. Therefore, the balancing FIFO memories are inserted
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Fig. 8 Overall architecture of the polygonal PU unit. It contains one LU for eachδL
αi

of (11), control, and padding units.

in front of each 1-D unit, and to the input and output ports.
The depth of input and output FIFOs depends on the timing
of input data stream (possibility of stalling, synchronization,
etc.).

5.4 Memory Requirements

The most significant memory demand is made by the set
of queues. Although the algorithm works with separated
queues, the queues within each LU are merged into a sin-
gle dual-port memory, mapped side by side in a linear mem-
ory space. Every queue has a related pair of front and back
pointers which must be retained throughout the entire com-
putation process in the pointer memory. This approach leads
to more efficient implementation.

The LUs have the following memory requirements (con-
sidering N×M image including padding,Lαi

with bounding
boxesWx×Hx, andbpp bits per pixel):

Mhor =WH(bpp+ ⌈log2(WH − 1)⌉) [bits] (20)

Mver =N((HV − 1)(bpp+ ⌈log2(HV − 1)⌉)

+ 2⌈log2(HV − 1)⌉) [bits]
(21)

Mslope=(N +WS)((HS− 1)(bpp+ ⌈log2(HS− 1)⌉)

+ 2⌈log2(HS− 1)⌉) [bits]
(22)

Example: Consider a dilation of 8-bit, SVGA image (i.e.,
800×600=N×M ) by a hexagon with radius 41 px. Such a
SE is decomposed into horizontal SE 21 px wide, and 2 slope
SE each 11 px wide and 19 px tall (hexagon SE bounding
box is 41×37 px).

The computation memory (the queues) requires (20–22)

Mhor =21(8 + 5) = 273 [bits]

Mslope=(811 + 11)((19− 1)(8 + 5) + 10) =

=200′568 [bits]

resulting in total consumption ofMall = Mhor + 2Mslope
∼=

392 kbits for the 2-D dilation by hexagon. This is far below
the mere size of the image itselfMimage = 800 × 600 ×
8bpp ∼= 3.66 Mbits which does not need to be stored at any
moment.

6 Parallel Implementation

This section describes the Parallel Polygon Unit (PPU) that
aims at increasing the computational performance while
maintaining as much as possible the beneficial streaming
properties of the proposed algorithm.

6.1 Partition of the Image

The parallelism is obtained by use of concurrently working
units that simultaneously process different parts of the image
(spatial parallelism). The number of instantiated units de-
fines the parallelism degree (PD). Since the processing runs
in stream, we propose a solution that transforms the input
stream into a set ofPD streams in a way to minimize the
waiting-for-data periods of all units. For the sake of clarity,
we usePD=2 in the description hereafter. A similar method
has proven to be useful in [2].

The partition of the input image is twofold, see Fig. 9: an
interleaved line-by-line partition for the horizontalα1 units,
and vertical stripes for the vertical and inclinedα2, α3, α4

units. The final image partition of 2-D image is the intersec-
tion of both.

Horizontal

H1

H2

H1

. . .

. . .

. . .

Vertical & inclined

Stream switching

º =V1 V2

H1 o V1 H1 o V2

H2 o V1 H2 o V2

H1 o V1 H1 o V2

Final segments

Fig. 9 Example of image partition forPD=2: line by line for horizontal
orientation; vertical stripes for non-horizontal orientation.

Intuitively, the streams have to be transformed from one
type to the other betweenα1–α2, andα4–output in the PU.
The transformation is done by simple circular stream switch-
ing when a partition edge is encountered. With the beginning
of the image, it starts with the H1◦V1 segment on the first
line. When the end of this segment is reached, the streams
are switched so that segments H1◦V2 (1st line) and H2◦V1
(2nd line) are processed at the same time. Later, it proceeds
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to segments H2◦V2 (2nd line) and H1◦V1 (3rd line) and so
forth. In generalPD segments located on a backward diag-
onal run simultaneously throughout the image (note that the
streams are mutually delayed byN/PD pixels).

Processing the partition segments separately introduces
undesired border effects on each partition edge. A common
solution – similar to padding at image borders – is to in-
troduce an overlap. Contrary to the padding that adds re-
cessive values, the overlap extends a partition by a portion
of the neighboring partition. The width of the overlap de-
pends on the size of the SE, and is equal to the width of the
horizontal paddingBH. Intuitively, the overlap introduces re-
dundant computation, and slightly degrades the performance
and minimal latency.

6.2 Parallel architecture

At this point, all the previously mentioned principles are
brought together to form the Parallel Polygon Unit (PPU).
The PPU (see Fig. 10) is scalable with respect toPD, the
number of parallel streams it can process at the time. Each
stream needs one pipeline of four LUs (αi, i = 1..4, just
like the PU), twoadd overlap blocks in front of inclined
LUs, two remove overlap blocks behind inclined LUs,add
padding at the front end, andremove padding at the back
end. The PPU also contains a pair of switches to transform
the streams from one type to the other, and a controller (om-
mited in Fig. 10).

Figure 11 shows the introduction of the overlap in the
course of thei-th image line. As we know, this line is split
into two streams. The streams are labelled I1, I2 before the
addition and O1, O2 after (refer also to Fig. 10). The entire
I1 stream plusBH pixels of I2 form O1 output stream with
overlap, and lastBH pixels of I1 and the whole I2 stream
form O2.

During the overlap sections, either I1 or I2 stream is
mapped to both output streams at the same time. This data
duplication does not temporarily allow for parallel process-
ing of both streams and may result in stalling of either
stream. However, the effect of the overlap is negligible as
long asBH ≪ N .

Two important properties are to be noted: (i) input and
output streams are mutually delayed byN/PD (ensured by
stream switching); (ii) several PPUs can be chained into a
pipe. The schematic of some application, e.g., ASF, may
look like in Fig. 12. At the front end there is an input buffer
transforming the input stream (which isPD-times faster than
each ofPD processing streams) intoPD processing streams
Hi (i = 1..PD). The transformation only needsi-th image
line to be stored in{imodPD}-th line buffer. In this manner,
the processing streams are properly delayed byN/PD pix-
els. The output buffer transformsPD processing streams into
one fast stream in the opposite way. One can place as many
PPUs as desired between these two buffers in a pipeline or
other topology.

The PPU involves the following limitations on the pro-
grammability: the image size is set before synthesis, the

Input streams I1, I2

I1

1

i

i

i

N

1

N

N/2+BH

N/2

N/2–BH

I2

Output streams O1, O2

O1

O2

overlap - I2 extends I1

overlap - I1 extends I2

Fig. 11 Addition of overlap on one image line

Input buffer Processing pipeline

Parallel

polygon

unit 1

(PPU)

Parallel

polygon

unit n

(PPU)

. . .

. . .

Output buffer

Stream clock Processing clock Stream clock 

line buffersline buffersmux demux

Fig. 12 Overall architecture of parallel ASF application.

padding sizesBH, BV are computed for the maximal SE,
specified before the synthesis. The reason is that handling
the varying SE and image sizes would introduce an unrea-
sonable hardware overhead of image partition, padding, and
overlap features.The SE features (size and shape) remain
fully programmable as in the non-parallel case, see Sec-
tion 5.3.

7 Experimental results

Hereafter we discuss the results of the proposed implemen-
tation. First, we discuss the results of a single 2-D PU and
PPU unit, followed by their performance in an application,
an ASF filter. We conclude by comparising them with other
architectures.

The proposed PU and PPU architecture has been imple-
mented in VHDL and targeted to the Xilinx FPGA Virtex-
6 device (XC6VLX240T). The ultimate specification con-
forms to the following: 8-bit gray-scale images of size up
to 1080p (1920×1080 px), height ofLαi

up to 31 px (thus,
hexagon SE up to 61 px, and octagon SE up to 91 px), and
support of uniform stream processing. Notice that all three
previous factors affect the memory requirements that (in
contrast to the PC), have significant influence on the clock
frequency. Our specification implies the clock frequency of
100 MHz.

The timing with respect to (shortly w.r.t.) the image size
and the size of the SE (Table 2 and 3) have been evaluated
on a natural photo image. We report several measures.
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Table 2 Timing of PU and PPU w.r.t. image size (SE size = 51 px,
PD=6).

Image Size VGA SVGA XGA 1080p
Pixel Rate (PU) [clk/px] 2.61 2.53 2.53 2.44
Latency [image line] 25 25 25 25
FPS (PU) [frame/s] 125 82 50 19
FPS (PPU) [frame/s] 599 406 257 105
Speed-up PPU vs. PU [-] 4.79 4.94 5.1 5.34

Table 3 Timing of PU w.r.t. SE size (SVGA image)

SE size [px] 21 31 41 51 61
Rate [clk/px] 2.42 2.46 2.49 2.53 2.58
FPS [frame/s] 85 84 83 82 81
Latency [image line] 10 15 20 25 30

1) The pixel rate gives the average number of clock ticks
to process one pixel. It is given by the overall number of
clock ticks divided by the image size. One can see that the
rate is almost constant w.r.t. both the size of the image and
the size of the SE. The slight variation is caused by the size
of the SE which affects the size of the padding and overlap,
increasing the number of effectively processed pixels, see
(18).

2) Latency is expressed in a number of image lines. Note
that it is strictly half the SE size. This is a further irreducible
factor corresponding to the dependency of the output on the
input. This corresponds to the half-height of the SE that
needs time to have read enough data to compute the dilation.

3) The last measure is the throughput in terms of the
number of frames per second (FPS). The ultimate result
we obtain is 105 fps for the 1080p resolution, allowing the
100Hz 1080 FullHD TV standard to be processed in real
time.

The speed-up PPU vs PU measures the acceleration ob-
tained from the parallelization. The difference from the ideal
upper limit (PD=6) is due to the overlap. With increasing im-
age size the acceleration converges towards 6 because of the
SE size (and consequently the overlap) becomes negligible
with regard to the image size.

Table 4 outlines efficiency of the scalability (that is the
parallelism degreePD) in terms of the FPS and speed-up.
One can see that the real speed-up is somewhat lower than

Table 4 Speed-up of PPU w.r.t.PD (SVGA image, SE size = 31 px).

Parallelism degreePD 2 3 4 5 6
FPS [frame/s] 162 234 306 376 441
Speed-up [-] 1.92 2.77 3.62 4.44 5.22

Table 5 FPGA resources w.r.t.PD (SVGA image, SE size = 91 px).

PD 1 2 3 4 5 6
Registers (P)PU 787 1,644 2,469 3,215 4,019 4,850
LUTs (P)PU 2,656 4,831 7,330 9,301 11,540 14,221
Block RAM (P)PU 39 39 59 42 53 63
Registers buf 0 251 355 466 590 671
LUTs buf 0 1,296 1,929 2,545 3,158 3,748

the PD. The difference is due to two factors: (i) the over-
lap, which demands redundant computation, and (ii) the
stream switching that needs inter-stream synchronization
which may introduce wait cycles.

Table 5 reveals the cost of parallelization on FPGA re-
sources in terms of registers, LUTs, and BRAMs of the PPU
and the pair of input and output buffer as shown in Fig. 12.

(a) Original (b) Filtered

Fig. 13 Example of ASF filtering. A zoom into original and the ASF3

filtered “Mountain” image.
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Table 6 Comparison of several FPGA and ASIC architectures concerning morphological dilation and erosion.N , M stand for the image width
and height of respective architectures.

Processing unit Hardware System Application Example ASF6

Technology Supported Throughput fmax Number of Supported Image FPS Latency
SE [Mpx/s] [MHz] units image scans [frame/s] [px]

Clienti [6] FPGA arbitrary 3×3 403 100 16 1024×1024 6 66.7 5NM + 84N
Chien [5] ASIC disc 5×5 190 200 1 720×480 45 12.2 44NM + 84N
Déforges [10] FPGA arbitrary 8-convex 50 50 1 512×512 13 14.7 12NM + 84N
This paper FPGA regular polygon 195 100 13 1024×1024 1 185 84N

7.1 Alternating Sequential Filter

The ASF filter is an essential method of morphological fil-
tering, see example Fig. 13. Since the ASF is applied as a
sequence of alternating dilations and erosions with a chang-
ing SE, it can be advantageously implemented by chaining
instances of the proposed architecture into a pipeline struc-
ture. The output of each operator is immediately processed
by a subsequent operator to achieve the following beneficial
properties: (i) all the operators are being applied in parallel
(temporal parallelism), (ii) the image is filtered with mini-
mal latency inferred by the Minkowski addition of all SEs.

Table 7 illustrates the performance of ASFλ in terms of
the experimentally achieved FPS and the inferred latency.
Note that the frame rate of the whole ASF decreases with
respect to the orderλ since larger SE implies larger padding
and overlap. However, the performance of the filters is com-
parable with the rate of a single unit in Table 2.

Table 7 Timing of ASFλ; SVGA image size,PD=6.

Order of ASFλ 1 2 3 4 5 6
Number ofδ, ε 3 5 7 9 11 13
Size of max. SE [px] 5 9 13 17 21 25
FPS by PUs [frame/s] 88 87 86 86 86 85
FPS by PPUs [frame/s] 491 483 466 440 415 387
Latency [image line] 4 12 24 40 60 84

7.2 Architecture Comparison

The implementation and performance comparison of our ar-
chitecture with the others is outlined in Table 6. At first, we
take into account single 2-D units only. Clienti [6] yields a
high throughput for an elementary SE 3×3. The Chien [5]
ASIC chip achieves a reasonable throughput with a small
5×5 diamond SE. Both architectures use homothecy to ob-
tain larger SEs. On the other hand, one Déforges [10] unit
supports various 8-convex SEs in one scan. As mentioned
in the state of the art, the programmability of the modules,
namely the possibility to control the SE shape after the syn-
thesis is not clear. Smaller throughput is probably caused by
usage of a less powerfull device than the rest of implemen-
tations.

Lets take as an application example of a compound
morphological operator, consider ASF6 = δ13×13ε25×25 . . .

ε5×5δ3×3 that consists of 13 morphology operations. One
Clienti’s system instantiates 16 elementary 3×3 processing
units. Hence, it will require 6 image scans (the entire image
must be stored in the memory). Chien also uses the homoth-
ecy, therefore, as many as 45 scans are to be done. In the case
of Déforges, neither FPGA occupation with respect to the
the size of SE nor possibility of using multiple instances in
a single chip was communicated. We consider that only one
unit fits the FPGA, so 13 image scans are needed. Of course,
if several units fit the FPGA surface, it will reduce propor-
tionally the number of scans. This is true for all streaming
architectures.

Obviously, between two consecutive scans the data are
read/written from/into the memory that degrades perfor-
mance and significantly increases latency to orders of sev-
eral image scans. The dense memory traffic might also over-
whelm the data bus.

From the estimated performance results for the ASF6 in
Table 6 we observe that the high use of homothecy tends
to increase the number of necessary image scans. Indeed,
all Clienti, Chien, and D́eforges (a) whose solutions are ef-
ficient for small SE sizes and short concatenations become
more or less penalized for longer concatenations; their per-
formance drop down with the higher numbers of necessary
image scans. On the other hand, Déforges (b) and our work,
which does not need more than one image scan, attain the
high performance for ASF6 comparable to the performance
of a single 2-D unit.

These features allow a temporal-parallel execution of all
atomic operators that is essential to obtain the real-time per-
formance for high demanding applications. In addition, the
low memory requirements facilitate embedding several in-
stances of proposed computation units into a single FPGA
circuit.

8 Conclusions

It is widely known that the processing data in stream allows
to reduce latency, memory consumption and increases the
system throughput. Until recently, computing morphological
dilations or erosions in stream was only possible for small,
limited neighborhoods [5,6,10], or large rectangles [2]. Dila-
tions by large polygons were computed iteratively, by using
the homothecy. This required an external memory for inter-
mediate data, limited the flexibility, and drastically increased
system latency.
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This paper opens the possibility of stream execution to
morphological dilation with large polygons. Although the
decomposition of polygons into the Minkowski addition of
inclined lines has been known for years [1], we bring several
suggestions that—combined together—allow the execution
in stream.

We show how to implement dilation by inclined linear
segments with sequential access to input and output data. We
show how to handle border effects, and recall (since this is
less known) that it requires large padding. Furthermore, we
show how to partition an image to introduce efficient spatial
parallelism while maintaining sequential access to data at all
levels. This avoids increasing the system clock by dividing
a fast data stream into several slower streams to process at
a slower rate. We show how to efficiently handle the border
effects on the partition.

The proposed polygon decomposition uses sequential
access to both input and output data. This allows for tem-
poral parallelism, where in concatenations like. . . δεδ . . .
all these operators run simultaneously on the time-delayed
data. We attain a very low (nearly optimal) latency, which
has beneficial impacts on memory consumption. No exter-
nal memory is used even for large SEs and large images. All
these aspects brought together allow for a considerable data
throughput for sequential morphological filters. We have im-
plemented a programmable IP block, usable in industrial
systems running under heavy timing constraints satisfying
up to the 100Hz 1080p FullHD TV requirements.
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