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The transition point in the zero noise limit for

a 1D Peano example

F. Delarue, F. Flandoli

Dedicated to the memory of José Real

Abstract

The zero-noise result for Peano phenomena of Bafico and Baldi
(1982) is revisited. The original proof was based on explicit solutions
to the elliptic equations for probabilities of exit times. The new proof
given here is purely dynamical, based on a direct analysis of the SDE
and the relative importance of noise and drift terms. The transition
point between noisy behavior and escaping behavior due to the drift
is identified.

Keywords: Stochastic differential equations, zero-noise limit, Peano
phenomena, non-uniqueness.
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1 Introduction

Given a probability space (Ω,A, P ), consider the SDE

dXx,ε
t = b (Xx,ε

t ) dt+ εdWt, Xx,ε
0 = x (1)

in R
d with b ∈ Cα

(
R

d,Rd
)
and at most linear growth at infinity, (Wt)t≥0

being a Brownian motion in R
d. When ε > 0, a strong solution exists and it

is pathwise unique, hence also unique in law (see [11], [9], [6], [5]); we denote
its law by P ε

x . When ε = 0, namely for the deterministic Cauchy problem

dXx
t

dt
= b (Xx

t ) , Xx
0 = x, (2)
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a solution exists by Peano theorem but uniqueness may fail, like in the exam-
ple studied below. In absence of uniqueness, a relevant question is selection:
does the limit of P ε

x as ε → 0 concentrate on special solutions, which, because
of this property, may be considered more “physical” than others?

Under the previous assumptions on b, the family {P ε
x}ε∈(0,1) is tight and

each limit measure µ is supported by the non empty closed set C of continuous
solutions (Xx

t )t≥0 to the ODE (2). As we just said, the set C is then expected
to contain more than one element. The question is then to determine the
limit measures µ of the family {P ε

x}ε∈(0,1) together with the elements of C
which are selected by these limit measures.

Precise general results on this problem, in R
d, are not known, except

for structural facts as in [2], [3] (however, see [4] for a special 2D example).
The main and striking paper is [1], which gives a very general and explicit
solution in the case d = 1, b having one singular point x0 (b (x0) = 0, b being
not locally Lipschitz around x0). The proof makes essential use of explicit
solutions to elliptic equations for the exit time from an interval and for ruin
type probabilities. This powerful analytic approach allows [1] to treat a large
variety of examples. However, it is also the main restriction in the attempt
to extend the theory to higher dimensions. Indeed, the elliptic equations in
d = 1 are second order linear ordinary differential equations, hence explicitly
solvable. In higher dimensions this approach fails, unless special symmetries
allow to reduce the dimension. Concerning one of the main examples of
[1], namely (3) studied below, we also refer to the very interesting works
[7] and [8], where large deviations are investigated and atypical results are
discovered.

It would be thus desirable to have other approaches to the same problem.
This motivated us to develop the new proof given here. Let us however insist
that these remarks are only a general motivation for this research, since we
do not solve the problem of a generalization to higher dimensions; we only
give a new proof based on dynamical considerations.

We give here a new proof of the result of Bafico and Baldi [1], in the
particular case (always d = 1) of the drift

b (x) =

{
A+ |x|α for x ≥ 0
−A− |x|α for x < 0

(3)

for some α ∈ (0, 1) and A+, A− > 0. The result is that P ε
0 , the law of

the solution of the SDE with initial condition x = 0, weakly converges to a
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combination of delta Dirac masses at the extreme solutions of the ODE:

Theorem 1

P ε
0 → p+δx+

·
+ p−δx−

·
,

in the weak sense, as ε → 0, where

p+ =
(A−)−

1
1+α

(A+)−
1

1+α + (A−)−
1

1+α

, p− =
(A+)−

1
1+α

(A+)−
1

1+α + (A−)−
1

1+α

,

and
x+
t = Cα,A+t

1
1−α , x−

t = −Cα,A−t
1

1−α ,

with Cα,A± = (A± (1− α))
1/(1−α)

.

The point of the new proof given here is its dynamical character. The
identification of the paths which are selected is not based on some auxiliary
PDEs as in [1] but only on the dynamical properties of the SDE (1). Only the
computation of the precise weights in the combination of the Dirac masses
involves a PDE through a martingale argument. The new proof thus gives
some new insight into the actual behavior of solutions, which is not visible
in the PDE approach. Precisely, we identify the existence of two regimes.
At the beginning of time, the solution which started from x = 0 behaves like
the Brownian motion (εWt)t≥0, although ε is very small, because the drift
is much smaller (this happens also for a Lipschitz drift). But close to the
time-space points

(tε, xε) :=
(
ε

2(1−α)
1+α , x±

tε

)
=

(
ε

2(1−α)
1+α ,±Cα,A±ε

2
1+α

)
(4)

a transition occurs: the drift becomes much stronger than the noise (the usual
fluctuations of the noise do not contrast the drift anymore) and pushes the
trajectories far away from the neighborhood of x = 0, roughly along one of
the trajectories (x±

t )t≥0.
The easiest way to identify heuristically the transition time-space point

(4) is to compare x+
t (or x−

t ) with εWt. Forgetting the scale constants Cα,A±

in the definition of x+
t and x−

t , we thus claim that the typical time t at which
transition is given by the solution of the equation

t
1

1−α = εt
1
2 . (5)
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We then get tε := ε
2(1−α)
1+α as typical transition time. Accordingly, we then

define

xε := t
1

1−α

ε = ε
2

1+α

as the typical space scale for observing the transition between the two regimes.
This simple intuition is confirmed by the proofs below.

We emphasize that the same method would permit to handle completely
asymmetric cases for which b(x) has the form b(x) = A+|x|α

+
for x ≥ 0 and

b(x) = −A−|x|α
−

for x < 0 with α+ 6= α−. In such cases, the two extremal
paths do not generate the same transition times so that only one of them is
selected, namely the one driven by the smallest exponent. Intuitively, this
amounts to letting the ratio A+/A− tend to 0 or +∞ in our case and thus
letting the weights in the Dirac combination tend to (0, 1) or (1, 0).

We feel appropriate to state, right here in the introduction, our two main
results concerning the transition point, because they are our main contribu-
tion to the understanding of this dynamical problem. For every r > 0, let
us denote by τr the exit time from (−r, r), defined on the canonical space
C ([0,+∞);R), as

τr (ξ) = inf {t > 0 : |ξt| ≥ r} , ξ ∈ C ([0,+∞);R) ,

when this set is not empty, τr (ξ) = +∞ otherwise. We denote by P ε
x the law

of Xx,ε and by Eε
x the corresponding expectation.

Proposition 2 For every function t̃ε > tε such that limε→0 t̃ε/tε = +∞, we
have

lim
ε→0

sup
x∈(−xε,xε)

P ε
x

(
τxε

> t̃ε
)
= 0.

The proposition states that with high probability the system reaches ±xε

in a time just a little greater than tε, when it starts inside (−xε, xε). This fact
is mainly due to the fluctuations of the noise, the drift playing a negligible
role on a time interval of length of the same order as tε. Put it differently,
until time tε, the noise dominates. We prove this result in any dimension,
under quite general conditions.

Then we show that, starting from xε or above, the solution remains above
x+
t forever, with probability larger than some λ > 0 (similarly if it starts

from −xε). More precisely, it remains above (1− γ) x+
t for any arbitrarily

prescribed γ ∈ (0, 1). The result is complemented by the following fact: for
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every function x̃ε > xε such that limε→0 x̃ε/xε = +∞, if we start above x̃ε

then the solution remains above x+
t forever, with probability close to one.

The formal statement is:

Theorem 3 Let γ ∈ (0, 1) be given. Then there exists a constant λγ > 0,
independent of ε ∈ (0, 1), such that

inf
x≥xε

P
(
Xx,ε

t ≥ (1− γ) x+
t , ∀t ≥ 0

)
≥ λγ > 0.

Moreover, for every function x̃ε > xε such that limε→0 x̃ε/xε = +∞, we have

lim
ε→0

inf
x≥x̃ε

P
(
Xx,ε

t ≥ (1− γ) x+
t , ∀t ≥ 0

)
= 1.

Similar results hold for (x−
t )t≥0.

This fact will imply our final result. We emphasize that it occurs because
of the drift. In particular, a Lipschitz continuous drift would not give such a
result: Observe for instance that the transition time, as defined by (5), tends
to 1 as α tends to 1, saying that no transition occurs in small time when
α = 1.

These two steps lead to the solution of our problem. Indeed, with large
probability, we reach ±xε in a very short time of order t̃ε (Proposition 2).
Then, iterating the argument of escape with probability larger than λγ,
we reach a prescribed ±x̃ε with probability close to one, again in a short
time (Corollary 8). Finally, restarting from ±x̃ε, we escape above or below
(1− γ) x±

t forever (Theorem 3). This shows that only the extremal paths
are selected at the limit. The weights in the combination of the delta Dirac
masses appearing in the statement of Theorem 1 are then computed by a
martingale argument.

Our hope is that we have identified new ideas behind the zero-noise limit
problem which may be extended to other examples and higher dimension,
but for the time being we need to restrict ourselves to the special 1D case
above.

2 Proof of Proposition 2

We give two proofs. The first one, which is purely dynamical, is true in any
dimension under moderate assumptions. This may be an indication that the
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dynamical proof presented here is promising for generalizations. The second
one is a refinement of the first one; it relies on the exact scaling properties
of the SDE at hand.

2.1 Multidimensional result

Let b : Rd → R
d be a function such that

|b (x)| ≤ Mrα ∀x ∈ R
d, ∀r > 0, with |x| ≤ r,

for some M > 0, α ∈ (0, 1). For a given x ∈ R
d and every ε ∈ (0, 1), let

(Xx,ε
t )t≥0 be the solution of

dXx,ε
t = b (Xx,ε

t ) dt+ εdWt, Xx,ε
0 = x

where (Wt)t≥0 is a Brownian motion in R
d and let P ε

x be its law on the space
of continuous paths. As above, set

rε := ε
2

1+α , tε := ε
2(1−α)
1+α ,

and

τr(ξ) := inf {t > 0 : |ξt| ≥ r} for any r > 0 and ξ ∈ C([0,+∞);Rd),

with the usual convention for the infimum of an empty set.

Proposition 4 One has

sup
|x|≤rε

P ε
x (τrε > tε) ≤ θ := P (|Z| ≤ 2 +M)

where Z ∼ N (0, Id).

Proof. If τrε(X
x,ε) > tε then |Xx,ε

t | ≤ rε for t ∈ [0, tε]. Hence, from

Xx,ε
t = x+

∫ t

0

b (Xx,ε
s ) ds+ εWt,

with |x| ≤ rε, we get

ε |Wt| ≤ |Xx,ε
t |+ |x|+

∫ t

0

|b (Xx,ε
s )| ds

≤ 2rε + tMrαε ≤ 2rε + tεMrαε
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for t ∈ [0, tε]. Moreover,
tεr

α
ε = rε.

Hence
ε |Wt| ≤ (2 +M) rε for t ∈ [0, tε] .

In particular, this implies ε |Wtε | ≤ (2 +M) rε. Since the random vector

Z := t
−1/2
ε Wtε is N (0, Id), we deduce that

P
(
ε |Wtε | ≤ (2 +M) rε

)
= P

(∣∣t−1/2
ε Wtε

∣∣ ≤ (2 +M) rε

εt
1/2
ε

)

= P (|Z| ≤ 2 +M) =: θ < 1.

We have used the identity
rε = εt1/2ε .

We have proved
P ε
x (τrε > tε) ≤ θ.

The proof is complete.

Corollary 5 Assume that, for every ε ∈ (0, 1), the solutions (Xx,ε
t )t≥0 are

a strong Markov family w.r.t. the initial condition. Then, for any integer
n ≥ 1,

sup
|x|≤rε

P ε
x (τrε > ntε) ≤ θn.

In particular, for every function t̃ε > tε such that limε→0 t̃ε/tε = +∞, we
have

lim
ε→0

sup
|x|≤rε

P ε
x

(
τrε > t̃ε

)
= 0.

Proof. We know that

P ε
x (τrε > tε) ≤ θ = P (|Z| ≤ 2 +M) .

We consider the sequence of stopping times

τ (n)rε := (ntε) ∧ τrε
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for n = 0, 1, ... and apply strong Markov property to get

P ε
x (τrε > ntε) = P ε

x

(
τrε > ntε

∣∣|ξ
τ
(n−1)
rε

| < rε

)
P ε
x

(
|ξ

τ
(n−1)
rε

| < rε

)

+ P ε
x

(
τrε > ntε

∣∣|ξ
τ
(n−1)
rε

| = rε

)
P ε
x

(
|ξ

τ
(n−1)
rε

| = rε

)

≤ θP ε
x (τrε > (n− 1) tε) ,

because P ε
x

(
τrε > ntε

∣∣|ξ
τ
(n−1)
rε

| = rε

)
= 0 and P ε

x

(
τrε > ntε

∣∣|ξ
τ
(n−1)
rε

| < rε

)
≤

θ. Therefore
P ε
x (τrε > ntε) ≤ θn.

The proof is complete.

2.2 Proof by exact scaling

We also provide this proof because it provides the rate of convergence to zero
of P ε

x

(
τxε

> t̃ε
)
. However, it is restricted to the 1D case, since it relies on

the perfect scaling property of the drift b in (3).
Notice, by standard recurrence properties of the 1D Brownian motion,

that ‖E1
· [τx1 ]‖∞ < ∞

Lemma 6 Consider the 1D case with b given by (3) and recall that xε = ε
2

1+α

and tε = ε
2(1−α)
1+α . Then, for all x ∈ (−xε, xε), the law of τxε

under P ε
x is the

same as the law of tετx1 under P 1
x−1
ε x

. In particular,

P ε
x

(
τxε

> t̃ε
)
= P 1

x−1
ε x

(
τ1 >

t̃ε
tε

)
≤

tε

t̃ε

∥∥E1
· [τx1 ]

∥∥
∞
.

Proof. We notice that

d
(
x−1
ε Xtεt

)
= x−1

ε tεb(Xtεt)dt+ x−1
ε t

1
2
ε εdŴ

ε
t ,

for another Brownian motion (Ŵ ε
t )t≥0. It is well-checked that

x−1
ε t

1
2
ε ε = 1.

Moreover, by scaling property of b,

x−1
ε tεb(Xtεt) = xα−1

ε tεb
(
x−1
ε Xtεt

)
= b

(
x−1
ε Xtεt

)
.

Therefore, (x−1
ε Xx,ε

tεt )t≥0 has the same law as (Xx−1
ε x,1

t )t≥0.
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3 Proof of Theorem 3

Let τγ,x+ be the random time, defined on the canonical space C ([0,+∞);R):

τγ,x+ (ξ) = inf
{
t > 0 : ξ (t) < (1− γ) x+

t

}
(6)

(equal to +∞ if this event never happens).
For an initial condition x ≥ xε, we have Xx,ε

0 > (1− γ) x+
0 = 0 at

time zero. Since the processes are continuous, P ε
x (τγ,x+ > 0) = 1. For s ∈

[0, τγ,x+(Xx,ε)] (all s ≥ 0 if τγ,x+(Xx,ε) = +∞), we have Xx,ε
s ≥ (1− γ) x+

s ,
so that (by definition of b)

b (Xx,ε
s ) ≥ (1− γ)α b

(
x+
s

)
.

Therefore, for every t ∈ [0, τγ,x+(Xx,ε)],

Xx,ε
t = x+

∫ t

0

b (Xx,ε
s ) ds+ εWt

≥ x+ (1− γ)α
∫ t

0

b
(
x+
s

)
ds+ εWt = x+ (1− γ)α x+

t + εWt,

because x+
t =

∫ t

0
b (x+

s ) ds.
Now consider η ∈ (0, 1) such that 1− η is the mid point between (1− γ)

and (1− γ)α. We have (with equal distance)

(1− γ) < 1− η < (1− γ)α .

We rewrite the inequality above in the form

Xx,ε
t ≥ (1− η) x+

t +Rx,ε,γ
t ,

Rx,ε,γ
t := x+ (γ − η) x+

t + εWt,

which, we recall, holds for every t ∈ [0, τγ,x+(Xx,ε)]. Letting A (x, ε, γ) be the
event

A (x, ε, γ) = {Rx,ε,γ
t ≥ 0, ∀t ≥ 0} ,

we deduce from next lemma that

inf
x≥xε

P (A (x, ε, γ)) ≥ λγ > 0

lim
ε→0

inf
x≥g(ε)xε

P (A (x, ε, γ)) = 1,
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whenever g(ε) → +∞ as ε → 0. This implies the two claims of the theorem.
Indeed, on the event A (x, ε, γ), it holds

Xx,ε
t ≥ (1− η) x+

t > (1− γ) x+
t

for every t ∈ [0, τγ,x+(Xx,ε)]. But this is compatible only with the statement
τγ,x+(Xx,ε) = +∞. Hence A (x, ε, γ) ⊂ {τγ,x+(Xx,ε) = +∞}. The proof of
Theorem 3 is complete.

We now prove

Lemma 7 Given A > 0, there is a constant λA, independent of ε, such that

P
(
ε

2
1+α + At

1
1−α + εWt > 0, for all t ≥ 0

)
≥ λA > 0.

Moreover, given g (ε) such that limε→0 g (ε) = +∞,

lim
ε→0

P
(
ε

2
1+α g (ε) + At

1
1−α + εWt > 0, for all t ≥ 0

)
= 1.

Proof. Since the process (Wt)t≥0 has the same law as (β−1/2Wβt)t≥0 for
every β > 0, we have

P
(
ε

2
1+α g (ε) + At

1
1−α + εWt > 0, for all t ≥ 0

)

= P
(
β

1
2 ε

2
1+α

−1g (ε) + β
1
2At

1
1−α ε−1 +Wβt > 0, for all t ≥ 0

)
.

Choose β = βε so that β
1
2
ε ε

2
1+α

−1 = 1, namely β
1
2
ε = ε−

1−α

1+α . Then, since

ε = β
− 1

2
1+α

1−α

ε ,

β
1
2
ε t

1
1−α ε−1 = β

1
2

1+α

1−α

ε β
1
2
ε t

1
1−α = β

1
1−α

ε t
1

1−α = (βεt)
1

1−α .

Therefore

P
(
β

1
2
ε ε

2
1+α

−1g (ε) + β
1
2
ε At

1
1−α ε−1 +Wβεt > 0, for all t ≥ 0

)

= P
(
g (ε) + A (βεt)

1
1−α +Wβεt > 0, for all t ≥ 0

)

= P
(
g (ε) + As

1
1−α +Ws > 0, for all s ≥ 0

)
.

Whenever g(ε) = 1, the latter probability is positive and independent of ε; we
call it λA and the first claim of the lemma is proved. Whenever limε→0 g(ε) =
+∞, the latter probability tends to one. The proof is complete.
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4 Proof of Theorem 1

4.1 Selection of the extremal paths

Throughout the proof, we are given a number γ ∈ (0, 1). As an easy conse-
quence of Theorem 3 we have:

Corollary 8 Let λγ > 0 be the constant, independent of ε ∈ (0, 1), given by
Theorem 3. Given an infinitesimal function x̃ε > xε such that limε→0 x̃ε/xε =
+∞, there exists an infinitesimal function t̃ε > 0 such that

inf
|x|≥xε

P ε
x

(
τx̃ε

≤ t̃ε
)
≥ λγ > 0.

Moreover, there exists an infinitesimal function t̃′ε > 0 such that

lim
ε→0

P ε
±xε

(
τx̃ε

≤ t̃′ε
)
= 1.

Here we call an infinitesimal function a function of ε which tends to 0 with
ε.

Proof. We know from Theorem 3 that

inf
x≥xε

P
(
Xx,ε

t ≥ (1− γ) x+
t , ∀t ≥ 0

)
≥ λγ > 0.

The function (1− γ) x+
t is equal to x̃ε at some time t̃ε, and t̃ε is infinitesimal

if x̃ε is so, that is t̃ε → 0 if x̃ε → 0 with ε. Then, by continuity of the
trajectories of (Xx,ε

t )t≥0,

P ε
x

(
τx̃ε

≤ t̃ε
)
≥ P

(
Xx,ε

t ≥ (1− γ) x+
t , ∀t ≥ 0

)
≥ λγ,

for x ≥ xε. Using in a similar argument for initial conditions in (−∞,−xε],
the first assertion is proved.

We now prove the second assertion. We mimic the proof of Proposition
2. For any integer n ≥ 1, we compute

max
η=±

P ε
ηxε

(
τx̃ε

≥ 2nt̃ε
)

≤ max
η=±

P ε
ηxε

(
τx̃ε

≥ 2(n− 1)t̃ε
)
sup
|x|≥xε

P ε
x

(
τx̃ε

≥ 2t̃ε
)

+max
η=±

P ε
ηxε

(
τx̃ε

≥ 2(n− 1)t̃ε
)
sup
|x|≤xε

P ε
x

(
τx̃ε

≥ 2t̃ε
)

:= T1 + T2.
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By the first assertion of the statement, the first term in the right-hand side
is less than

T1 ≤ (1− λγ)max
η=±

P ε
ηxε

(
τx̃ε

≥ 2(n− 1)t̃ε
)
.

Now, by Proposition 2, the second term is less than

T2 ≤ max
η=±

P ε
ηxε

(
τx̃ε

≥ 2(n− 1)t̃ε
)
sup
|x|≤xε

P ε
x

(
τxε

> t̃ε
)
max
η=±1

P ε
ηxε

(
τx̃ε

≥ t̃ε
)

≤ (1− λγ)
2,

for ε small enough. This proves that there exists a constant c > 0, indepen-
dent of ε, such that for ε small enough

max
η=±

P ε
ηxε

(
τx̃ε

≥ 2nt̃ε
)
≤ cn.

Choosing n = t̃
−1/2
ε , we complete the proof.

Now we can prove that the limit measures of {P ε
0 }ε∈(0,1) only charge x+

and x−. With the same notations as above we define the event

Bε =

{
X0,ε

2t̃ε+t
≥ (1− γ) x+

t for all t ≥ 0

}

∪

{
X0,ε

2t̃ε+t
≤ (1− γ) x−

t for all t ≥ 0

}

=

{
max

(
τγ,x+(X0,ε

2t̃ε+·
), τγ,x+(X0,ε

2t̃ε+·
)
)
= +∞

}
,

with the same definition as in (6).
By strong Markov property and Proposition 2, there exists an infinitesi-

mal function δε such that

P
(
Bε

)
≥ (1− δε) inf

η=±
P

(
max

(
τγ,x+(Xηxε,ε

t̃ε+·
), τγ,x−(Xηxε,ε

t̃ε+·
)
)
= +∞

)
.

Using the second assertion in Corollary 8 and modifying δε, we deduce that

P
(
Bε

)
≥ (1− δε) inf

η=±
P
(
τγ,xη(Xηx̃ε,ε) = +∞

)
.

By the second claim of Theorem 3, we deduce that that

lim
ε→0

P (Bε) = 1.

This implies that any weak limit µ of P ε
0 is concentrated on the extremal

solutions ±x+
· .

12



4.2 Weights of the extremal paths

The computation of the weights relies on the following martingale property

Lemma 9 Define the functions

v(x) = exp
(
−

2

1 + α
|x|1+α

)
,

V (x) =

∫ x

0

v(r)dr,

for x ∈ R, together with

Uε(x) =





(A+

ε2
)− 1

1+αV

((A+

ε2
) 1

1+α

)
, x ≥ 0,

(A−

ε2
)− 1

1+αV

((A−

ε2
) 1

1+α

)
, x < 0,

Then, the process (
M ε

t = Uε

(
X0,ε

t

))
t≥0

is a martingale.

Before we prove Lemma 9, we first explain how it applies to the end of
the proof of Theorem 1.

As in the statement of Theorem 3, we consider an infinitesimal function
x̃ε such that x̃ε/xε → +∞ as ε → 0. We know that τx̃ε

(X0,ε) is finite and
that (M ε

t )t≥0 is a bounded martingale (V is obviously bounded). By Doob’s
theorem, we deduce that

E
[
M ε

τx̃ε (X
0,ε)

]
= 0,

so that
Uε(x̃ε)P

(
X0,ε

τx̃ε
= x̃ε

)
+ Uε(−x̃ε)P

(
X0,ε

τx̃ε
= −x̃ε

)
= 0,

that is

(
A+

)− 1
1+αV

((
A+

) 1
1+α

x̃ε

xε

)
P
(
X0,ε

τx̃ε
= x̃ε

)

+
(
A−

)− 1
1+αV

(
−
(
A−

) 1
1+α

x̃ε

xε

)
P
(
X0,ε

τx̃ε
= −x̃ε

)
= 0.
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By Theorem 3, we can let ε tend to zero and then deduce that any limit
measure µ must satisfy

(
A+

)− 1
1+αV (+∞)µ(x+

· ) +
(
A−

)− 1
1+αV (−∞)µ(x−

· ) = 0,

which completes the proof since V (+∞) = V (−∞).

It now remains to prove Lemma 9:
Proof. We notice that the function Uε is continuously differentiable with

U ′
ε(x) =





v

((A+

ε2
) 1

1+αx

)
, x ≥ 0,

v

((A−

ε2
) 1

1+αx

)
, x < 0.

The function v is also continuously differentiable with

v′(x) =

{
2|x|αv(x), x ≥ 0,

−2|x|αv(x), x < 0.

Therefore, the function Uε is continuously differentiable on (−∞, 0) and
(0,+∞) and

U ′
ε(x) =





2
A+

ε2
|x|αUε(x), x > 0,

−2
A−

ε2
|x|αUε(x), x < 0,

which proves that, for any x 6= 0,

ε2

2
U ′′
ε (x) + b(x)U ′

ε(x) = 0.

The martingale property follows from Itô’s formula.
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