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Minimization priniples for the evolution of asoft sea bed interating with a shallow seaAfaf Bouharguane & Bijan MohammadiInstitut de Mathématiques et de Modélisation de MontpellierUniversité Montpellier II, CC51, 34095 Montpellier, FraneDraft for IJCFDAbstrat - Minimization priniples are used in �uid-struture oupling tomodel sandy sea beds evolution. The sandy bed is seen as a struture with lowsti�ness. We start with a model problem featuring the behavior of the oupling.Then water motion in shallow domains is desribed by the Saint Venant equa-tions. This oupling bringing the bottom sea hanges is based on the assumptionthat the bed adapts to the �ow in order to minimize some energy quantity to-gether with minimal sand transport. The approah is shown being equivalentto the use of an Exner equation for the bed with a nonloal expression for thesediment transport �ux. Beause the hoie of the funtional permits to inludedi�erent physial quantities one think to play a role in the bottom morphody-namis, the approah is also a tool for validating di�erent modelling hypothesis.Keywords: Sandy beah morphodynamis, shape optimization, �uid-struture oupling, Saint Venant Equations, sensitivity analysis, Exner equation.
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1 IntrodutionCoastal morphodynamis our over a broad range of time and length sales.Some events our over small spae and time sales suh as the removal ofsediment from the toe of oastal strutures whih often ours and reoversompletely during the ourse of a single tide (hourly basis). The next time andspae sales onern storm response lasting for a few tides (say daily basis). Herethe beah an be modi�ed both long and ross-shore by hundreds of meters.Reovery between storms will take longer (weekly basis). This lassi�ationan ontinue with seasonal and inter-annual variability et. In general, thespatial sale inreases with the time sale and therefore long-shore transportgains importane over ross-shore with inreasing time sale.The literature on oastal morphodynamis is huge [6, 7, 8℄ and onerns,for instane, dunes morphodynamis, sediment transports using �uid-induedshear in the sediment modelling, sea bed frition and the feedbak of bed shapeson the �ow, global beah morphodynamis based on long and ross-shore �uxesand beah lines morphodynamis.This work is on the appliation of ontrol theory to the evolution of sandysea beds. We aim at proposing a formulation for sea bed evolution based on�uid and struture oupling using minimization priniples. The time sales ofinterest are below a day and reoveries between storms or seasonal and inter-annual variabilities are out of sope. In the literature, the question of sea bedmorphodynamis is, for instane, treated through the solution of an Exner equa-tion with some adho �ux expression [21℄. The approah is shown to have asimilar interpretation, but with a nonloal �ux term, as in some already existingmodels [23, 24℄.In the past we used minimization priniple to design defene struturesagainst beah erosion [3, 4℄. In these works, the designed strutures were inde-pendent of time and were built one for all. Here, we would like to go one stepfurther giving the possibility to the struture to hange in time. One partiular2



ase is then the sea bed is seen as a struture with low sti�ness. The fundamen-tal assumption is that the bed adapts to the �ow by some sort of optimal sandtransport in order to minimize some energy expression. Optimal transport isseen here as minimal hange in the bed shape. The approah is not limited tothe funtionals we onsider here, nor by the �ow equations whih an be moresophistiated.The paper starts with the problem of sea bed motion formulated as anoptimal ontrol problem. A model problem is used to feature the di�erentingredients in the oupling proedure. Then a more sophistiated �ow model inshallow water is introdued. Follows a disussion on the hoie of ost funtions.A omparison is then made between modelling the transport of sediments bythe Exner equation and by our minimization priniple. The paper also showssome simulations featuring qualitative behavior of the approah.2 A 1D model problemLet us illustrate our purpose on a model problem based on an analytial ex-pression for water elevations linked as a funtion of inoming waves and thebottom sea expression. Consider a domain with a bed de�ned as a funtion
ψ(t, x) : R

+ × [−100m,−20m] → R
+. We want to model the hanges in thisbed with time due to water elevations h(t, x). Let us start with the followingsimple water elevation expression:

h(t, x) = h0 + α sin(ωx(h0 − ψ(t, x))),where h0 indiates the �ow level at rest, 0 ≤ α < 1 and ω > 0. This is amonohromati wave, but one ould onsider superimposed waves. This is an apriori and unphysial hoie, made for illustration. Other analytial funtionsan be onsidered. We onsider h0 = 2m, ω = 0.5Hz and α = 0.1m. The bedis supposed initially �at ψ(0, x) = 1m. To lose this model, we need to providea model for ψ(t, x). In this paper we suppose that ψ will adapt to the �ow3



elevation in order to damp some of its energy expressed through a funtional
J(h(t, x, ψ(t, x))). The hoie of J is free at this point. Let us onsider J as thesum of the L2 norm of h in spae and a term foring the bottom to stay loseto its original shape:
J(h(t, x, ψ(t, x))) =

1

2

∫

−20

−100

(

h2(t, x) + β(s(t, x) − s(0, x))2
)

dx, with β ≥ 0.(1)The seond term in the funtional is to indiate that we assume the bottomadapting to the �ow but also minimizing its own variations. We will disuss theunderlying optimal transport issue in setion 6. An example of evolution modelfrom time t to time t+ δt for the �ow and its bottom an be given by:














ψ(t+ δt, x) = ψ(t, x) − Π(δtρ∇ψJ(ψ(t, x), h(t, x))),

h(t, x) = h0 + α sin(ωx(h0 − ψ(t+ δ, x))).

(2)
Π is a projetion operator and permits to aount for possible presene of rigidparts in the bed (i.e. roks) or a bed onstituted with di�erent type of sandspermitting di�erent loal regularity for the bed shape. Here, we suppose thebed is homogeneous with only one type of sand and take Π = Id. ρ ≥ 0 modelsthe reeptivity of the bed. We will see in setion 8 how this an be linkedto the porosity of the bed. Figure 1 shows snapshots of the evolutions of thebottom shapes and water elevations with 200 iterations of (2) with ρ = 0.002and δt = 3s on a 500 points mesh. Based on the hoie of ω the oupling takesplae about four times every period. One an see that the bottom has adaptedin order to redue water elevations.For this model problem the �rst optimality ondition (∇ψJ = 0) an be usedto exhibit equilibrium solutions. It appears that, for β = 0, beause h(t, x) > 0and x 6= 0, the gradient vanishes where cos(ωx(h0 − ψ(t, x))) = 0 and thereforefor

ψ(t, x) = h0 −
(2k + 1)π

2ωx
, for k ∈ ZZ.4



Figure 1: Coupling based on (2), starting from a �at bottom with β = 0.
1
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X(m)Figure 2: Regions where equilibrium solution exists (for β = 0) from the �rstoptimality ondition and the equilibrium bottom shapes found by the gradient-based oupling for funtional (1) with β = 0(x) and β = 100(+).5



Figure 3: Upper: Initial and �nal water elevations after the bed has adaptedto three water ondition hanges for β = 0 (left) and β = 100 (right). Lower:normalized histories of ∫

−20

−100
h2dx for β = 0 and β = 100 (dashed) duringoupling iterations. Under onstraint the water elevation ontrol is less e�ient.The ouple bed-�ow reahes an equilibrium until a hange in the �ow onditionsours.
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These orbits are shown in Figure 2 and ompared with the solutions by theoupling in the ase of β = 0 and β = 100. There are two possible equilibriumsolutions orresponding to even and odd k's. The oupling solutions is alongwith odd k's. This is an example of non-uniqueness. The gradient methodappears to pik the solution whih shows a ompromise between variation andregularity. Indeed, passing by all orbits would have redued the bottom varia-tions but the outome would have been less regular.Figure 3 shows the evolution of the L2 norm of water elevations for β = 0and β = 100 with two water onditions hanges during the oupling where werespetively applied (ω = 0.35Hz, α = 0.13m) and (ω = 0.24Hz, α = 0.17m).This is exatly what is observed in nature: the bed moves until the ouple bed-�ow reahes an equilibrium. This stable on�guration is broken by a hange inthe �ow onditions (i.e. inoming waves diretions and intensities).As we will see in setion 8, several morphodynami models in literature arein a divergene form:
ψt +

1

1 − λp(x)
div (q(x, t)) = 0, ψ(t = 0, x) = given,where λp(x) ∈ [0, 1[ is the porosity of the bed. This an be linked to the presentminimization formulation giving a systemati approah for the derivation of the�ux term:

ψt = −
1

1 − λp(x)
qx = −ρJψ, (3)and integrating, one has:

q(x, t) − q(−100, t) =

∫ x

−100

ρ(s)(1 − λp(s))Jψ(s, t)ds,where one has supposed that both ρ and λp depend on the spae (i.e. nonhomogeneous bed). Hene, to have q one needs q(−100, t) whih is one ex-tra information required to lose the model in omparison to the minimizationapproah. And this data is usually di�ult to obtain as it requires bed mea-7



surements. On the other hand, the �ux approah an be reformulated as aminimization problem �nding the related ost funtion.
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λp. To solve this PDE, one needs to provide boundary onditions for ψ whih areagain extra informations not neessary in the minimization approah. Figure 4shows a omparison of the bottom shapes with the above minimization basedoupling and with the assoiated divergene form with boundary onditions
ψxx(−100) = ψxx(−20) = 0. The results show the need for upwinding. We willsee in setion 7 how to evaluate the gradient of the funtionals by an adjointmethod. The previous omparison indiates that the gradient ontains impliitlythe information on the boundary onditions on the bed required if one uses �ux-based morphodynamis models.The approah we desribed through this simple model problem an be ap-plied to more ompliated situations involving realisti �ow models. The hoieof the funtional permits to inlude di�erent physial quantities one would thinkto play a role in the bottom morphodynamis. The approah is therefore alsoa tool for validating di�erent modelling hypothesis. This will be disussed insetion 6.
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3 Interations between the �ow and its bedNow, one would like to go one step further onsidering two dimensional situ-ations with a realisti �ow model in shallow domains. The sea bed ψ : Ω ⊂

R
2 → R

+ hanges with time following the hanges in the state given by the�ow onditions U. ψ is a univoal funtion with some regularity. We use a bedparameterization based on the bathymetry given at all the nodes of the �uidmesh. This is alled a CAD-free parameterization [9℄.The model for the sea bed evolution is based on the minimization of atime dependent funtional J(ψ,U(ψ)) where U(ψ) = {U(ψ, τ, x, y), τ ∈ [t −

T, t], (x, y) ∈ Ω} gathers the state evolution in time, solution of a state equa-tion. We disuss the hoie of funtionals in setion 6.To make the physial model more realisti, we onsider the shallow waterequations as state equations for the �uid with U = t(h, hu) where u = t(u, v) isthe depth-averaged veloity with u and v the salar omponents in the horizontaldiretions and h the loal water depth:
Ut + F (U, ψ) = 0, with initial and boundary onditions,where

F (U, ψ) =







∇.(hu)

∇.(hu ⊗ u) + gh∇(h+ ψ)






. (4)

As in our model problem, minimization of J an be seen as solution of










ψt = −ρ∇ψJ(ψ,U(ψ)),

ψ(t = 0) = given,where ρ is a positive parameter whih depends on the porosity of the bed (seesetion 8). The physial time sales for the �uid and struture (bed motion) arequite di�erent. Indeed, �ows have time sales of the order of seonds and the9



sea bed motion takes plae over hours.The ost funtion involves this state evolution as, for instane, in:
J(ψ,U(ψ)) =

∫ t

t−T

j(ψ,U(ψ, τ))dτ (5)
T indiates a time dependeny window and also permits to introdue a di�erenein time sales between sea bed and �ow motions. We disuss its hoie in setion6.4 Flow solverShallow water equations are disretized by a �nite volume formulation [2℄. Our�nite volume implementation preserves steady state solutions on non �at seabeds in the absene of perturbations [14, 15℄. It is also suitable to apturewetting and drying phenomena [17, 16℄. Four boundary onditions are needed atslip, inlet, shoreline and outlet boundaries. The slip boundary ondition (u.n =

0) is naturally taken into aount in a �nite volume formulation. The outletondition is a transmissive boundary ondition. Values at boundary ells areobtained by seond order extrapolations normal to the boundary from the valuesinside the domain. To desribe inoming waves we use an absorbing/generatinginlet boundary ondition where the values of water depth are presribed. Insubritial regimes, harateristi urves and Riemann invariants provide normalveloity. In open sea we allow for re�eted waves to freely exit the domain [18℄.5 Simulations detailsTo simulate sea onditions, the water wave elevation at the inlet is representedby the addition of N monohromati waves:
h(t) = h0 + 2A

∑

i=1,..,N−1

sin

(

ωi + ωi+1

2
t

)

cos

(

ωi − ωi+1

2
t

)

.10



A is the water wave amplitude at inlet, h0 the water height at rest and ωi =

2π/Ti are wave pulsations. With �ve modes, typial values of periods Ti weonsider are 3.5, 3, 2.3, 2, 1.5 seonds. We onsider the ase of an experimentonduted at the Sogreah 3D wave basin in Grenoble (Frane) of side 30 mwith A = 0.12 m and h0 = 0.765 m. More realisti onditions an be appliedfollowing a Jonswap distribution [20, 19℄.Time integration is expliit for the �ow. Due to what we said on the di�er-ene of time sales between �uid motion and hanges in sea beds, several timesteps will be taken (typially 100) in the �ow solver before a new time step bythe bed model desribed by the minimization iterations.6 Cost funtionOne of the main ingredients in the hain of ontrol is the ost funtion to beminimized. One expets the bed to at as a �exible struture and to adapt to�ow onditions in order to minimize some energy-based funtional. One an,for instane, onsider an energy made of water mehanial energy and involvinga onstraint on sand displaements requiring minimal topobathymetry hangesfrom the bathymetry ψ(t − T ) at the beginning of a time interval of in�uene
[t− T, t]:

J1(ψ) =

∫ t

t−T

∫

Ω

(

1

2
ρwgη

2 + ρsg(ψ(τ) − ψ(t− T ))2
)

dτdΩ, (6)where Ω is the physial domain, ρw and ρs are respetively the water and sanddensity and η is the deviation of the wave elevation from a low frequeny om-ponent evaluated using a time interval T . This is a funtion of spae and timeand also depends on the bathymetry:
η(x, y, ψ, t) = h(x, y, ψ, t) −

1

T

∫ t

t−T

h(x, y, ψ, τ)dτ.
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This funtional aims at reduing both wave elevations and hanges in the bedshape.In funtional (6), one ould have onsidered water wave amplitude A insteadof elevations:
A(x, y, ψ) = max

t∈[t−T,t]
η(x, y, ψ, t),and

J̃1(ψ) =

∫

Ω

1

2
ρwgA

2dΩ +

∫ t

t−T

∫

Ω

ρsg(ψ(τ) − ψ(t− T ))2 dτdΩ. (7)
J1 and J̃1 are equivalent on ompat domains and a redution of J1 leads tothe same for J̃1. From an optimization point of view, one prefers J1 beauseit is di�erentiable. In all ases, we have observed that ontrolling water waveenergy is ruial to �ght erosion. As, this is responsible for sediments put insuspension by generating orbital veloity [8, 7, 4℄.A fundamental idea motivating the introdution of the seond term in thefuntional (6) is the onept of optimal transport [10, 11, 12℄. In other words,one thinks that the bed will adapt to the �ow in some optimal way in term ofsand transport.We assume that the in�uene of water onditions on a sandy bed at a giveninstant does not involve time history of more that a few wave periods. T is aparameter to be assimilated using experimental data. Its hoie is important asshown in Figure 5. It illustrates bottom seas after six hours with the funtional(6) for two di�erent values of the interval of in�uene T = 5 and T = 10 seondsstarting from a linear initial pro�le for the bed. The piture is along the ross-shore enterline of the domain. The long-shore deviations from these pro�les arenegligible. It appears that larger T produe less sand motion. This is reasonablebeause when T is large deformations will be based on more �ow features. Thisis similar then to a multi-point optimization with more and more onstraints.And inreasing the number of onstraints in general restraint the admissibledeformation. 12
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T = 10s (x). Dashed lines are initial bathymetry and water level at rest.The previous funtional involves water elevations. In the same way, oneould imagine that sea bed will adapt to the �ow in order to redue its horizontalveloity gradients with minimum variation in bathymetry. A seond funtionalan then be built:

J2(ψ) =

∫ t

t−T

∫

Ω

(

‖∇xyu‖ + ρsg(ψ(τ) − ψ(t− T ))2
)

dτdΩ, (8)where ∇xy indiates the spatial gradient and the norm stands for ‖∇xyu‖ =

(u2
x + v2

x + u2
y + v2

y)
1/2.There is an extra onstraint to aount in ases we assume the domain islosed and the amount of available sand given:

∫

Ω

ψ(t, x, y) dΩ =

∫

Ω

ψ(0, x, y) dΩ.Here, we assume open sea onditions where extra sand an be brought in by the13



�ow if predited so. Then, the onstraint on ψ remaining as lose as possible tothe initial bathymetry is absolutely neessary in order for the algorithm not toremove all water, hene vanishing the funtional.Figure 6 shows an example of sea bed hanges along the ross-shore enterlineof the domain due to interations with water motion based on the minimizationof (6) and (8) after about six hours. The approah predits the apparition ofeither two or three longshore sand bars. Water elevation in time is presribed onthe left boundary whih reates waves entering normal to this boundary. Thestarting bed pro�le is linear. Funtional (6) espeially predits beah nourish-ment.
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spae. In time dependent problems, this implies storage of all intermediatestates whih an be optimized by hek-pointing tehnis [28℄. In this setion,we brie�y desribe the adjoint method with a time dependent state equation (theSaint Venant equations in our ase). This will be implemented by automatidi�erentiation [27, 9, 13℄. Let us onsider the following formal dependeny hain:
ψ → {U(ψ, τ), τ ∈ [0, T ]} → J(ψ, T ).Here, ψ is the independent variable and U and J are the dependent ones.

U(ψ, τ) are solutions in time of
Ut + F (U, ψ) = 0, U(0) = U0(ψ). (9)To be aurate, one should have also to onsider the independent physial pa-rameters suh as those desribing the waves. But, this would have introduedunneessary ompliations into notations.Now onsider a funtional involving an integral over time like those we areinterested in:
J(ψ, T ) =

∫

(0,T )

j(ψ,U(ψ, t)).Linearizing J one has:
J
ψ
(ψ, T ) =

∫

(0,T )

(j
ψ

+ j
U
U
ψ
).In this expression only U

ψ
is ostly to get as it requires the linearization of theshallow water equations.The linearized state equation:

(U
ψ
)t + F

ψ
(U, ψ) + F

U
(U, ψ)U

ψ
= 0, U

ψ
(0) = U

′

0(ψ), (10)
17



permits to write for all funtion V (where V has the same struture than U):
0 =

∫

(0,T )×Ω

((U
ψ
)t + F

ψ
(U, ψ) + F

U
(U, ψ)U

ψ
) V.Introduing the adjoint operator F ∗

U
, it gives:

0 =

∫

(0,T )×Ω

(−Vt + F ∗

U
(U, ψ) V)U

ψ
+

∫

Ω

[VU
ψ
]T0 +

∫

(0,T )×Ω

VF
ψ
(U, ψ).Let us introdue a bakward adjoint problem:

Vt + F ∗

U
(U, ψ) = j

U
, V(T ) = 0. (11)Therefore, with V solution of the bakward adjoint equation (11) with thehosen �nal ondition one has:

∫

(0,T )×Ω

j
U
U
ψ

=

∫

Ω

V(0)U′

0(ψ) −

∫

(0,T )×Ω

VF
ψ
(U, ψ).If there is no diret dependeny between the initial ondition U(0) and ψ the�rst term in the right-hand-side vanishes. Also, for the Saint Venant equationsthe diret dependeny in ψ is in gh∇ψ in the equations for hu, see (4). Denoting

V = (v1,v2)t with v2 the adjoint variable assoiated to u, one has in weak form:
∫

(0,T )×Ω

VF
ψ
(U, ψ) = −

∫

(0,T )×Ω

g∇.(hv2).We have used either slip or Dirihlet boundary onditions for the veloity whihgive for the orresponding adjoint variable slip or homogeneous Dirihlet on-ditions removing the boundary term in weak form. An important point here isthat, unlike with the linearized equation, with ψ of any dimension V is om-puted only one. One remarks however that states U are needed in reverseorder beause the bakward integration in (11). This an be further simpli�edin some speial ases where the funtional enters the admissibility domain ofinomplete sensitivity onept [9℄. 18



8 Minimization priniple and the Exner equationLet us reonsider the following equation whih in disrete form minimizes J(ψ):
ψt = −ρ∇ψJ, ψ(t = 0, x, y) = ψ0. (12)where ρ haraterizes the ability of sand to be put in motion by water. Theparameter ρ and the interval of in�uene T are the two physial data of the bedmodel. They are obtained from observation site for a given site.One well-known approah to model sea bed motion is through the Exnerequation [21℄. This equation models the onservation of mass between the bedand transported sediments.

ψt +
1

1 − λp
∇.q = 0, ψ(t = 0, x, y) = given, (13)where λp ∈ [0, 1[ is the porosity of the bed and q is the sediment transport�ux. To estimate this �ux q, sientists propose a variety of formula suh as theMeyer-Peter & Müller or Gras formulas [25℄. The former suggests that the �ux

q is diretly related to the shear stress and the latter to the �uid veloity .One remarks then that 1/(1 − λp) plays the role of ρ in the minimizationequation (12) and as expeted ρ inreases with the porosity of the bed. Indeed,one expets the in�uene of a same �ow ondition on the bed to inrease withthe bed's porosity. Let us suppose that the porosity is onstant everywhere,then the analogy suggests that
∇.q = ∇ψJ. (14)Consider a one dimensional situation. One sees that the previous expression
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suggests a nonloal de�nition for q:
q(t, x) = q(t,−∞) +

∫ x

−∞

∇ψJ(ζ)dζ,where without harm one an suppose q(t,−∞) = 0 and ∇ψJ(t, ζ) → 0 when
x→ −∞ as the in�uene of the �ow on the bed dereases o�shore with the �owdepth inreasing. This indiates that, ompared to the minimization formula-tion, these approahes need be applied on a larger domain in order to reduethe unertainties one might have on q(t,−∞). The nonloal term depends onthe hoie of the ost funtion. Also, as saw in the model problem in setion 2,one needs to provide boundary onditions for ψ for the solution of the transportequation.Let us analyze what the approah gives for simple funtionals in one dimen-sion in spae with J = 1

2u
2
x. Minimizing J would fore the bottom to adaptin order to redue gradients in the �ow. This is similar to what we expetminimizing (8). For this funtional q reads:

q(t, x) =

∫ x

−∞

(1 − λp)
1−n uζ uψζ dζ,and integrating by part, we get

q(t, x) = −

∫ x

−∞

(

(1 − λp)
1−n uζ

)

ζ
uψ dζ + (1 − λp(x))

1−n ux(t, x)uψ(t, x).This shows a loal term plus a global orretion involving seond order deriva-tives of the state upstream. Similar nonloal terms an be found, for instane,in a Fowler model for the motion of sand dunes sheared by a �uid �ow [23℄.9 Choie of the funtionalTo end the paper, let us disuss a few possible approahes for the hoie of thefuntional in our approah. As in shape optimization problems, the hoie of the20



funtional depends on what is aimed for the outome of the design. We assumedhere that the target is a redution of the energy of the wave with minimal sandtransport. Based on this a priori assumption, we disussed in setion 6 severalhoies, suh as (6), (7) and (8).Then in setion 8 we linked our approah with the Exner equation. Thisgives another way to derive a funtional from the Exner equation, under thementionned hypothesis, using equality (14). This is something we would like toinvestigate in the future, but rather from a theoretial point of view. Indeed,the Exner equation being mainly used in one dimension in spae, the extensionto higher spae dimension will again require a priori modelling hypothesis as inthe previous approah.Another interesting and powerful proedure would be data assimilation ofavailable observations of historial erosion data basis. For instane, informationon shoreline or bathymetry evolutions for a given beah an be aounted for infuntional (6):
J3(ψ) =

∫ t

t−T

∫

Ω

(

1

2
ρwgη

2 + ρsg(ψ(τ) − ψ(t− T ))2
)

dτdΩ +

∫

Q

(ψ−ψobs)
2dq,(15)where Q(⊂]0, t[×Ω) denotes the spae-time domain, whih is neessary limited,where observation data sobs are available.An alternative approah would be to aount for observations through theminimization of a seond funtional. Bathymetry observations an be used astarget to see whih funtional minimization best reprodues the history. For thiswe need to �rst parameterize our funtional as, for instane, in the followinghoie:

J4(ψ) =

∫ t

t−T

∫

Ω

(

1

2
ρwgη

2 + γ
1
‖∇xyu‖ + γ

2
ρsg(ψ(τ) − ψ(t− T ))2

)

dτdΩ,(16)
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where γ
1
and γ

2
are positive onstants to be found minimizing:

D(γ
1
, γ

2
) =

∫

Q

(ψ(γ
1
, γ

2
) − ψobs)

2dq.Hene, eventually, we have two nested minimization problems. Data assimila-tion minimizing the error between preditions and measurements and havingas outome the oe�ients in the funtional we use in our minimization-basedbathymetry evolution.10 Conluding remarksMinimization priniples have been used to desribe the oupling of a �uid in ashallow domain with a �exible and deforming struture. The oupling aims atreproduing a sandy sea bed evolution due to water motion. This study showsthat the outome of the oupling has suitable qualitative behavior preditingapparition of observed natural bars in sandy beahes. Several assumptions havebeen analyzed and the orresponding ost funtionals desribed. Sensitivityanalysis is used to minimize these funtionals. Minimization iterations give thesea bed morphodynamis law.The �ow motion is desribed by the shallow water equations but this an beextended to more sophistiated models inluding dispersion e�ets. Also, theapproah an obviously be applied to situations where the �ow is desribed bya spetral approah and where time has been removed from the equations usingseparation of variables in time and spae [26, 3, 4℄.It has been shown that the minimization approah is equivalent to solvingan Exner equation for the bed with an original �ux term. Our urrent researhaims at linking this approah with other available models in the literature forbed transformation involving nonloal �uxes [23℄.The next step in the modelling is to go beyond qualitative validation byassimilating observation data. The two parameters of the model whih needidenti�ation are the bed porosity and loal time interval of in�uene between22
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