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Abstract - Minimization principles are used in fluid-structure coupling to
model sandy sea beds evolution. The sandy bed is seen as a structure with low
stiffness. We start with a model problem featuring the behavior of the coupling.
Then water motion in shallow domains is described by the Saint Venant equa-
tions. This coupling bringing the bottom sea changes is based on the assumption
that the bed adapts to the flow in order to minimize some energy quantity to-
gether with minimal sand transport. The approach is shown being equivalent
to the use of an Exner equation for the bed with a nonlocal expression for the
sediment transport flux. Because the choice of the functional permits to include
different physical quantities one think to play a role in the bottom morphody-

namics, the approach is also a tool for validating different modelling hypothesis.

Keywords: Sandy beach morphodynamics, shape optimization, fluid-

structure coupling, Saint Venant Equations, sensitivity analysis, Exner equation.



1 Introduction

Coastal morphodynamics occur over a broad range of time and length scales.
Some events occur over small space and time scales such as the removal of
sediment from the toe of coastal structures which often occurs and recovers
completely during the course of a single tide (hourly basis). The next time and
space scales concern storm response lasting for a few tides (say daily basis). Here
the beach can be modified both long and cross-shore by hundreds of meters.
Recovery between storms will take longer (weekly basis). This classification
can continue with seasonal and inter-annual variability etc. In general, the
spatial scale increases with the time scale and therefore long-shore transport
gains importance over cross-shore with increasing time scale.

The literature on coastal morphodynamics is huge [6, 7, 8] and concerns,
for instance, dunes morphodynamics, sediment transports using fluid-induced
shear in the sediment modelling, sea bed friction and the feedback of bed shapes
on the flow, global beach morphodynamics based on long and cross-shore fluxes
and beach lines morphodynamics.

This work is on the application of control theory to the evolution of sandy
sea beds. We aim at proposing a formulation for sea bed evolution based on
fluid and structure coupling using minimization principles. The time scales of
interest are below a day and recoveries between storms or seasonal and inter-
annual variabilities are out of scope. In the literature, the question of sea bed
morphodynamics is, for instance, treated through the solution of an Exner equa-
tion with some adhoc flux expression [21]. The approach is shown to have a
similar interpretation, but with a nonlocal flux term, as in some already existing
models [23, 24].

In the past we used minimization principle to design defence structures
against beach erosion [3, 4]. In these works, the designed structures were inde-
pendent of time and were built once for all. Here, we would like to go one step

further giving the possibility to the structure to change in time. One particular



case is then the sea bed is seen as a structure with low stiffness. The fundamen-
tal assumption is that the bed adapts to the flow by some sort of optimal sand
transport in order to minimize some energy expression. Optimal transport is
seen here as minimal change in the bed shape. The approach is not limited to
the functionals we consider here, nor by the flow equations which can be more
sophisticated.

The paper starts with the problem of sea bed motion formulated as an
optimal control problem. A model problem is used to feature the different
ingredients in the coupling procedure. Then a more sophisticated flow model in
shallow water is introduced. Follows a discussion on the choice of cost functions.
A comparison is then made between modelling the transport of sediments by
the Exner equation and by our minimization principle. The paper also shows

some simulations featuring qualitative behavior of the approach.

2 A 1D model problem

Let us illustrate our purpose on a model problem based on an analytical ex-
pression for water elevations linked as a function of incoming waves and the
bottom sea expression. Consider a domain with a bed defined as a function
P(t,z) : RT x [-100m, —20m] — R*. We want to model the changes in this
bed with time due to water elevations h(t,z). Let us start with the following

simple water elevation expression:
h(t,z) = ho + asin(wz(hy — ¥ (t,x))),

where hg indicates the flow level at rest, 0 < a < 1 and w > 0. This is a
monochromatic wave, but one could consider superimposed waves. This is an a
priori and unphysical choice, made for illustration. Other analytical functions
can be considered. We consider hg = 2m, w = 0.5Hz and o = 0.1m. The bed
is supposed initially flat ¥ (0, 2) = 1m. To close this model, we need to provide

a model for 9 (¢,z). In this paper we suppose that 1 will adapt to the flow



elevation in order to damp some of its energy expressed through a functional
J(h(t,xz,1(t, z))). The choice of J is free at this point. Let us consider J as the
sum of the L? norm of h in space and a term forcing the bottom to stay close

to its original shape:

—20

J(h(t,z,¢(t, ) = %1100 (R*(t,z) + B(s(t,z) — 5(0,z))?) dz, with B> 0.

(1)
The second term in the functional is to indicate that we assume the bottom
adapting to the flow but also minimizing its own variations. We will discuss the
underlying optimal transport issue in section 6. An example of evolution model

from time t to time ¢ 4 ¢t for the flow and its bottom can be given by:

Y(t+ 0t x) = P(t,x) — H(5tpVyJ(Y(t, ), h(t, x))), )
h(t,z) = ho + asin(wz(hg — Y (t + 0, x))).

IT is a projection operator and permits to account for possible presence of rigid
parts in the bed (i.e. rocks) or a bed constituted with different type of sands
permitting different local regularity for the bed shape. Here, we suppose the
bed is homogeneous with only one type of sand and take IT = Id. p > 0 models
the receptivity of the bed. We will see in section 8 how this can be linked
to the porosity of the bed. Figure 1 shows snapshots of the evolutions of the
bottom shapes and water elevations with 200 iterations of (2) with p = 0.002
and dt = 3s on a 500 points mesh. Based on the choice of w the coupling takes
place about four times every period. One can see that the bottom has adapted
in order to reduce water elevations.

For this model problem the first optimality condition (VJ = 0) can be used
to exhibit equilibrium solutions. It appears that, for 8 = 0, because h(t,z) > 0
and z # 0, the gradient vanishes where cos(wz(ho — ¥ (t,2))) = 0 and therefore

for
2k + )m
2wx

U(t,x) = ho — , for kelZ.



| Initial water elevation

— —f?—,/' Al
1.8 Successive decreasing water
16 elevations due to bottom changes
1.4 ‘ Successive and final bottom shapes ‘
12 \ A
A
S S S AN N
N
0.8 | Initial flat bottom ‘ i
-100 -90 -80 -70 -60 -50 -40

-30 -20
X(m)

Figure 1: Coupling based on (2), starting from a flat bottom with 8 = 0.
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Figure 2: Regions where equilibrium solution exists (for § = 0) from the first

optimality condition and the equilibrium bottom shapes found by the gradient-
based coupling for functional (1) with 5 = 0(x) and 5 = 100(+).
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These orbits are shown in Figure 2 and compared with the solutions by the
coupling in the case of 3 =0 and 3 = 100. There are two possible equilibrium
solutions corresponding to even and odd k’s. The coupling solutions is along
with odd k’s. This is an example of non-uniqueness. The gradient method
appears to pick the solution which shows a compromise between variation and
regularity. Indeed, passing by all orbits would have reduced the bottom varia-
tions but the outcome would have been less regular.

Figure 3 shows the evolution of the L? norm of water elevations for 3 = 0
and § = 100 with two water conditions changes during the coupling where we
respectively applied (w = 0.35Hz,a = 0.13m) and (w = 0.24Hz,a = 0.17m).
This is exactly what is observed in nature: the bed moves until the couple bed-
flow reaches an equilibrium. This stable configuration is broken by a change in
the flow conditions (i.e. incoming waves directions and intensities).

As we will see in section 8, several morphodynamic models in literature are

in a divergence form:

e+ div (q(z,t)) =0, ¥(t =0,2) = given,

1= Xp(2)

where A, (z) € [0, 1] is the porosity of the bed. This can be linked to the present
minimization formulation giving a systematic approach for the derivation of the

flux term:
1

TTT®

Gz = —pJy, (3)
and integrating, one has:

x

g(z.£) — g(~100,1) = / P()(1 — Ap(5))Jy (5, 1),

—100

where one has supposed that both p and A, depend on the space (i.e. non
homogeneous bed). Hence, to have ¢ one needs ¢(—100,¢) which is one ex-
tra information required to close the model in comparison to the minimization

approach. And this data is usually difficult to obtain as it requires bed mea-



surements. On the other hand, the flux approach can be reformulated as a

minimization problem finding the related cost function.

Figure 4: Final bottom shapes with the minimization approach and with the
solution of the associated divergence form, using a first order upwind discretiza-
tion for the space derivative (left) and with second order central differences
(right).

Now, let us consider a numerical implementation of (3) with constant p and
Ap- To solve this PDE, one needs to provide boundary conditions for 1) which are
again extra informations not necessary in the minimization approach. Figure 4
shows a comparison of the bottom shapes with the above minimization based
coupling and with the associated divergence form with boundary conditions
Yz (—100) = 1. (—20) = 0. The results show the need for upwinding. We will
see in section 7 how to evaluate the gradient of the functionals by an adjoint
method. The previous comparison indicates that the gradient contains implicitly
the information on the boundary conditions on the bed required if one uses flux-
based morphodynamics models.

The approach we described through this simple model problem can be ap-
plied to more complicated situations involving realistic flow models. The choice
of the functional permits to include different physical quantities one would think
to play a role in the bottom morphodynamics. The approach is therefore also
a tool for validating different modelling hypothesis. This will be discussed in

section 6.



3 Interactions between the flow and its bed

Now, one would like to go one step further considering two dimensional situ-
ations with a realistic flow model in shallow domains. The sea bed ¥ : Q C
R? — RT changes with time following the changes in the state given by the
flow conditions U. 1 is a univocal function with some regularity. We use a bed
parameterization based on the bathymetry given at all the nodes of the fluid
mesh. This is called a CAD-free parameterization [9].

The model for the sea bed evolution is based on the minimization of a
time dependent functional J(u,U(v))) where U(y) = {U, 7, z,y),7 € [t —
T,t], (z,y) € Q} gathers the state evolution in time, solution of a state equa-
tion. We discuss the choice of functionals in section 6.

To make the physical model more realistic, we consider the shallow water
equations as state equations for the fluid with U = (h, hu) where u = (u, v) is
the depth-averaged velocity with v and v the scalar components in the horizontal

directions and & the local water depth:

U; + F(U,4) =0, with initial and boundary conditions,

where

B V.(hu)
F(U,y) = : (4)
V.(hu ® u) + ghV(h + 1)

As in our model problem, minimization of J can be seen as solution of

d}t = —vaj(¢au(¢))a
¥(t = 0) = given,

where p is a positive parameter which depends on the porosity of the bed (see
section 8). The physical time scales for the fluid and structure (bed motion) are

quite different. Indeed, flows have time scales of the order of seconds and the



sea bed motion takes place over hours.

The cost function involves this state evolution as, for instance, in:

T U)) = /t i) (5)

T indicates a time dependency window and also permits to introduce a difference
in time scales between sea bed and flow motions. We discuss its choice in section

6.

4 Flow solver

Shallow water equations are discretized by a finite volume formulation [2]. Our
finite volume implementation preserves steady state solutions on non flat sea
beds in the absence of perturbations [14, 15]. It is also suitable to capture
wetting and drying phenomena [17, 16]. Four boundary conditions are needed at
slip, inlet, shoreline and outlet boundaries. The slip boundary condition (u.n =
0) is naturally taken into account in a finite volume formulation. The outlet
condition is a transmissive boundary condition. Values at boundary cells are
obtained by second order extrapolations normal to the boundary from the values
inside the domain. To describe incoming waves we use an absorbing/generating
inlet boundary condition where the values of water depth are prescribed. In
subcritical regimes, characteristic curves and Riemann invariants provide normal

velocity. In open sea we allow for reflected waves to freely exit the domain [18].

5 Simulations details

To simulate sea conditions, the water wave elevation at the inlet is represented

by the addition of N monochromatic waves:

ht)=ho+24 3 sin (%Q cos (%t)

i=1,..,N—1

10



A is the water wave amplitude at inlet, hy the water height at rest and w; =
27 /T; are wave pulsations. With five modes, typical values of periods T; we
consider are 3.5,3,2.3,2,1.5 seconds. We consider the case of an experiment
conducted at the Sogreah 3D wave basin in Grenoble (France) of side 30 m
with A = 0.12 m and hy = 0.765 m. More realistic conditions can be applied
following a Jonswap distribution [20, 19].

Time integration is explicit for the flow. Due to what we said on the differ-
ence of time scales between fluid motion and changes in sea beds, several time
steps will be taken (typically 100) in the flow solver before a new time step by

the bed model described by the minimization iterations.

6 Cost function

One of the main ingredients in the chain of control is the cost function to be
minimized. One expects the bed to act as a flexible structure and to adapt to
flow conditions in order to minimize some energy-based functional. One can,
for instance, consider an energy made of water mechanical energy and involving
a constraint on sand displacements requiring minimal topobathymetry changes
from the bathymetry ¢ (¢t — T') at the beginning of a time interval of influence
[t —T,t]:

1) = [ [ (3pusi + pugtor) - vt - 1)) ari2.

where (2 is the physical domain, p,, and ps are respectively the water and sand
density and 7 is the deviation of the wave elevation from a low frequency com-
ponent evaluated using a time interval T'. This is a function of space and time

and also depends on the bathymetry:

W) = t) = 5 [ g

11



This functional aims at reducing both wave elevations and changes in the bed
shape.
In functional (6), one could have considered water wave amplitude A instead

of elevations:

A = t
(@,y,9) = max n(@y,9.1),

and

J1(¢)=/Q%Pu;gAQdQ—i—/t;T/QpSQW(T)—w(t—T))Q drdQ. (7)

Jp and j1 are equivalent on compact domains and a reduction of J; leads to
the same for J;. From an optimization point of view, one prefers .J; because
it is differentiable. In all cases, we have observed that controlling water wave
energy is crucial to fight erosion. As, this is responsible for sediments put in
suspension by generating orbital velocity [8, 7, 4].

A fundamental idea motivating the introduction of the second term in the
functional (6) is the concept of optimal transport [10, 11, 12]. In other words,
one thinks that the bed will adapt to the flow in some optimal way in term of
sand transport.

We assume that the influence of water conditions on a sandy bed at a given
instant does not involve time history of more that a few wave periods. T is a
parameter to be assimilated using experimental data. Its choice is important as
shown in Figure 5. It illustrates bottom seas after six hours with the functional
(6) for two different values of the interval of influence T' = 5 and T' = 10 seconds
starting from a linear initial profile for the bed. The picture is along the cross-
shore centerline of the domain. The long-shore deviations from these profiles are
negligible. It appears that larger 7" produce less sand motion. This is reasonable
because when T is large deformations will be based on more flow features. This
is similar then to a multi-point optimization with more and more constraints.
And increasing the number of constraints in general restraint the admissible

deformation.

12
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0 5 10 15 20 25 30

Figure 5: Starting from a linear bed, bathymetries along the cross-shore cen-
terline of the domain after six hours for the functional (6) for T = 5s (+) and
T = 10s (x). Dashed lines are initial bathymetry and water level at rest.

The previous functional involves water elevations. In the same way, one
could imagine that sea bed will adapt to the flow in order to reduce its horizontal
velocity gradients with minimum variation in bathymetry. A second functional

can then be built:

n0) = [ [ Vel + pug(ir) = o =T)7) dra. @

where V., indicates the spatial gradient and the norm stands for ||Vyul| =
2 2 2 2\1/2
(u2 + 02 +ul + )12

There is an extra constraint to account in cases we assume the domain is

closed and the amount of available sand given:

/w(t,x,y) dQ :/w(O,x,y) dQ.
Q Q

Here, we assume open sea conditions where extra sand can be brought in by the

13



flow if predicted so. Then, the constraint on ¢ remaining as close as possible to
the initial bathymetry is absolutely necessary in order for the algorithm not to
remove all water, hence vanishing the functional.

Figure 6 shows an example of sea bed changes along the cross-shore centerline
of the domain due to interactions with water motion based on the minimization
of (6) and (8) after about six hours. The approach predicts the apparition of
either two or three longshore sand bars. Water elevation in time is prescribed on
the left boundary which creates waves entering normal to this boundary. The
starting bed profile is linear. Functional (6) especially predicts beach nourish-

ment.

0.8 T T T T T

-0.1 1 I I I I

Figure 6: Starting from a linear bed, final bathymetries for a functionals (6) (x)
and (8) (+) for the same sea bed and for T' = 5s along the cross-shore centerline.
Dashed lines are initial bathymetry and water level at rest.

Figure 7 shows the evolution of two different initial bathymetries along the
cross-shore centerline: a linear and storm profiles. We can see that a initial sea
bed is quite determinant for the evolution of the bed shape and the equilibrium
profile achieved. The bed shape has however the same composition with two

bars.
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Figure 7: Starting from two different bed shapes, final bathymetries for func-
tional (6) for T' = 5s along the cross-shore centerline.

To give an indication on the long-shore deviation and also the history of the
coupling, Figure 8 shows the final bed and the evolution in time of the functional
(6) over six hours starting from a linear bed and then from a bed with local
addition of a large amount of sand. The final bed does not see this perturbation.
The flow conditions drive the coupling. In other words, one cannot expect much
differences in the outcome if a sandy bottom is locally modified with the addition
of removable ingredients. We have experienced that adding immersed geotubes
can on the other hand help rebuilding a beach which is otherwise under erosion
[4, 5].

One sees some equilibrium appearing after about two hours around which

the bed then fluctuates.

7 Sensitivity evaluation

Sensitivity evaluation in large dimension needs an adjoint variable approach

to make the cost of the evaluation independent from the size of the control

15
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Figure 8: Upper: same final bed (middle picture) is found starting either from a
linear or a more complex bed (top picture). Lower: evolution of the functional
(6) over six hours for the two initializations.
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space. In time dependent problems, this implies storage of all intermediate
states which can be optimized by check-pointing technics [28]. In this section,
we briefly describe the adjoint method with a time dependent state equation (the
Saint Venant equations in our case). This will be implemented by automatic

differentiation [27, 9, 13]. Let us consider the following formal dependency chain:
v = {UW,7),7 €[0,T]} = J(,T).

Here, v is the independent variable and U and J are the dependent ones.

U(v, 1) are solutions in time of
U, + F(U, ) =0, U(0) = Up(e)). 9)

To be accurate, one should have also to consider the independent physical pa-
rameters such as those describing the waves. But, this would have introduced
unnecessary complications into notations.

Now consider a functional involving an integral over time like those we are

interested in:

I = [ @U@,
(0,7)
Linearizing J one has:

T, (. T) = / G, + 3, U,).
(07T)

In this expression only U, is costly to get as it requires the linearization of the
shallow water equations.

The linearized state equation:

(Uu;)t + sz (Uv w) + FU (Ua w)Uw =0, Uu; (O) = Ué)(w)v (10)

17



permits to write for all function V (where V has the same structure than U):

0= / (U,), + F,(U.4) + F, (U,)U,) V.
(0,T)xQ

Introducing the adjoint operator Fy, it gives:

0:/ (-Vi+ F:(U,9) V)U, +/[VUw]OT+/ VF, (U, ).
(0,T)xQ2 Q (0,T)xQ

Let us introduce a backward adjoint problem:
Vi+ F (U, 9) = jy, V(T)=0. (11)

Therefore, with 'V solution of the backward adjoint equation (11) with the

chosen final condition one has:

/ joU, = / V(O0)U) () — / VE, (U, ).
(0,T)xQ2 Q (0,T)xQ

If there is no direct dependency between the initial condition U(0) and v the
first term in the right-hand-side vanishes. Also, for the Saint Venant equations
the direct dependency in 1 is in ghV in the equations for hu, see (4). Denoting

V = (v1, v2)? with v the adjoint variable associated to u, one has in weak form:

/ VFE, (U,¢) = —/ gV.(hva).
(0, T)xQ (0, T)xQ

We have used either slip or Dirichlet boundary conditions for the velocity which
give for the corresponding adjoint variable slip or homogeneous Dirichlet con-
ditions removing the boundary term in weak form. An important point here is
that, unlike with the linearized equation, with ¥ of any dimension V is com-
puted only once. One remarks however that states U are needed in reverse
order because the backward integration in (11). This can be further simplified
in some special cases where the functional enters the admissibility domain of

incomplete sensitivity concept [9].

18



8 Minimization principle and the Exner equation

Let us reconsider the following equation which in discrete form minimizes J(v)):

where p characterizes the ability of sand to be put in motion by water. The
parameter p and the interval of influence T are the two physical data of the bed
model. They are obtained from observation site for a given site.

One well-known approach to model sea bed motion is through the Exner
equation [21]. This equation models the conservation of mass between the bed

and transported sediments.

1
-,

P + V.g=0, 9(t=0,zy)=given, (13)

where A\, € [0,1] is the porosity of the bed and ¢ is the sediment transport
flux. To estimate this flux ¢, scientists propose a variety of formula such as the
Meyer-Peter & Miiller or Gras formulas [25]. The former suggests that the flux
q is directly related to the shear stress and the latter to the fluid velocity .
One remarks then that 1/(1 — A,) plays the role of p in the minimization
equation (12) and as expected p increases with the porosity of the bed. Indeed,
one expects the influence of a same flow condition on the bed to increase with
the bed’s porosity. Let us suppose that the porosity is constant everywhere,

then the analogy suggests that

V.q=Vyl (14)

Consider a one dimensional situation. One sees that the previous expression

19



suggests a nonlocal definition for g:

alt.) = alti—o0) + [ VeI,

where without harm one can suppose ¢(t,—o0) = 0 and V4J(t,¢) — 0 when
x — —oo as the influence of the flow on the bed decreases offshore with the flow
depth increasing. This indicates that, compared to the minimization formula-
tion, these approaches need be applied on a larger domain in order to reduce
the uncertainties one might have on ¢(¢, —00). The nonlocal term depends on
the choice of the cost function. Also, as saw in the model problem in section 2,
one needs to provide boundary conditions for v for the solution of the transport
equation.

Let us analyze what the approach gives for simple functionals in one dimen-

sion in space with J = %ui Minimizing J would force the bottom to adapt
in order to reduce gradients in the flow. This is similar to what we expect

minimizing (8). For this functional ¢ reads:

a(t,z) = / 1= ) g g d,

— 00

and integrating by part, we get

at.0) == [ (=)' ) -+ (1= M) ) 2)

— 00

This shows a local term plus a global correction involving second order deriva-
tives of the state upstream. Similar nonlocal terms can be found, for instance,

in a Fowler model for the motion of sand dunes sheared by a fluid flow [23].

9 Choice of the functional

To end the paper, let us discuss a few possible approaches for the choice of the

functional in our approach. As in shape optimization problems, the choice of the

20



functional depends on what is aimed for the outcome of the design. We assumed
here that the target is a reduction of the energy of the wave with minimal sand
transport. Based on this a priori assumption, we discussed in section 6 several
choices, such as (6), (7) and (8).

Then in section 8 we linked our approach with the Exner equation. This
gives another way to derive a functional from the Exner equation, under the
mentionned hypothesis, using equality (14). This is something we would like to
investigate in the future, but rather from a theoretical point of view. Indeed,
the Exner equation being mainly used in one dimension in space, the extension
to higher space dimension will again require a prior: modelling hypothesis as in
the previous approach.

Another interesting and powerful procedure would be data assimilation of
available observations of historical erosion data basis. For instance, information
on shoreline or bathymetry evolutions for a given beach can be accounted for in

functional (6):

t
5 = [ [ (Gouat 4 puatot) - wie = 10?) dra s [ (0= v
t—T JQ Q
(15)
where Q(C]0,¢[x2) denotes the space-time domain, which is necessary limited,
where observation data s.ps are available.

An alternative approach would be to account for observations through the
minimization of a second functional. Bathymetry observations can be used as
target to see which functional minimization best reproduces the history. For this
we need to first parameterize our functional as, for instance, in the following

choice:

510) = [ [ (Gous + 090l + 2peavlr) — vt~ )2 drac,
(16

21



where v, and v, are positive constants to be found minimizing:

D(’717’Y2) = A(¢(71’72) - wobs)qu

Hence, eventually, we have two nested minimization problems. Data assimila-
tion minimizing the error between predictions and measurements and having
as outcome the coefficients in the functional we use in our minimization-based

bathymetry evolution.

10 Concluding remarks

Minimization principles have been used to describe the coupling of a fluid in a
shallow domain with a flexible and deforming structure. The coupling aims at
reproducing a sandy sea bed evolution due to water motion. This study shows
that the outcome of the coupling has suitable qualitative behavior predicting
apparition of observed natural bars in sandy beaches. Several assumptions have
been analyzed and the corresponding cost functionals described. Sensitivity
analysis is used to minimize these functionals. Minimization iterations give the
sea bed morphodynamics law.

The flow motion is described by the shallow water equations but this can be
extended to more sophisticated models including dispersion effects. Also, the
approach can obviously be applied to situations where the flow is described by
a spectral approach and where time has been removed from the equations using
separation of variables in time and space [26, 3, 4].

It has been shown that the minimization approach is equivalent to solving
an Exner equation for the bed with an original flux term. Our current research
aims at linking this approach with other available models in the literature for
bed transformation involving nonlocal fluxes [23].

The next step in the modelling is to go beyond qualitative validation by
assimilating observation data. The two parameters of the model which need

identification are the bed porosity and local time interval of influence between
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the flow and the bed. It is shown that the approach requires less informa-
tions than morphodynamics flux-based models where boundary conditions are
necessary for the solution of the sediment transport equation.

This study also takes place in the context of shape optimization for unsteady
flows where both time dependent and independent shapes can be targeted. Bot-
tom sea motion is an example of the former and building defence structures

against erosion [4] the latter.
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