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Minimization prin
iples for the evolution of asoft sea bed intera
ting with a shallow seaAfaf Bouharguane & Bijan MohammadiInstitut de Mathématiques et de Modélisation de MontpellierUniversité Montpellier II, CC51, 34095 Montpellier, Fran
eDraft for IJCFDAbstra
t - Minimization prin
iples are used in �uid-stru
ture 
oupling tomodel sandy sea beds evolution. The sandy bed is seen as a stru
ture with lowsti�ness. We start with a model problem featuring the behavior of the 
oupling.Then water motion in shallow domains is des
ribed by the Saint Venant equa-tions. This 
oupling bringing the bottom sea 
hanges is based on the assumptionthat the bed adapts to the �ow in order to minimize some energy quantity to-gether with minimal sand transport. The approa
h is shown being equivalentto the use of an Exner equation for the bed with a nonlo
al expression for thesediment transport �ux. Be
ause the 
hoi
e of the fun
tional permits to in
ludedi�erent physi
al quantities one think to play a role in the bottom morphody-nami
s, the approa
h is also a tool for validating di�erent modelling hypothesis.Keywords: Sandy bea
h morphodynami
s, shape optimization, �uid-stru
ture 
oupling, Saint Venant Equations, sensitivity analysis, Exner equation.
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1 Introdu
tionCoastal morphodynami
s o

ur over a broad range of time and length s
ales.Some events o

ur over small spa
e and time s
ales su
h as the removal ofsediment from the toe of 
oastal stru
tures whi
h often o

urs and re
overs
ompletely during the 
ourse of a single tide (hourly basis). The next time andspa
e s
ales 
on
ern storm response lasting for a few tides (say daily basis). Herethe bea
h 
an be modi�ed both long and 
ross-shore by hundreds of meters.Re
overy between storms will take longer (weekly basis). This 
lassi�
ation
an 
ontinue with seasonal and inter-annual variability et
. In general, thespatial s
ale in
reases with the time s
ale and therefore long-shore transportgains importan
e over 
ross-shore with in
reasing time s
ale.The literature on 
oastal morphodynami
s is huge [6, 7, 8℄ and 
on
erns,for instan
e, dunes morphodynami
s, sediment transports using �uid-indu
edshear in the sediment modelling, sea bed fri
tion and the feedba
k of bed shapeson the �ow, global bea
h morphodynami
s based on long and 
ross-shore �uxesand bea
h lines morphodynami
s.This work is on the appli
ation of 
ontrol theory to the evolution of sandysea beds. We aim at proposing a formulation for sea bed evolution based on�uid and stru
ture 
oupling using minimization prin
iples. The time s
ales ofinterest are below a day and re
overies between storms or seasonal and inter-annual variabilities are out of s
ope. In the literature, the question of sea bedmorphodynami
s is, for instan
e, treated through the solution of an Exner equa-tion with some adho
 �ux expression [21℄. The approa
h is shown to have asimilar interpretation, but with a nonlo
al �ux term, as in some already existingmodels [23, 24℄.In the past we used minimization prin
iple to design defen
e stru
turesagainst bea
h erosion [3, 4℄. In these works, the designed stru
tures were inde-pendent of time and were built on
e for all. Here, we would like to go one stepfurther giving the possibility to the stru
ture to 
hange in time. One parti
ular2




ase is then the sea bed is seen as a stru
ture with low sti�ness. The fundamen-tal assumption is that the bed adapts to the �ow by some sort of optimal sandtransport in order to minimize some energy expression. Optimal transport isseen here as minimal 
hange in the bed shape. The approa
h is not limited tothe fun
tionals we 
onsider here, nor by the �ow equations whi
h 
an be moresophisti
ated.The paper starts with the problem of sea bed motion formulated as anoptimal 
ontrol problem. A model problem is used to feature the di�erentingredients in the 
oupling pro
edure. Then a more sophisti
ated �ow model inshallow water is introdu
ed. Follows a dis
ussion on the 
hoi
e of 
ost fun
tions.A 
omparison is then made between modelling the transport of sediments bythe Exner equation and by our minimization prin
iple. The paper also showssome simulations featuring qualitative behavior of the approa
h.2 A 1D model problemLet us illustrate our purpose on a model problem based on an analyti
al ex-pression for water elevations linked as a fun
tion of in
oming waves and thebottom sea expression. Consider a domain with a bed de�ned as a fun
tion
ψ(t, x) : R

+ × [−100m,−20m] → R
+. We want to model the 
hanges in thisbed with time due to water elevations h(t, x). Let us start with the followingsimple water elevation expression:

h(t, x) = h0 + α sin(ωx(h0 − ψ(t, x))),where h0 indi
ates the �ow level at rest, 0 ≤ α < 1 and ω > 0. This is amono
hromati
 wave, but one 
ould 
onsider superimposed waves. This is an apriori and unphysi
al 
hoi
e, made for illustration. Other analyti
al fun
tions
an be 
onsidered. We 
onsider h0 = 2m, ω = 0.5Hz and α = 0.1m. The bedis supposed initially �at ψ(0, x) = 1m. To 
lose this model, we need to providea model for ψ(t, x). In this paper we suppose that ψ will adapt to the �ow3



elevation in order to damp some of its energy expressed through a fun
tional
J(h(t, x, ψ(t, x))). The 
hoi
e of J is free at this point. Let us 
onsider J as thesum of the L2 norm of h in spa
e and a term for
ing the bottom to stay 
loseto its original shape:
J(h(t, x, ψ(t, x))) =

1

2

∫

−20

−100

(

h2(t, x) + β(s(t, x) − s(0, x))2
)

dx, with β ≥ 0.(1)The se
ond term in the fun
tional is to indi
ate that we assume the bottomadapting to the �ow but also minimizing its own variations. We will dis
uss theunderlying optimal transport issue in se
tion 6. An example of evolution modelfrom time t to time t+ δt for the �ow and its bottom 
an be given by:














ψ(t+ δt, x) = ψ(t, x) − Π(δtρ∇ψJ(ψ(t, x), h(t, x))),

h(t, x) = h0 + α sin(ωx(h0 − ψ(t+ δ, x))).

(2)
Π is a proje
tion operator and permits to a

ount for possible presen
e of rigidparts in the bed (i.e. ro
ks) or a bed 
onstituted with di�erent type of sandspermitting di�erent lo
al regularity for the bed shape. Here, we suppose thebed is homogeneous with only one type of sand and take Π = Id. ρ ≥ 0 modelsthe re
eptivity of the bed. We will see in se
tion 8 how this 
an be linkedto the porosity of the bed. Figure 1 shows snapshots of the evolutions of thebottom shapes and water elevations with 200 iterations of (2) with ρ = 0.002and δt = 3s on a 500 points mesh. Based on the 
hoi
e of ω the 
oupling takespla
e about four times every period. One 
an see that the bottom has adaptedin order to redu
e water elevations.For this model problem the �rst optimality 
ondition (∇ψJ = 0) 
an be usedto exhibit equilibrium solutions. It appears that, for β = 0, be
ause h(t, x) > 0and x 6= 0, the gradient vanishes where cos(ωx(h0 − ψ(t, x))) = 0 and thereforefor

ψ(t, x) = h0 −
(2k + 1)π

2ωx
, for k ∈ ZZ.4



Figure 1: Coupling based on (2), starting from a �at bottom with β = 0.
1

-100 -90 -80 -70 -60 -50 -40 -30 -20

X(m)Figure 2: Regions where equilibrium solution exists (for β = 0) from the �rstoptimality 
ondition and the equilibrium bottom shapes found by the gradient-based 
oupling for fun
tional (1) with β = 0(x) and β = 100(+).5



Figure 3: Upper: Initial and �nal water elevations after the bed has adaptedto three water 
ondition 
hanges for β = 0 (left) and β = 100 (right). Lower:normalized histories of ∫

−20

−100
h2dx for β = 0 and β = 100 (dashed) during
oupling iterations. Under 
onstraint the water elevation 
ontrol is less e�
ient.The 
ouple bed-�ow rea
hes an equilibrium until a 
hange in the �ow 
onditionso

urs.

6



These orbits are shown in Figure 2 and 
ompared with the solutions by the
oupling in the 
ase of β = 0 and β = 100. There are two possible equilibriumsolutions 
orresponding to even and odd k's. The 
oupling solutions is alongwith odd k's. This is an example of non-uniqueness. The gradient methodappears to pi
k the solution whi
h shows a 
ompromise between variation andregularity. Indeed, passing by all orbits would have redu
ed the bottom varia-tions but the out
ome would have been less regular.Figure 3 shows the evolution of the L2 norm of water elevations for β = 0and β = 100 with two water 
onditions 
hanges during the 
oupling where werespe
tively applied (ω = 0.35Hz, α = 0.13m) and (ω = 0.24Hz, α = 0.17m).This is exa
tly what is observed in nature: the bed moves until the 
ouple bed-�ow rea
hes an equilibrium. This stable 
on�guration is broken by a 
hange inthe �ow 
onditions (i.e. in
oming waves dire
tions and intensities).As we will see in se
tion 8, several morphodynami
 models in literature arein a divergen
e form:
ψt +

1

1 − λp(x)
div (q(x, t)) = 0, ψ(t = 0, x) = given,where λp(x) ∈ [0, 1[ is the porosity of the bed. This 
an be linked to the presentminimization formulation giving a systemati
 approa
h for the derivation of the�ux term:

ψt = −
1

1 − λp(x)
qx = −ρJψ, (3)and integrating, one has:

q(x, t) − q(−100, t) =

∫ x

−100

ρ(s)(1 − λp(s))Jψ(s, t)ds,where one has supposed that both ρ and λp depend on the spa
e (i.e. nonhomogeneous bed). Hen
e, to have q one needs q(−100, t) whi
h is one ex-tra information required to 
lose the model in 
omparison to the minimizationapproa
h. And this data is usually di�
ult to obtain as it requires bed mea-7



surements. On the other hand, the �ux approa
h 
an be reformulated as aminimization problem �nding the related 
ost fun
tion.
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-100 -90 -80 -70 -60 -50 -40 -30 -20Figure 4: Final bottom shapes with the minimization approa
h and with thesolution of the asso
iated divergen
e form, using a �rst order upwind dis
retiza-tion for the spa
e derivative (left) and with se
ond order 
entral di�eren
es(right).Now, let us 
onsider a numeri
al implementation of (3) with 
onstant ρ and
λp. To solve this PDE, one needs to provide boundary 
onditions for ψ whi
h areagain extra informations not ne
essary in the minimization approa
h. Figure 4shows a 
omparison of the bottom shapes with the above minimization based
oupling and with the asso
iated divergen
e form with boundary 
onditions
ψxx(−100) = ψxx(−20) = 0. The results show the need for upwinding. We willsee in se
tion 7 how to evaluate the gradient of the fun
tionals by an adjointmethod. The previous 
omparison indi
ates that the gradient 
ontains impli
itlythe information on the boundary 
onditions on the bed required if one uses �ux-based morphodynami
s models.The approa
h we des
ribed through this simple model problem 
an be ap-plied to more 
ompli
ated situations involving realisti
 �ow models. The 
hoi
eof the fun
tional permits to in
lude di�erent physi
al quantities one would thinkto play a role in the bottom morphodynami
s. The approa
h is therefore alsoa tool for validating di�erent modelling hypothesis. This will be dis
ussed inse
tion 6.
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3 Intera
tions between the �ow and its bedNow, one would like to go one step further 
onsidering two dimensional situ-ations with a realisti
 �ow model in shallow domains. The sea bed ψ : Ω ⊂

R
2 → R

+ 
hanges with time following the 
hanges in the state given by the�ow 
onditions U. ψ is a univo
al fun
tion with some regularity. We use a bedparameterization based on the bathymetry given at all the nodes of the �uidmesh. This is 
alled a CAD-free parameterization [9℄.The model for the sea bed evolution is based on the minimization of atime dependent fun
tional J(ψ,U(ψ)) where U(ψ) = {U(ψ, τ, x, y), τ ∈ [t −

T, t], (x, y) ∈ Ω} gathers the state evolution in time, solution of a state equa-tion. We dis
uss the 
hoi
e of fun
tionals in se
tion 6.To make the physi
al model more realisti
, we 
onsider the shallow waterequations as state equations for the �uid with U = t(h, hu) where u = t(u, v) isthe depth-averaged velo
ity with u and v the s
alar 
omponents in the horizontaldire
tions and h the lo
al water depth:
Ut + F (U, ψ) = 0, with initial and boundary 
onditions,where

F (U, ψ) =







∇.(hu)

∇.(hu ⊗ u) + gh∇(h+ ψ)






. (4)

As in our model problem, minimization of J 
an be seen as solution of










ψt = −ρ∇ψJ(ψ,U(ψ)),

ψ(t = 0) = given,where ρ is a positive parameter whi
h depends on the porosity of the bed (seese
tion 8). The physi
al time s
ales for the �uid and stru
ture (bed motion) arequite di�erent. Indeed, �ows have time s
ales of the order of se
onds and the9



sea bed motion takes pla
e over hours.The 
ost fun
tion involves this state evolution as, for instan
e, in:
J(ψ,U(ψ)) =

∫ t

t−T

j(ψ,U(ψ, τ))dτ (5)
T indi
ates a time dependen
y window and also permits to introdu
e a di�eren
ein time s
ales between sea bed and �ow motions. We dis
uss its 
hoi
e in se
tion6.4 Flow solverShallow water equations are dis
retized by a �nite volume formulation [2℄. Our�nite volume implementation preserves steady state solutions on non �at seabeds in the absen
e of perturbations [14, 15℄. It is also suitable to 
apturewetting and drying phenomena [17, 16℄. Four boundary 
onditions are needed atslip, inlet, shoreline and outlet boundaries. The slip boundary 
ondition (u.n =

0) is naturally taken into a

ount in a �nite volume formulation. The outlet
ondition is a transmissive boundary 
ondition. Values at boundary 
ells areobtained by se
ond order extrapolations normal to the boundary from the valuesinside the domain. To des
ribe in
oming waves we use an absorbing/generatinginlet boundary 
ondition where the values of water depth are pres
ribed. Insub
riti
al regimes, 
hara
teristi
 
urves and Riemann invariants provide normalvelo
ity. In open sea we allow for re�e
ted waves to freely exit the domain [18℄.5 Simulations detailsTo simulate sea 
onditions, the water wave elevation at the inlet is representedby the addition of N mono
hromati
 waves:
h(t) = h0 + 2A

∑

i=1,..,N−1

sin

(

ωi + ωi+1

2
t

)

cos

(

ωi − ωi+1

2
t

)

.10



A is the water wave amplitude at inlet, h0 the water height at rest and ωi =

2π/Ti are wave pulsations. With �ve modes, typi
al values of periods Ti we
onsider are 3.5, 3, 2.3, 2, 1.5 se
onds. We 
onsider the 
ase of an experiment
ondu
ted at the Sogreah 3D wave basin in Grenoble (Fran
e) of side 30 mwith A = 0.12 m and h0 = 0.765 m. More realisti
 
onditions 
an be appliedfollowing a Jonswap distribution [20, 19℄.Time integration is expli
it for the �ow. Due to what we said on the di�er-en
e of time s
ales between �uid motion and 
hanges in sea beds, several timesteps will be taken (typi
ally 100) in the �ow solver before a new time step bythe bed model des
ribed by the minimization iterations.6 Cost fun
tionOne of the main ingredients in the 
hain of 
ontrol is the 
ost fun
tion to beminimized. One expe
ts the bed to a
t as a �exible stru
ture and to adapt to�ow 
onditions in order to minimize some energy-based fun
tional. One 
an,for instan
e, 
onsider an energy made of water me
hani
al energy and involvinga 
onstraint on sand displa
ements requiring minimal topobathymetry 
hangesfrom the bathymetry ψ(t − T ) at the beginning of a time interval of in�uen
e
[t− T, t]:

J1(ψ) =

∫ t

t−T

∫

Ω

(

1

2
ρwgη

2 + ρsg(ψ(τ) − ψ(t− T ))2
)

dτdΩ, (6)where Ω is the physi
al domain, ρw and ρs are respe
tively the water and sanddensity and η is the deviation of the wave elevation from a low frequen
y 
om-ponent evaluated using a time interval T . This is a fun
tion of spa
e and timeand also depends on the bathymetry:
η(x, y, ψ, t) = h(x, y, ψ, t) −

1

T

∫ t

t−T

h(x, y, ψ, τ)dτ.

11



This fun
tional aims at redu
ing both wave elevations and 
hanges in the bedshape.In fun
tional (6), one 
ould have 
onsidered water wave amplitude A insteadof elevations:
A(x, y, ψ) = max

t∈[t−T,t]
η(x, y, ψ, t),and

J̃1(ψ) =

∫

Ω

1

2
ρwgA

2dΩ +

∫ t

t−T

∫

Ω

ρsg(ψ(τ) − ψ(t− T ))2 dτdΩ. (7)
J1 and J̃1 are equivalent on 
ompa
t domains and a redu
tion of J1 leads tothe same for J̃1. From an optimization point of view, one prefers J1 be
auseit is di�erentiable. In all 
ases, we have observed that 
ontrolling water waveenergy is 
ru
ial to �ght erosion. As, this is responsible for sediments put insuspension by generating orbital velo
ity [8, 7, 4℄.A fundamental idea motivating the introdu
tion of the se
ond term in thefun
tional (6) is the 
on
ept of optimal transport [10, 11, 12℄. In other words,one thinks that the bed will adapt to the �ow in some optimal way in term ofsand transport.We assume that the in�uen
e of water 
onditions on a sandy bed at a giveninstant does not involve time history of more that a few wave periods. T is aparameter to be assimilated using experimental data. Its 
hoi
e is important asshown in Figure 5. It illustrates bottom seas after six hours with the fun
tional(6) for two di�erent values of the interval of in�uen
e T = 5 and T = 10 se
ondsstarting from a linear initial pro�le for the bed. The pi
ture is along the 
ross-shore 
enterline of the domain. The long-shore deviations from these pro�les arenegligible. It appears that larger T produ
e less sand motion. This is reasonablebe
ause when T is large deformations will be based on more �ow features. Thisis similar then to a multi-point optimization with more and more 
onstraints.And in
reasing the number of 
onstraints in general restraint the admissibledeformation. 12
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 0  5  10  15  20  25  30Figure 5: Starting from a linear bed, bathymetries along the 
ross-shore 
en-terline of the domain after six hours for the fun
tional (6) for T = 5s (+) and
T = 10s (x). Dashed lines are initial bathymetry and water level at rest.The previous fun
tional involves water elevations. In the same way, one
ould imagine that sea bed will adapt to the �ow in order to redu
e its horizontalvelo
ity gradients with minimum variation in bathymetry. A se
ond fun
tional
an then be built:

J2(ψ) =

∫ t

t−T

∫

Ω

(

‖∇xyu‖ + ρsg(ψ(τ) − ψ(t− T ))2
)

dτdΩ, (8)where ∇xy indi
ates the spatial gradient and the norm stands for ‖∇xyu‖ =

(u2
x + v2

x + u2
y + v2

y)
1/2.There is an extra 
onstraint to a

ount in 
ases we assume the domain is
losed and the amount of available sand given:

∫

Ω

ψ(t, x, y) dΩ =

∫

Ω

ψ(0, x, y) dΩ.Here, we assume open sea 
onditions where extra sand 
an be brought in by the13



�ow if predi
ted so. Then, the 
onstraint on ψ remaining as 
lose as possible tothe initial bathymetry is absolutely ne
essary in order for the algorithm not toremove all water, hen
e vanishing the fun
tional.Figure 6 shows an example of sea bed 
hanges along the 
ross-shore 
enterlineof the domain due to intera
tions with water motion based on the minimizationof (6) and (8) after about six hours. The approa
h predi
ts the apparition ofeither two or three longshore sand bars. Water elevation in time is pres
ribed onthe left boundary whi
h 
reates waves entering normal to this boundary. Thestarting bed pro�le is linear. Fun
tional (6) espe
ially predi
ts bea
h nourish-ment.
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 0  5  10  15  20  25  30Figure 6: Starting from a linear bed, �nal bathymetries for a fun
tionals (6) (x)and (8) (+) for the same sea bed and for T = 5s along the 
ross-shore 
enterline.Dashed lines are initial bathymetry and water level at rest.Figure 7 shows the evolution of two di�erent initial bathymetries along the
ross-shore 
enterline: a linear and storm pro�les. We 
an see that a initial seabed is quite determinant for the evolution of the bed shape and the equilibriumpro�le a
hieved. The bed shape has however the same 
omposition with twobars. 14
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 0  5  10  15  20  25  30Figure 7: Starting from two di�erent bed shapes, �nal bathymetries for fun
-tional (6) for T = 5s along the 
ross-shore 
enterline.To give an indi
ation on the long-shore deviation and also the history of the
oupling, Figure 8 shows the �nal bed and the evolution in time of the fun
tional(6) over six hours starting from a linear bed and then from a bed with lo
aladdition of a large amount of sand. The �nal bed does not see this perturbation.The �ow 
onditions drive the 
oupling. In other words, one 
annot expe
t mu
hdi�eren
es in the out
ome if a sandy bottom is lo
ally modi�ed with the additionof removable ingredients. We have experien
ed that adding immersed geotubes
an on the other hand help rebuilding a bea
h whi
h is otherwise under erosion[4, 5℄.One sees some equilibrium appearing after about two hours around whi
hthe bed then �u
tuates.7 Sensitivity evaluationSensitivity evaluation in large dimension needs an adjoint variable approa
hto make the 
ost of the evaluation independent from the size of the 
ontrol15
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spa
e. In time dependent problems, this implies storage of all intermediatestates whi
h 
an be optimized by 
he
k-pointing te
hni
s [28℄. In this se
tion,we brie�y des
ribe the adjoint method with a time dependent state equation (theSaint Venant equations in our 
ase). This will be implemented by automati
di�erentiation [27, 9, 13℄. Let us 
onsider the following formal dependen
y 
hain:
ψ → {U(ψ, τ), τ ∈ [0, T ]} → J(ψ, T ).Here, ψ is the independent variable and U and J are the dependent ones.

U(ψ, τ) are solutions in time of
Ut + F (U, ψ) = 0, U(0) = U0(ψ). (9)To be a

urate, one should have also to 
onsider the independent physi
al pa-rameters su
h as those des
ribing the waves. But, this would have introdu
edunne
essary 
ompli
ations into notations.Now 
onsider a fun
tional involving an integral over time like those we areinterested in:
J(ψ, T ) =

∫

(0,T )

j(ψ,U(ψ, t)).Linearizing J one has:
J
ψ
(ψ, T ) =

∫

(0,T )

(j
ψ

+ j
U
U
ψ
).In this expression only U

ψ
is 
ostly to get as it requires the linearization of theshallow water equations.The linearized state equation:

(U
ψ
)t + F

ψ
(U, ψ) + F

U
(U, ψ)U

ψ
= 0, U

ψ
(0) = U

′

0(ψ), (10)
17



permits to write for all fun
tion V (where V has the same stru
ture than U):
0 =

∫

(0,T )×Ω

((U
ψ
)t + F

ψ
(U, ψ) + F

U
(U, ψ)U

ψ
) V.Introdu
ing the adjoint operator F ∗

U
, it gives:

0 =

∫

(0,T )×Ω

(−Vt + F ∗

U
(U, ψ) V)U

ψ
+

∫

Ω

[VU
ψ
]T0 +

∫

(0,T )×Ω

VF
ψ
(U, ψ).Let us introdu
e a ba
kward adjoint problem:

Vt + F ∗

U
(U, ψ) = j

U
, V(T ) = 0. (11)Therefore, with V solution of the ba
kward adjoint equation (11) with the
hosen �nal 
ondition one has:

∫

(0,T )×Ω

j
U
U
ψ

=

∫

Ω

V(0)U′

0(ψ) −

∫

(0,T )×Ω

VF
ψ
(U, ψ).If there is no dire
t dependen
y between the initial 
ondition U(0) and ψ the�rst term in the right-hand-side vanishes. Also, for the Saint Venant equationsthe dire
t dependen
y in ψ is in gh∇ψ in the equations for hu, see (4). Denoting

V = (v1,v2)t with v2 the adjoint variable asso
iated to u, one has in weak form:
∫

(0,T )×Ω

VF
ψ
(U, ψ) = −

∫

(0,T )×Ω

g∇.(hv2).We have used either slip or Diri
hlet boundary 
onditions for the velo
ity whi
hgive for the 
orresponding adjoint variable slip or homogeneous Diri
hlet 
on-ditions removing the boundary term in weak form. An important point here isthat, unlike with the linearized equation, with ψ of any dimension V is 
om-puted only on
e. One remarks however that states U are needed in reverseorder be
ause the ba
kward integration in (11). This 
an be further simpli�edin some spe
ial 
ases where the fun
tional enters the admissibility domain ofin
omplete sensitivity 
on
ept [9℄. 18



8 Minimization prin
iple and the Exner equationLet us re
onsider the following equation whi
h in dis
rete form minimizes J(ψ):
ψt = −ρ∇ψJ, ψ(t = 0, x, y) = ψ0. (12)where ρ 
hara
terizes the ability of sand to be put in motion by water. Theparameter ρ and the interval of in�uen
e T are the two physi
al data of the bedmodel. They are obtained from observation site for a given site.One well-known approa
h to model sea bed motion is through the Exnerequation [21℄. This equation models the 
onservation of mass between the bedand transported sediments.

ψt +
1

1 − λp
∇.q = 0, ψ(t = 0, x, y) = given, (13)where λp ∈ [0, 1[ is the porosity of the bed and q is the sediment transport�ux. To estimate this �ux q, s
ientists propose a variety of formula su
h as theMeyer-Peter & Müller or Gras formulas [25℄. The former suggests that the �ux

q is dire
tly related to the shear stress and the latter to the �uid velo
ity .One remarks then that 1/(1 − λp) plays the role of ρ in the minimizationequation (12) and as expe
ted ρ in
reases with the porosity of the bed. Indeed,one expe
ts the in�uen
e of a same �ow 
ondition on the bed to in
rease withthe bed's porosity. Let us suppose that the porosity is 
onstant everywhere,then the analogy suggests that
∇.q = ∇ψJ. (14)Consider a one dimensional situation. One sees that the previous expression

19



suggests a nonlo
al de�nition for q:
q(t, x) = q(t,−∞) +

∫ x

−∞

∇ψJ(ζ)dζ,where without harm one 
an suppose q(t,−∞) = 0 and ∇ψJ(t, ζ) → 0 when
x→ −∞ as the in�uen
e of the �ow on the bed de
reases o�shore with the �owdepth in
reasing. This indi
ates that, 
ompared to the minimization formula-tion, these approa
hes need be applied on a larger domain in order to redu
ethe un
ertainties one might have on q(t,−∞). The nonlo
al term depends onthe 
hoi
e of the 
ost fun
tion. Also, as saw in the model problem in se
tion 2,one needs to provide boundary 
onditions for ψ for the solution of the transportequation.Let us analyze what the approa
h gives for simple fun
tionals in one dimen-sion in spa
e with J = 1

2u
2
x. Minimizing J would for
e the bottom to adaptin order to redu
e gradients in the �ow. This is similar to what we expe
tminimizing (8). For this fun
tional q reads:

q(t, x) =

∫ x

−∞

(1 − λp)
1−n uζ uψζ dζ,and integrating by part, we get

q(t, x) = −

∫ x

−∞

(

(1 − λp)
1−n uζ

)

ζ
uψ dζ + (1 − λp(x))

1−n ux(t, x)uψ(t, x).This shows a lo
al term plus a global 
orre
tion involving se
ond order deriva-tives of the state upstream. Similar nonlo
al terms 
an be found, for instan
e,in a Fowler model for the motion of sand dunes sheared by a �uid �ow [23℄.9 Choi
e of the fun
tionalTo end the paper, let us dis
uss a few possible approa
hes for the 
hoi
e of thefun
tional in our approa
h. As in shape optimization problems, the 
hoi
e of the20



fun
tional depends on what is aimed for the out
ome of the design. We assumedhere that the target is a redu
tion of the energy of the wave with minimal sandtransport. Based on this a priori assumption, we dis
ussed in se
tion 6 several
hoi
es, su
h as (6), (7) and (8).Then in se
tion 8 we linked our approa
h with the Exner equation. Thisgives another way to derive a fun
tional from the Exner equation, under thementionned hypothesis, using equality (14). This is something we would like toinvestigate in the future, but rather from a theoreti
al point of view. Indeed,the Exner equation being mainly used in one dimension in spa
e, the extensionto higher spa
e dimension will again require a priori modelling hypothesis as inthe previous approa
h.Another interesting and powerful pro
edure would be data assimilation ofavailable observations of histori
al erosion data basis. For instan
e, informationon shoreline or bathymetry evolutions for a given bea
h 
an be a

ounted for infun
tional (6):
J3(ψ) =

∫ t

t−T

∫

Ω

(

1

2
ρwgη

2 + ρsg(ψ(τ) − ψ(t− T ))2
)

dτdΩ +

∫

Q

(ψ−ψobs)
2dq,(15)where Q(⊂]0, t[×Ω) denotes the spa
e-time domain, whi
h is ne
essary limited,where observation data sobs are available.An alternative approa
h would be to a

ount for observations through theminimization of a se
ond fun
tional. Bathymetry observations 
an be used astarget to see whi
h fun
tional minimization best reprodu
es the history. For thiswe need to �rst parameterize our fun
tional as, for instan
e, in the following
hoi
e:

J4(ψ) =

∫ t

t−T

∫

Ω

(

1

2
ρwgη

2 + γ
1
‖∇xyu‖ + γ

2
ρsg(ψ(τ) − ψ(t− T ))2

)

dτdΩ,(16)
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where γ
1
and γ

2
are positive 
onstants to be found minimizing:

D(γ
1
, γ

2
) =

∫

Q

(ψ(γ
1
, γ

2
) − ψobs)

2dq.Hen
e, eventually, we have two nested minimization problems. Data assimila-tion minimizing the error between predi
tions and measurements and havingas out
ome the 
oe�
ients in the fun
tional we use in our minimization-basedbathymetry evolution.10 Con
luding remarksMinimization prin
iples have been used to des
ribe the 
oupling of a �uid in ashallow domain with a �exible and deforming stru
ture. The 
oupling aims atreprodu
ing a sandy sea bed evolution due to water motion. This study showsthat the out
ome of the 
oupling has suitable qualitative behavior predi
tingapparition of observed natural bars in sandy bea
hes. Several assumptions havebeen analyzed and the 
orresponding 
ost fun
tionals des
ribed. Sensitivityanalysis is used to minimize these fun
tionals. Minimization iterations give thesea bed morphodynami
s law.The �ow motion is des
ribed by the shallow water equations but this 
an beextended to more sophisti
ated models in
luding dispersion e�e
ts. Also, theapproa
h 
an obviously be applied to situations where the �ow is des
ribed bya spe
tral approa
h and where time has been removed from the equations usingseparation of variables in time and spa
e [26, 3, 4℄.It has been shown that the minimization approa
h is equivalent to solvingan Exner equation for the bed with an original �ux term. Our 
urrent resear
haims at linking this approa
h with other available models in the literature forbed transformation involving nonlo
al �uxes [23℄.The next step in the modelling is to go beyond qualitative validation byassimilating observation data. The two parameters of the model whi
h needidenti�
ation are the bed porosity and lo
al time interval of in�uen
e between22



the �ow and the bed. It is shown that the approa
h requires less informa-tions than morphodynami
s �ux-based models where boundary 
onditions arene
essary for the solution of the sediment transport equation.This study also takes pla
e in the 
ontext of shape optimization for unsteady�ows where both time dependent and independent shapes 
an be targeted. Bot-tom sea motion is an example of the former and building defen
e stru
turesagainst erosion [4℄ the latter.A
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