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Résumé — Méthode de criblage basée sur les indices de sensibilité DGSM : Application au simu-
lateur de réservoir — Les simulateurs de réservoir peuvent impliquer un grand nombre de paramètres
d’entrées. Cependant, il est possible de réduire cette complexité en ne se focalisant que sur les pa-
ramètres influents. La détection de ces paramètres peut être effectuée grâce à l’analyse de sensibilité.
Néanmoins, pour des problèmes de grande dimension, les méthodes classiques d’estimation des indices
de sensibilité nécessitent un très grand nombre d’évaluation du simulateur de réservoir, ce qui est très
couteux en temps de calcul. Récemment, pour pallier au problème de dimensionnalité, de nouveaux
indices de sensibilité ont été définis. Ces indices dit DGSM (pour derivative-based global sensitivity
measures) sont basés sur la moyenne des dérivées partielles et ont un lien avec les indices totaux qui
sont des indices de sensibilité basés sur la décomposition de la variance. Cet article introduit une ver-
sion révisée des indices DGSM, ce qui permet de proposer une méthode de criblage efficace et moins
couteuse en temps de calcul que les méthodes classiques. Afin d’apprécier l’efficacité de la méthode
proposée, des résultats sur des fonctions analytiques ainsi que sur un cas synthétique de réservoir sont
présentées.

Abstract — Screening method using the derivative-based global sensitivity indices with application
to reservoir simulator — Reservoir simulator can involve a large number of uncertain input parame-
ters. Sensitivity analysis can help reservoir engineers focusing on the inputs whose uncertainties have
an impact on the model output, which allows reducing the complexity of the model. There are several
ways to define the sensitivity indices. One of the quantitative definition is the variance based sensitivity
indices which can quantify the amount of output uncertainty due to the uncertainty of inputs. However,
the classical methods to estimate such sensitivity indices in a high dimensional problem can require
a huge number of reservoir model evaluation. Recently, new sensitivity indices based on averaging
local derivatives of the model output over the inputs domain have been introduced. These so-called
derivative-based global sensitivity measures (DGSM) have been proposed to overcome the problem of
dimensionality and are linked to total effect indices which are variance based sensitivity indices. In
this work we propose a screening method based on a revised DGSM indices which increase the inter-
pretability in some complex case and have a lower computational cost, as demonstrated by numerical
test cases and by an application on a synthetic reservoir test model.
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1 INTRODUCTION

Reservoir simulators are complex computer codes that
model the physical laws governing the recovery process,
and which are mainly modelled by mathematical equations
for the three phases flow (oil, gas and water) through porous
media. These simulators involve a large number of input
parameters. The information gathered on such inputs comes
from direct measurements, which are clearly very limited
and are marred by considerable uncertainty. Thus, it is
important to detect influential inputs, whose uncertainties
have an impact on the model output. Once identified,
one can reduce the complexity of the model by fixing the
non-influential inputs on default values (defined by experts)
and focus the attention on the influential inputs.
Sensitivity analysis (SA) is the study of how the variation
(uncertainty) in the output of the computer model can be
apportioned, qualitatively or quantitatively, to different
sources of variation in the input of the model. Put in
another way, it is a technique for systematically changing
parameters in a model to determine the effects of such
changes on the output. The local SA methods refer to the
study of the sensitivity at a fixed point in the input domain,
typically the simple derivative ∂Y/∂x(i) of the output Y
with respect to a given input X(i) taken at some fixed point
x0 in the input domain. The global SA (GSA) methods
[17–19, 26] refers to the sampling-based methods in which
the model is evaluated for combinations of values sampled
from the distribution (assumed known) of the inputs. Once
the sample is generated, several strategies (including simple
input-output scatterplots) can be used to derive global
sensitivity measures for the factors.
The variance-based methods are nonlinear with respect to
the input parameters, and are based on analysis of variance
(ANOVA) decomposition which is the decomposition of
the total variance V of output into terms due to individual
factors plus terms due to interaction among inputs. Most
variance-based methods are quantitative, and in this work
we will focus on this class of methods, and more specifically
on Sobol’s indices.
One of the main issues with variance based methods is
computational time. Indeed, a reservoir simulator is often
very costly in terms of computational time. Furthermore
such variance based methods require generally several thou-
sands simulations that are usually not affordable in common
applications. In order to perform SA with a limited number
of runs, metamodel methods can then be used. In the latter
the simulator input/output relation is approximated using
different statistical regression techniques starting from an
initial set of carefully chosen training runs. Then, if a
reasonably good approximation is obtained, the estimated
metamodel is used instead of the complex simulator to
compute the sensitivity indices. Metamodel methods have
known a quick development in the last decade and different
approaches have been suggested in many different scientific

disciplines [2, 3, 10, 16, 20, 27–30]. However, despite sig-
nificant advances in the area, construction of a sufficiently
accurate approximation for high dimensional computer
code using relatively low number of model evaluation is
problematic.
Screening methods aim at reducing the input dimensionality
by identifying the non-influential inputs with a low compu-
tational cost in terms of model evaluation. Screening design
proposed by Morris [11] is adapted for high dimensional
expensive computer model. This method is an one factor
at time (OAT) technique that vary one input parameter at
a time and measures the impact on the output. Indeed,
the method is based on calculating a sensitivity index
called elementary effect, which provide a good compromise
between accuracy and efficiency. However, even if this
method is computationally cheaper than other SA methods,
it involves hundreds or thousands (depending on the num-
ber of inputs and the complexity of the model) of model
evaluation, which is still computationally intensive with
realistic reservoir simulators for which each simulation
requires several hours or days.
Recently, Sobol and Kucherenko [24 25] have proposed new
sensitivity indices based on averaging local derivatives of
the model output over the inputs domain. It was shown that
the so-called Derivative-based Global Sensitivity Measures
(DGSM) can be easily estimated and much faster than the
global sensitivity indices. In addition, different methods
exist to efficiently compute the derivatives of reservoir
simulators, in this case DGSM represent a valid alternative
to the Morris method for screening the input parameters.
In this work we propose a revised derivative-based sensitiv-
ity index that allows a better convergence of the estimation
and increases the interpretability in some complex cases.
We propose a screening method based on the defined
indices. We then employ the method to perform a screening
of a high-dimensional numerical test cases and a reservoir
simulator.

2 GLOBAL SENSITIVITY ANALYSIS AND MORRIS
DESIGN

First let consider a mathematical model for a reservoir sim-
ulator

Y = f (X) (1)

where Y is a scalar output of the computer code, X =

(X(1), . . . , X(d)) a unit d-dimensional input vector (X ∈

[0, 1]d) which represents the uncertain parameters/factors of
the simulator and f : [0, 1]d → R is a function that models
the relationship between the input factors and the output of
the computer code.
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2.1 Global sensitivity analysis

The main idea from Sobol approach [26] is to decompose the
response Y = f (X) into summands of different dimensions
via analysis of variance decomposition (ANOVA) defined as

f (X) = f0 +

d∑
j=1

f j(X( j)) +
∑
j<l

f jk(X( j), X(l)) + ...

+ f1,...,d(X(1), ..., X(d))

(2)

where f0 is a constant, f j’s are univariate functions repre-
senting the main effects, f jl’s are bivariate functions repre-
senting the two way interactions, and so on.
The integrals of every summand of this decomposition over
any of its own variables is assumed to be equal to zero, i.e.∫ 1

0
f j1,..., js (X

( j1), . . . , X( js))dX( jk) = 0 (3)

where 1 ≤ j1 < . . . < js ≤ d, s = 1, . . . , d and 1 ≤ k ≤ s. It
follows from this property that all the summands in (2) are
orthogonal, i.e, if (i1, . . . , is) , ( j1, . . . , jl), then∫

Ωd
fi1,...,is f j1,..., jl dX = 0 (4)

Using the orthogonality, Sobol [26] showed that such de-
composition of f (X) is unique and that all the terms in (2)
can be evaluated via multidimensional integrals

f0 = E(Y) (5)

f j(X( j)) = E(Y |X( j)) − E(Y) (6)

f j,l(X( j), X(l)) = E(Y |X( j), X(l)) − f j − fl − E(Y) (7)

where E(Y) and E(Y |X( j)) are respectively the expectation
and the conditional expectation of the output Y . Analo-
gous formulae can be obtained for the higher-order terms. If
all the input factors are mutually independent, the ANOVA
decomposition is valid for any distribution function of the
X(i)’s and using this fact, squaring and integrating (2) over
[0, 1]d, and by (4), we obtain

V =

d∑
j=1

V j +
∑

1≤ j<l≤d

V jl + . . . + V1,2,...,d (8)

where V j = V[E(Y |X( j))] is the variance of the conditional
expectation that measures the main effect of X j on Y and
V jl = V[E(Y |X( j), X(l))]−V j −Vl measures the joint effect of
the pair (X( j), X(l)) on Y . The total variance V of Y is defined
to be

V = E(Y2) − f 2
0 (9)

Variance-based sensitivity indices, also called Sobol indices,
are then defined by

S j1,..., js =
V j1,..., js

V
(10)

where 1 ≤ j1 < . . . < js ≤ d and s = 1, . . . , d. Thus,
S j = V j/V is called the first order sensitivity index (or the
main effect) for factor X( j), which measures the main effect
of X( j) on the output Y , the second order index S jl = V jl/V ,
for j , l, is called the second order sensitivity index ex-
presses the sensitivity of the model to the interaction be-
tween variables X(i) and X( j) on Y and so on for higher orders
effects. The decomposition in (8) has the useful property
that all sensitivity indices sum up to one.

p∑
j=1

S j +
∑

1≤ j<l≤p

S jl + . . . + S 1,2,...,p = 1 (11)

The total sensitivity index (or total effect) of a given factor
is defined as the sum of all the sensitivity indices involving
the factor in question.

S Ti =
∑
l#i

Vl

V
=

VTi

V
(12)

where #i represents all the S j1,..., js terms that include the in-
dex i. Total effect index of an input X(i) measures the part of
output variance explained by all the effects in which it plays
a role. Note however that the sum of all S Ti is higher than
one because interaction terms are counted several times. It
is also important to note that total effect indices can be com-
puted by a single multidimensional integration and do not
require computing all high order indices (see Sobol [26]).
Then comparing the total effect indices provides informa-
tion about influential parameters. Indeed, one can suppose
that the input is non-influential if its total effect S Ti is less
than 0.01.
GSA enables to explain the variability of the output response
as a function of the input parameters through the defini-
tion of total and partial sensitivity indices. The computation
of these indices involves the computation of several mul-
tidimensional integrals that are estimated by Monte Carlo
method and thus requires huge random samples. For this
reason GSA techniques are prohibitive if used directly using
the computer code (fluid flow simulator for example).

2.2 Morris’s screening method

The screening method introduced by Morris [11] is based on
a one factor at time (OAT) experimental design. The points
of the Morris design are sampled from a d-dimensional p-
level grid, as the range of each input X(i) is divided into
p equal level. The impact of varying one input at a time
is evaluated by the so-called elementary effect that, for
i = 1, . . . , d, is defined as

dr
i (Xr) =

f (Xr
i ) − f (Xr)

∆
(13)

where ∆ is a multiple of 1/(p − 1) with p the number of
levels, Xr is a randomly chosen point in [0, 1]d such that
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X(i) + ∆ is still in [0, 1] and Xr
i = X(1), . . . , X(i−1), X(i) +

∆, X(i+1), . . . , X(d). The group of points composed of Xr and
Xr

i ’s are called trajectories. Thus, the Morris design is struc-
tured in R random trajectories composed of R(d + 1) points.
The sensitivity measures proposed by Morris Morris [11] are
defined as a statistics of the elementary effect. The first one
is the mean µ̂i

µ̂i =
1
R

R∑
r=1

dr
i (14)

which is a measure of the ith input importance. The second
statistic is the standard deviation of the elementary effect σ̂i

σ̂i =

√√√
1

R − 1

R∑
r=1

(dr
i − µ̂i)2 (15)

which is a measure of the non-linearity and the involved in-
teractions of the ith input. However, σ̂i does not allow to
distinguish between non-linearities and interactions.
Noting that when the model is non-monotonic the elemen-
tary effects of opposite signs cancel each other, Campolongo
et al. [4] proposed the sensitivity measure µ̂∗i , which is a re-
vised version of µ̂i

µ̂∗i =
1
R

R∑
r=1

|dr
i | (16)

To identify the non-influential inputs, the sensitivity mea-
sures µ̂∗i and σ̂i are simultaneously considered.

3 DERIVATIVE-BASED SENSITIVITY ANALYSIS

3.1 Derivative-based global sensitivity measures

First introduced by Sobol and Gresham [21] and then stud-
ied in Kucherenko et al. [9], Sobol and Kucherenko [24 25],
DGSM are a new sensitivity indices based on averaging lo-
cal derivatives of the model output over the inputs domain.
Assume that ∂ f (X)/∂x(i), for i = 1, · · · , d, are square-
differentiable. The DGSM indices are defined as

νi = E
(∂ f (X)

∂x(i)

)2 =

∫ (
∂ f (X)
∂x(i)

)2

dx (17)

Thus, calculation of DGSM indices is based on the evalua-
tion of integrals, which is easily performed using a classi-
cal Monte Carlo (MC), quasi-Monte Carlo (QMC) or latin
hyper-cube (LHS) sampling. The empirical estimator of νi

is given by

ν̂i =
1
n

n∑
j=1

(
∂ f (X j)
∂x(i)

)2

(18)

3.1.1 Link between DGSM and GSA

Recently, Sobol and Kucherenko [24] have established the
link between the DGSM index νi and the total effect in-
dex S Ti for input variables following uniform and normal
distributions. Here, we assume that X(i) ∼ U[ai, bi], for
i = 1, . . . , d, the link between VTi and νi is defined by the
following inequality

VTi ≤
(bi − ai)2

π2 νi = ν∗i (19)

Thereby the total effect indices have the following upper
bound

S Ti ≤
ν∗i
V

= Υi (20)

where V is the total variance of the model. If Υi ' 0, then
X(i) can be considered as non-influent input, which make Υi

a good candidate for a screening procedure.

3.1.2 Link between DGSM and Morris method

Kucherenko et al. [9] have introduced two derivative-based
sensitivity indices that are very similar to the Morris indices
µi and σi. These indices are defined, for i = 1, . . . , d, as

M̄i =

∫
∂ f (X)
∂x(i) dx (21)

and

Σ̄2
i =

∫ (
∂ f (X)
∂x(i)

)2

dx − M̄2
i (22)

where M̄i is equivalent to µi and Σ̄2
i equivalent to σ2

i . In
addition, these indices are more accurate than Morris’s in-
dices, which cannot correctly consider effects with charac-
teristic dimensions less than ∆. Indeed, in (13) the elemen-
tary effects dr

i are calculated as finite differences with the
increment δ, which has the same order of magnitude as the
uncertainty range of inputs. In contrast with the derivative-
based indices M̄i and Σ̄2

i , where the elementary effects are
substitute by the local derivatives.
We can also note that the DGSM indices νi can be defined
as

νi =

∫ (
∂ f (X)
∂x(i)

)2

dx = M̄2
i + Σ̄2

i (23)

3.2 Refining the DGSM index Υ

In the previous section we have shown that the sensitivity
index Υ is an upper bound of the total effect index. How-
ever, for some complex model Υ can be much larger than
the corresponding total effect index. In this case, it is diffi-
cult to decide which inputs are influential and which are not.
In addition, Υ estimation involves the variance of the model
output V . Empirical results (see next section) show that esti-
mation of V requires more model evaluation than estimation
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Initialization
– Build an initial design X

using QMC

– Run the reservoir simulator
at X and store the output
data and the gradients calcu-
lation

– For i = 1, · · · , d compute Υ∗i

– If stopping criteria is reached
go to the screening step

Enrichment of the design
– While the stopping criteria is

not reached do:

– Add a new point to X
– Run the reservoir simula-

tor at the new point and
store the output data and
the gradients calculation

– For i = 1, · · · , d compute
Υ∗i

Screening
– Determine the influential

input set D, which have the
higher Υ∗i and respect the
following criteria∑

i∈D

Υ∗i ≈ 0.98

Figure 1: Schematic representation of the screening method

of ν.
We propose here a different version of Υ that we call Υ∗,
which is defined, for i = 1, . . . , d, as

Υ∗i =
ν∗i∑d
j=1 ν

∗
j

(24)

This index is a normalized upper bound of VTi . Indeed, the
link between Υ∗i and VTi is defined as

VTi∑d
j=1 ν

∗
j

≤ Υ∗i (25)

In addition, Υ∗ has the following useful properties

0 ≤ Υ∗i ≤ 1 (26)

and
d∑

i=1

Υ∗i = 1 (27)

The drawback of Υ∗ is the loss of the link with the total
effect indices. Nevertheless, the use of Υ∗ offers a stronger
measure to define the non-influential inputs, as we will see
in the next sections.

4 DGSM-BASED SCREENING METHOD

As shown in section 3, estimating Υ∗ for each input allows
one to detect the influential inputs in the model. Indeed,
one can state that if Υ̂∗i ≤ 0.01, the corresponding input X(i)

can be defined as non-influential one. However, such crite-
ria may be too strong in the case of very high dimensional
model (typically more than 100 input parameters), the fact
is that the sum of effects due to inputs with small sensitiv-
ity indices may be significant on the output model variance.
Because of that, and by using the property (27) of the Υ∗

measures, it is more robust to state that the influential inputs

are the set D of d∗ inputs whose the Υ∗i are the most high
and which respect the following criteria∑

i∈D

Υ∗i ≈ 0.98 (28)

Given that the reservoir simulator evaluation may be com-
putationally demanding, it is important to use a sequential
strategy to build the design of point by reusing at each step
the already evaluated points. The use of the so-called QMC
Sobol sequence [22, 23] is an efficient way to build a sequen-
tial design. Our choice is motivated by two main properties
of the QMC Sobol sequences. First, this technique is based
on the generation of deterministic quasi-random sequences
with a good space-filling property of the unit hypercube, in
other words the input domain are well covered for fairly
small sets. Second, the points of the Sobol sequence are
independent. That is, by enriching the design sequentially,
one keeps the space filling properties of the Sobol sequence.
Since a sequential method computes successive estimation
of the Υ∗i indices, a practical test is needed to determine
when to stop the iteration. In this work we propose to use
the following error criteria

errl =
1/10

∑10
k=1 ‖ Υ

∗
(l) − Υ

∗
(l−k) ‖

‖ Υ∗(l) ‖
(29)

where vectors Υ∗(l) = (Υ∗1, . . . ,Υ
∗
d) are the lth estimation of

Υ∗i indices and ‖ · ‖ is the Euclidean norm. Thus, we define
the stopping criteria as err ≤ 0.05. A schematic represen-
tation of the entire screening method is shown in Figure 1.
Note that one can use the same stopping criteria (29) to es-
timate Υi indices.

5 NUMERICAL TESTS

In this section, two numerical test cases are used to demon-
strate the estimation performance of the DGSM index Υ∗
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Figure 2: Convergence of the Υi and Υ∗i indices estimates versus the sample size for the Morris function

and the accuracy of the proposed screening method to detect
the influential inputs. Adopting the QMC sampling method,
each input parameter X(i) is uniformly distributed in [0, 1].

5.1 The test case of Morris

The test function proposed by Morris [11] contains 20 input
parameters and defined as follow

y = β0 +

20∑
i=1

βiwi +

20∑
i< j

βi, jwiw j

+

20∑
i< j<l

βi, j,lwiw jwl +

20∑
i< j<l<s

βi, j,l,swiw jwlws

where wi = 2 × (X(i) − 1/2) except for i=3,5, and 7, where
wi = 2×(1.1X(i)/(X(i) +1)−1/2). Coefficients with relatively
large values are

βi = 20 f or i = 1, · · · , 10
βi, j = −15 f or i, j = 1, · · · , 6
βi, j,l = −10 f or i, j, l = 1, · · · , 5
βi, j,l,s = 5 f or i, j, l, s = 1, · · · , 4

the remaining βi and βi, j are independently generated from a
standard normal distribution. The remaining βi, j,l and βi, j,l,s

are sets to zero.
In Figure 2 one can see the results of computing Υi and Υ∗i
sequentially with a QMC design ranging from n = 5 to
n = 256. In addition, the sample size when the stopping
criteria of the proposed screening method is reached is rep-
resented by the red vertical line. Thereby, we can notice that
Υ∗i converge faster than Υi. Indeed, the stopping criteria is
reached at n = 43 for Υ∗i and at n = 67 for Υi estimations.
In Table 1, for the inputs selected by the proposed screen-
ing method, the values of the total effect indices (obtained
by the so-called extended-FAST method [18] using a sam-
ple of size N = 3.5 × 104 ) as well as the values of Υi and
Υ∗i (computed at the stopping criteria sample size n = 67
and n = 43) are reported. Notice that the values of the in-
dices S T11 , . . . , S T20 are smaller than 0.005 and then the cor-
responding inputs are considered to be non-influential.
It can be seen that for this test case both indices (Υi and
Υ∗i ) are able to identify the influential inputs correctly at the
stopping criteria (29). Furthermore, even if at n = 67 the
indices Υi are under estimated they are almost for all in-
puts greater but close to the total effect indices. To conclude
on this numerical test, we can say that for the Morris func-
tion the developed screening method based on Υ∗i is efficient
and not consuming in terms of model evaluations. However,
estimating Υi indices provides more information since it is
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very close as upper bound to the total effect indices but the
drawback is the additional model evaluation cost.

Input Total
effect

Υi(n =

67)
Υ∗i (n =

43)
X(1) 0.240 0.249 0.114
X(2) 0.241 0.244 0.164
X(3) 0.095 0.127 0.088
X(4) 0.245 0.252 0.137
X(5) 0.098 0.137 0.083
X(6) 0.082 0.081 0.048
X(7) 0.050 0.078 0.053
X(8) 0.105 0.133 0.091
X(9) 0.099 0.123 0.084
X(10) 0.106 0.173 0.118

TABLE 1: Estimated sensitivity indices for the Morris func-
tion

5.2 The g-Sobol function

Consider the g-Sobol function, which is strongly nonlinear
and is described by a non-monotonic relationship. Because
of its complexity and the availability of analytical sensitivity
indices, this function is a well-known test case in the stud-
ies of GSA. Let define the g-Sobol function for 200 input
parameters as follow

gSobol(X(1), . . . , X(8)) =

8∏
k=1

gk(X(k))

with

gk(X(k)) =

∣∣∣4X(k) − 2
∣∣∣ + ak

1 + ak

where {a1, . . . , a20} = {0, 0.25, 0.5, 0.75, 1, 2, . . . , 16} and
{a21, . . . , a200} = 99. The contribution of each input X(k)

to the variability of the model output is represented by the
weighting coefficient ak. The lower this coefficient ak, the
more significant the variable X(k).
The analytical values of Sobol’s indices are given by

V j =
1

3(1 + a j)2 , V =

d∏
k=1

(Vk + 1) − 1,

S j1,..., js =
1
V

s∏
k=1

Vk

where 1 ≤ j1 < . . . < js ≤ d and s = 1, . . . , d. The an-
alytical values of the total effect indices are shown in table
(2). Figure 3 shows the sequential estimation of Υ∗i and Υi

indices with a QMC design ranging from n = 5 to n = 256.
As for the previous test example the estimation of Υ∗i indices

converge faster than those Υi. In this test case the stopping
criteria (29) is reached at n = 41 for Υ∗i and n = 59 for Υi.
The analytical values of the total effect indices as well as the
values of Υi and Υ∗i (estimated at the sample size n = 59
and n = 41) for the inputs which are identified as influen-
tial by the screening method are reported on Table 2. Notice
that the values of the indices S T12 , . . . , S T200 are smaller than
0.007 and then the corresponding inputs are considered to be
non-influential. One can see that the informations provided
by the indices Υ1, · · · ,Υ4 are difficult to interpret. Indeed,
for the g-Sobol function the values of Υi’s provide only a
qualitative informations, because for some inputs Υi > 1
which is higher than the maximal value for the total effect
indices. These results may due to the model non linear-
ity with respect to the inputs. On the other side, despite
the non-linearity and non-monotonicity of the model the Υ∗i
measures performs very well in terms of quantitative inter-
pretability.
The above two numerical tests, show us that both DGSM
indices are adapted to identify the non-influential inputs.
Moreover, the (27) property of Υ∗i indices allows one to use
an automatic screening method regardless the complexity of
the studied model.

Input Total
effect

Υi

(n=59)
Υ∗i
(n=41)

X(1) 0.396 3.671 0.338
X(2) 0.279 3.111 0.266
X(3) 0.205 1.781 0.144
X(4) 0.156 1.383 0.088
X(5) 0.122 0.911 0.072
X(6) 0.057 0.397 0.031
X(7) 0.032 0.234 0.017
X(8) 0.021 0.169 0.011
X(9) 0.015 0.106 0.008
X(10) 0.011 0.078 0.005
X(11) 0.009 0.061 0.004

TABLE 2: Analytical total effect indices and estimated
DGSM indices for the g-Sobol function

6 RESERVOIR FORECASTING APPLICATION

In this section, the proposed screening method is applied on
a reservoir simulator. As the goal here is to apply the method
on a high dimensional case, we choose to use horizontal and
vertical permeability as inputs parameters. However, since
the number of grid blocks in the considered reservoir simu-
lation model is large, we applied the most basic parametriza-
tion technique which is the zonation to reduce the dimen-
sion of the problem. This technique consists in dividing the
reservoir into relatively small number of zones (subregions)
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Figure 3: Convergence of the Υi and Υ∗i indices estimates versus the sample size for the g-Sobol function

and assume that each zone is homogeneous. In other words,
one fixes the permeability (horizontal or vertical) over all the
grid blocks of the considered zone.

6.1 Reservoir model description

The PUNQS case is a synthetic reservoir model taken from
a real field located in the North Sea. The PUNQS test case,
which is qualified as a small-size model, is frequently used
as a benchmark reservoir engineering model for uncertainty
analysis and for history-matching studies Floris et al. [7].
The geological model contains 19×28×5 grid blocks, 1761
of which are active. The reservoir is surrounded by a strong
aquifer in the North and the West, and is bounded to the
East and South by a fault (see Figure 4). A small gas cap
is located in the centre of the dome shaped structure. The
geological model consists of five independent layers, where
the porosity distribution in each layer was modelled by geo-
statistical simulation. The layers 1, 3, 4 and 5 are assumed
to be of good quality, while the layer 2 is of poorer quality.
The field contains six production wells located around the
gas-oil contact. Due to the strong aquifer, no injection wells

are required. For more detailed description on the PUNQS
model, see PUNQS [14].
As input parameters, we considered the horizontal and ver-
tical permeability of 60 zones (12 for each layer). Thus, we
have a model of 180 inputs, which are supposed independent
and defined as follow
– Z1, · · · ,Z60: horizontal permeability in X direction

– Z61, · · · ,Z120: horizontal permeability in Y direction

– Z121, · · · ,Z180: vertical permeability
The values of the permeability at each zone are distributed
uniformly over [PZi − 0.2PZi, PZi + 0.2PZi], where PZi is
the arithmetic mean of the permeability values of the grid
blocks which compose the ith zone.
The analyzed output is the production watercut data (the
proportion of water in the produced oil) after 20 years of
production of the well 5 which the perforation location cor-
respond to the grid blocks [17; 11; 3 : 4], where the notation
3 : 4 means that there is a perforation at layer 3 and at layer
4 . The reservoir test model was run using the PumaFlowT M

[13] simulator, which allows one to compute gradients using
gradient simulator method [1, 8] with an additional ≈ 33%
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of the simulation time per each calculated gradient.

[13:19;1:7;1]

[13:19;8:14;1]

Figure 4: Top structure map of the PUNQS reservoir field
(layer 1), the red square corresponds to the area of the grids
position [13 : 19; 1 : 7; 1] and the blue square corresponds
to the area [13 : 19; 8 : 14; 1].

6.2 Screening

For this reservoir model, we first performed a convergence
study of the DGSM indices. Υi and Υ∗i are computed se-
quentially with a QMC design ranging from n = 5 to
n = 200. From Figure 5 one can see that Υ∗i indices con-
verge much faster than Υi indices. The stopping criteria (29)
was reached at n = 18 for Υ∗i and at n = 42 for Υi indices
estimation.
The screening method identifies 13 zones as influential. The
DGSM sensitivity measures of these 14 parameters are re-
ported in Table 3. We can see that these zones correspond to
the region where the studied well is located and the closest
north region. This result demonstrates the relevance of ap-
plication on a reservoir simulator of the developed screening
methodology.
To corroborate these screening results we build a meta-
model using a standard implementation of Gaussian process
method (GP). The GP code used here is a commercial ver-
sion implemented in the CougarFLowT M software [5]. For
more detail on the technical aspect of the used GP we re-
fer to section 3 of Busby et al. [3]. The GP metamodel is
build using the results obtained on the QMC design of the
size n = 200. However, instead of using the full design of
180 inputs we just selected the 13 inputs identified as influ-
ential by the screening method. Thus, rather than building
metamodel that approximate a reservoir model of 180 inputs
we build a metamodel f̂ which involves only the parameters

that supposed to be influential on the output. To assess the
prediction accuracy of the metamodel we performed an ex-
tra 100 random evaluations of PUNQS simulator (with 180
inputs) and compare the simulator results to the metamodel
ones. The measure of the accuracy is given by the Q2 crite-
ria defined by

Q2 = 1 −
∑ntest

i=1 (yi − f̂ (xi))2∑ntest
i=1 (yi − ȳ)2

,with ntest = 100 (30)

where yi denotes the ith simulator evaluation on test set, ȳ
is their empirical mean and f̂ (xi) is the predicted value at
the design point xi = (x(1)

i , . . . , x(180)
i ). The empirical Q2

criteria of the considered metamodel f̂ is equal to 0.94,
which means that the metamodel explain 94% of the out-
put variance. Thus the obtained metamodel is sufficiently
accurate to perform a global sensitivity analysis. In the sec-
ond column of Table 3 the reported total effect indices was
computed through the metamodel f̂ and using extended-
FAST method. From Table 3 one can say that the developed
screening method permits to detect the most important in-
puts. Concerning the inputs Z106 whose total effect index
(estimated using the metamodel) is equal to zero, we can
suspect that the influence of this parameter has been under-
estimated by the considered metamodel. We can notice that
for this reservoir model the values of Υi and Υ∗i indices have
the same magnitude for all selected inputs at the stopping
criteria and the values of Υi are smaller than the estimated
total effect which is due to the underestimation of Υi indices
at n = 42.

Input Total
effect

Υi

(n=42)
Υ∗i
(n=18)

Grid blocks
position

Z58 0.625 0.528 0.542 [13:19;8:14;5]
Z118 0.133 0.158 0.176 [13:19;8:14;5]
Z117 0.066 0.059 0.051 [13:19;1:7;5]
Z10 0.058 0.055 0.058 [13:19;8:14;1]
Z34 0.035 0.045 0.047 [13:19;8:14;3]
Z93 0.022 0.022 0.022 [13:19;1:7;3]
Z94 0.014 0.019 0.021 [13:19;8:14;3]
Z46 0.021 0.018 0.021 [13:19;8:14;4]
Z70 0.014 0.013 0.015 [13:19;8:14;1]
Z105 0.005 0.012 0.012 [13:19;1:7;4]
Z69 0.009 0.005 0.004 [13:19;1:7;1]
Z106 0 0 0.004 [13:19;8:14;4]
Z166 0.009 0.004 0.004 [13:19;8:14;4]

TABLE 3: Estimated sensitivity indices for the production
watercut output after 20 years of production of the well 5
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Figure 5: Convergence of the Υi and Υ∗i indices estimates versus the sample size for the production watercut output after 20
years of production of the well 5. Graphics of the third line correspond to the Convergence of the Υi and Υ∗i indices estimates
of the non-influential inputs

7 CONCLUSIONS AND DISCUSSIONS

In this work, we presented a new sequential screening
method which is based on DGSM indices. We defined a
new DGSM index Υ∗i in order to have a stronger quantitative
measure to define the non-influential inputs. We also used
the QMC Sobol sequence sampling method, which allows
an intelligent sequential estimation of the DGSM indices in
order to reduce the number of model evaluation. We em-
pirically showed, by applying on two analytical models and
a reservoir synthetic test case, that the proposed screening
method is efficient to detect the non-influential inputs for an
acceptable computational cost.
Computing DGSM indices requires model gradients esti-
mation. A classical way to compute the derivatives is to
use the finite-difference approximation method. However,
this method suffer from the fact that the required number of
model evaluation is equal to n(d + 1), where d is the number
of inputs and n the number of points where derivatives are
estimated. Since a reservoir simulator evaluation is gener-

ally time consuming, the finite-difference method is infeasi-
ble for models with a high number of inputs (roughly more
than 20).
Therefore, it is clear that the ability to calculate derivatives
efficiently is important to estimating DGSM indices within
an acceptable computational cost. In the framework of reser-
voir simulation different methods have been developed for
more or less computationally efficient gradients calculation.
In this paper we utilized a reservoir simulator, which allows
to compute gradients using the direct method, or also called
in reservoir engineering the gradient simulator [1, 8]. This
method is based on the solution of the governing analyti-
cal finite difference equations of flow, which automatically
calculates the gradients during the simulation with an ad-
ditional ≈ 33% of the simulation time per each calculated
gradient. Thus the required number of model evaluation to
estimate DGSM indices is ≈ n(d + 1)/3. However, the most
efficient method to calculate the gradient of a functional with
respect to the reservoir simulator parameters is the adjoint
state method when this functional depends on those models
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parameters through state variables, which are the solution
of the differential equation that define the problem. The ad-
vantage of this method comparing to the gradient simulator
method is that it consists of the computation of one unique
extra linear system and the computation of the gradient with
respect to the model parameters is equivalent to one eval-
uation of the simulator. In other words, it means that the
computational cost of gradient calculation is independent of
the number of model parameters. So the required number of
model evaluation to estimate DGSM indices is equal to 2n.
For more details on the mathematical aspect of the adjoint
state method and its applications in reservoir simulation we
refer to [6, 12, 15].
In addition to further testing on reservoir models, using a
reservoir simulator which allows to compute gradients us-
ing adjoint state method is a topic of futur work.
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